Skip to main content
Log in

Dendritic Cell Vaccine Design: Strategies for Eliciting Peripheral Tolerance as Therapy of Autoimmune Diseases

  • Cell Therapy
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Dendritic cells (DC), as potent antigen-presenting cells (APC), constitute a complex system of cells that initiate and regulate immune responses that result in two opposite outcomes: immunity or tolerance. The fine regulation of these two distinct functions is not completely understood. After loading with antigen, DC exhibit the properties of both antigen and adjuvant, the functional components of vaccines. For a long time, attention has focused on the exceptional ability of DC as professional APC capable of eliciting T and B cell-mediated responses, and on their potential as immunotherapy in cancer. DC exhibit both heterogeneity and plasticity. On the one hand, distinct DC subsets exhibit distinct functions. On the other hand, DC functions can be altered by the cytokine environment or other factors. There is increasing evidence that DC could be used as a tool to induce peripheral tolerance. Because DC-based immunotherapy in autoimmune diseases depends on tolerogenic DC, discerning markers for tolerogenic DC is of great importance. Immature DC, plasmacytoid DC and interleukin-10-modified DC can mediate immune tolerance by inducing T-cell anergy or T-helper type 2 responses. Several possibilities exist for rational modulation of DC to achieve therapeutic tolerance against autoimmune diseases. The final goal is to create optimal prerequisites to use autologous DC that are prepared from the individual patient with autoimmune disease, to render such DC tolerogenic by exposure in vitro to factors that promote tolerogenicity, and to re-infuse these pretreated DC to the patient in order to treat the ongoing autoimmune disease and prevent its future exacerbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rescigno M, Borrow P. The host-pathogen interaction: new themes from dendritic cell biology. Cell 2001; 106(3): 267–70

    Article  PubMed  CAS  Google Scholar 

  2. Shortman K. Burnet oration: dendritic cells: multiple subtypes, multiple origins, multiple functions. Immunol Cell Biol 2000; 78(2): 161–5

    Article  PubMed  CAS  Google Scholar 

  3. Shortman K, Liu YJ. Mouse and human dendritic cell subtypes. Nat Rev Immunol 2002; 2(3): 151–61

    Article  PubMed  CAS  Google Scholar 

  4. Banchereau J, Briere F, Caux C, et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811

    Article  PubMed  CAS  Google Scholar 

  5. den Haan JM, Lehar SM, Bevan MJ. CD8(+) but not CD8(−) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med 2000; 192(12): 1685–96

    Article  Google Scholar 

  6. Pooley JL, Heath WR, Shortman K. Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8-dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol 2001; 166(9): 5327–30

    PubMed  CAS  Google Scholar 

  7. Maldonado-Lopez R, De Smedt T, Michel P, et al. CD8alpha+ and CD8alpha-subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med 1999; 189: 587–92

    Article  PubMed  CAS  Google Scholar 

  8. Pulendran B, Banchereau J, Maraskovsky E, et al. Modulating the immune response with dendritic cells and their growth factors. Trends Immunol 2001; 22: 41–7

    Article  PubMed  CAS  Google Scholar 

  9. Suss G, Shortman KA. A subclass of dendritic cells kills CD4 T cells via Fas/Fas-ligand-induced apoptosis. J Exp Med 1996; 183: 1789–96

    Article  PubMed  CAS  Google Scholar 

  10. Traver D, Akashi K, Manz M, et al. Development of CD8alpha-positive dendritic cells from a common myeloid progenitor. Science 2000; 290: 2152–4

    Article  PubMed  CAS  Google Scholar 

  11. Vieira PL, de Jong EC, Wierenga EA, et al. Development of Thl-inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol 2000; 164: 4507–12

    PubMed  CAS  Google Scholar 

  12. Lutz MB, Suri RM, Niimi M, et al. Immature dendritic cells generated with low doses of GM-CSF in the absence of IL-4 are maturation resistant and prolong allograft survival in vivo. Eur J Immunol 2000; 30(7): 1813–22

    Article  PubMed  CAS  Google Scholar 

  13. Jonuleit H, Schmitt E, Schuler G, et al. Induction of interleukin 10-producing, nonproliferating CD4(+) T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells. J Exp Med 2000; 192: 1213–22

    Article  PubMed  CAS  Google Scholar 

  14. Dhodapkar MV, Steinman RM, Krasovsky J, et al. Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 2001; 193: 233–8

    Article  PubMed  CAS  Google Scholar 

  15. Brossart P, Wirths S, Brugger W, et al. Dendritic cells in cancer vaccines. Exp Hematol 2001;29: 1247–55

    Article  PubMed  CAS  Google Scholar 

  16. Lechler R, Ng WF, Steinman RM. Dendritic cells in transplantation: friend or foe? Immunity 2001; 14: 357–68

    Article  PubMed  CAS  Google Scholar 

  17. Pulendran B, Smith JL, Caspary G, et al. Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A 1999; 96: 1036–41

    Article  PubMed  CAS  Google Scholar 

  18. Rissoan MC, Soumelis V, Kadowaki N, et al. Reciprocal control of T helper cell and dendritic cell differentiation. Science 1999; 283: 1183–6

    Article  PubMed  CAS  Google Scholar 

  19. Arpinati M, Green CL, Heimfeld S, et al. Granulocyte-colony stimulating factor mobilizes T helper 2-inducing dendritic cells. Blood 2000; 95: 2484–90

    PubMed  CAS  Google Scholar 

  20. Ito T, Amakawa R, Inaba M, et al. Differential regulation of human blood dendritic cell subsets by IFNs. J Immunol 2001; 166: 2961–9

    PubMed  CAS  Google Scholar 

  21. Hochrein H, Shortman K, Vremec D, et al. Differential production of IL-12, IFN-alpha, and IFN-gamma by mouse dendritic cell subsets. J Immunol 2001; 166: 5448–55

    PubMed  CAS  Google Scholar 

  22. Cella M, Facchetti F, Lanzavecchia A, et al. Plasmacytoid dendritic cells activated by influenza virus and CD40L drive a potent TH1 polarization. Nat Immunol 2000; 1(4: 305–10

    Article  PubMed  CAS  Google Scholar 

  23. Vremec D, Pooley J, Hochrein H, et al. CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol 2000; 164: 2978–86

    PubMed  CAS  Google Scholar 

  24. Grouared G, Rissoan MC, Filgueiral L, et al. The enigmatic plasmacytoid T cells develop into dendritic cells with interleukin and CD40-ligand. J Exp Med 1997; 185:1101–11

    Article  Google Scholar 

  25. Nakano H, Yanagita M, Gunn MD. CD11c(+)B220(+)Gr-1(+) cells in mouse lymph nodes and spleen display characteristics of plasmacytoid dendritic cells. J Exp Med 2001; 194: 1171–8

    Article  PubMed  CAS  Google Scholar 

  26. Asselin-Paturel C, Boonstra A, Dalod M, et al. Mouse type I IFN-producing cells are immature APCs with plasmacytoid morphology. Nat Immunol 2001; 2: 1144–50

    Article  PubMed  CAS  Google Scholar 

  27. Bjorck P. Isolation and characterization of plasmacytoid dendritic cells from Flt3 ligand and granulocyte-macrophage colony-stimulating factor-treated mice. Blood 2001; 98: 3520–6

    Article  PubMed  CAS  Google Scholar 

  28. Nikolic T, Dingjan GM, Leenen PJ, et al. A subfraction of B220(+) cells in murine bone marrow and spleen does not belong to the B cell lineage but has dendritic cell characteristics. Eur J Immunol 2002; 32: 686–92

    Article  PubMed  CAS  Google Scholar 

  29. Kalinski PK, Hilkens CMU, Wierenga EA, et al. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today 1999; 20: 561–7

    Article  PubMed  CAS  Google Scholar 

  30. Sato M, Iwakabe K, Kimura S, et al. Functional skewing of bone marrow dendritic cells by Th1- or Th2-inducing cytokines. Immunol Lett 1999; 67:63–8

    Article  PubMed  CAS  Google Scholar 

  31. Steinbrink K, Graulich E, Kubsch S, et al. CD4(+) and CD8(+) anergic T cells induced by interleukin-10-treated human dendritic cells display antigenspecific suppressor activity. Blood 2002; 99: 2468–76

    Article  PubMed  CAS  Google Scholar 

  32. Simon JC, Tigelaar RE, Bergstresser PR, et al. Ultraviolet B radiation converts Langerhans cells from immunogenic to tolerogenic antigen-presenting cells. J Immunol 1991; 146: 485–91

    PubMed  CAS  Google Scholar 

  33. Steptoe RJ, Thomson AW. Dendritic cells and tolerance induction. Clin Exp Immunol 1996; 105: 397–402

    Article  PubMed  CAS  Google Scholar 

  34. Krug A, Towarowski A, Britsch S, et al. Toll-like receptor expression reveals CpG DNA as a unique microbial stimulus for plasmacytoid dendritic cells which synergizes with CD40 ligand to induce high amounts of IL-12. Eur J Immunol 2001; 31: 3026–37

    Article  PubMed  CAS  Google Scholar 

  35. Kuwana M, Kaburaki J, Wright TM, et al. Induction of antigen-specific human CD4(+) T cell anergy by peripheral blood DC2 precursors. Eur J Immunol 2001; 9: 2547–57

    Article  Google Scholar 

  36. Gilliet M, Liu YJ. Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 2002; 195: 695–704

    Article  PubMed  CAS  Google Scholar 

  37. Steinman RM, Turley S, Mellman I, et al. The induction of tolerance by dendritic cells that have captured apoptotic cells. J Exp Med 2000; 191: 411–6

    Article  PubMed  CAS  Google Scholar 

  38. Basu S, Binder RJ, Suto R, et al. Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 2000; 12: 1539–46

    Article  PubMed  CAS  Google Scholar 

  39. Chang CC, Ciubotariu R, Manavalan JS, et al. Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 2002; 3: 237–43

    Article  PubMed  CAS  Google Scholar 

  40. Viney JL, Mowat AM, O’Malley JM, et al. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 1998; 160: 5815–25

    PubMed  CAS  Google Scholar 

  41. Garrovillo M, Ali A, Depaz HA, et al. Induction of transplant tolerance with immunodominant allopeptide-pulsed host lymphoid and myeloid dendritic cells. Am J Transplant 2001; 1(2): 129–37

    Article  PubMed  CAS  Google Scholar 

  42. Clare-Salzler MJ, Brooks J, Chai A, et al. Prevention of diabetes in nonobese diabetic mice by dendritic cell transfer. J Clin Invest 1992; 90: 741–8

    Article  PubMed  CAS  Google Scholar 

  43. Yang JS, Xu LY, Huang YM, et al. Adherent dendritic cells expressing high levels of IL-10 and low levels of IL-12 induce antigen-specific tolerance to experimental allergic encephalomyelitis. Immunology 2000; 101: 397–403

    Article  PubMed  CAS  Google Scholar 

  44. Link H, Huang YM, Xiao BG. Dendritic cells in experimental allergic encepha-lomyelitis and multiple sclerosis. J Neuroimmunol 1999; 100: 102–10

    Article  PubMed  CAS  Google Scholar 

  45. Huang YM, Yang JS, Xu LY, et al. Autoantigen-pulsed dendritic cells induce tolerance to experimental allergic encephalomyelitis in Lewis rats. Clin Exp Immunol 2000; 122: 437–44

    Article  PubMed  CAS  Google Scholar 

  46. Xiao BG, Huang YM, Yang JS, et al. Bone marrow-derived dendritic cells from experimental allergic encephalomyelitis induce tolerance to EAE in Lewis rats. Clin Exp Immunol 2001; 125: 300–9

    Article  PubMed  CAS  Google Scholar 

  47. Winzler C, Rovere P, Rescigno M, et al. Maturation stages of mouse dendritic cells in growth factor-dependent long-term cultures. J Exp Med 1997; 185: 317–28

    Article  PubMed  CAS  Google Scholar 

  48. Williamson E, Westrich GM, Viney JL. Modulating dendritic cells to optimize mucosal immunization protocols. J Immunol 1999; 163: 3668–75

    PubMed  CAS  Google Scholar 

  49. Lu L, Li W, Fu F, et al. Blockade of the CD40-CD40 ligand pathway potentiates the capacity of donor-derived dendritic cell progenitors to induce long-term cardiac allograft survival. Transplantation 1997; 64: 1808–15

    Article  PubMed  CAS  Google Scholar 

  50. Yarilin D, Duan R, Huang YM, et al. Dendritic cells exposed in vitro to TGF-betal ameliorate experimental autoimmune myasthenia gravis. Clin Exp Immunol 2002; 127: 214–9

    Article  PubMed  CAS  Google Scholar 

  51. Menges M, Rossner S, Voigtlander C, et al. Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J Exp Med 2002; 195: 15–21

    Article  PubMed  CAS  Google Scholar 

  52. Link H, Huang YM, Masterman T, et al. Vaccination with autologous dendritic cells: from experimental autoimmune encephalomyelitis to multiple sclerosis. J Neuroimmunol 2001; 114: 1–7

    Article  PubMed  CAS  Google Scholar 

  53. Link H, Xiao BG. Rat models as tool to develop new immunothérapies. Immunol Rev 2001; 184: 117–28

    Article  PubMed  CAS  Google Scholar 

  54. Huang YM, Hussien Y, Yarilin D, et al. Interferon-beta induces the development of type 2 dendritic cells. Cytokine 2001; 13: 264–71

    Article  PubMed  CAS  Google Scholar 

  55. Huang YM, Stoyanova N, Jin YP, et al. Altered phenotype and function of dendritic cells in multiple sclerosis is modified by IL-10 and IFN-β. Clin Exp Immunol 2001; 124: 306–14

    Article  PubMed  CAS  Google Scholar 

  56. Gallucci S, Matzinger P. Danger signals: SOS to the immune system. Curr Opin Immunol 2001; 13: 114–9

    Article  PubMed  CAS  Google Scholar 

  57. Pulendran B, Banchereau J, Burkeholder S, et al. Flt3-ligand and granulocyte colony-stimulating factor mobilize distinct human dendritic cell subsets in vivo. J Immunol 2000; 165: 566–72

    PubMed  CAS  Google Scholar 

  58. Hiasa Y, Akbar SM, Abe M, et al. Dendritic cell subtypes in autoimmune liver diseases: decreased expression of HLA DR and CD123 on type 2 dendritic cells. Hepatol Res 2002; 22: 241–9

    Article  PubMed  CAS  Google Scholar 

  59. Lutz MB, Kukutsch NA, Menges M, et al. Culture of bone marrow cells in GM-CSF plus high doses of lipopolysaccharide generates exclusively immature dendritic cells which induce alloantigen-specific CD4 T cell anergy in vitro. Eur J Immunol 2000; 30: 1048–52

    Article  PubMed  CAS  Google Scholar 

  60. Roncarolo MG, Levings MK, Traversari C. Differentiation of T regulatory cells by immature dendritic cells. J Exp Med 2001; 193: F5–9

    Article  PubMed  CAS  Google Scholar 

  61. Maldonado-Lopez R, Maliszewski C, Urbain J, et al. Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(−) dendritic cells to prime Thl/Th2 cells in vivo. J Immunol 2001; 167: 4345–50

    PubMed  CAS  Google Scholar 

  62. Buonocore S, Van Meirvenne S, Demoor FX, et al. Dendritic cells transduced with viral interleukin 10 or Fas ligand: no evidence for induction of allotolerance in vivo. Transplantation 2002; 73: S27–30

    Article  PubMed  CAS  Google Scholar 

  63. Suzuki I, Fink PJ. The dual functions of fas ligand in the regulation of peripheral CD8+ and CD4+ T cells. Proc Natl Acad Sci U S A 2000; 97: 1707–12

    Article  PubMed  CAS  Google Scholar 

  64. Blankenstein T, Schuler T. Cross-priming versus cross-tolerance: are two signals enough? Trends Immunol 2002; 23: 171–3

    Article  PubMed  CAS  Google Scholar 

  65. Sebille F, Vanhove B, Soulillou JP. Mechanisms of tolerance induction: blockade of co-stimulation. Philos Trans R Soc Lond B Biol Sci 2001; 356(1049): 649–57

    PubMed  CAS  Google Scholar 

  66. Rifle G, Mousson C. Dendritic cells and second signal blockade: a step toward allograft tolerance? Transplantation 2002; 73: Sl–2

    Google Scholar 

  67. Shortman K, Heath WR. Immunity or tolerance? That is the question for dendritic cells. Nat Immunol 2001; 2: 988–9

    Article  PubMed  CAS  Google Scholar 

  68. Banchereau J, Pulendran B, Steinman R, et al. Will the making of plasmacytoid dendritic cells in vitro help unravel their mysteries? J Exp Med 2000; 192: F39–44

    Article  PubMed  CAS  Google Scholar 

  69. Hawiger D, Inaba K, Dorsett Y, et al. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J Exp Med 2001; 194: 769–779

    Article  PubMed  CAS  Google Scholar 

  70. Morse MA, Deng Y, Coleman D, et al. A Phase I study of active immunotherapy with carcinoembryonic antigen peptide (CAP-l)-pulsed, autologous human cultured dendritic cells in patients with metastatic malignancies expressing carcinoembryonic antigen. Clin Cancer Res 1999; 5: 1331–1338

    PubMed  CAS  Google Scholar 

  71. Hackstein H, Morelli AE, Thomson AW. Designer dendritic cells for tolerance induction: guided not misguided missiles. Trends Immunol 2001; 22: 437–422

    Article  PubMed  CAS  Google Scholar 

  72. Shinomiya M, Fazle Akbar SM, Shinomiya H, et al. Transfer of dendritic cells (DC) ex vivo stimulated with interferon-gamma (IFN-gamma) down-modulates autoimmune diabetes in non-obese diabetic (NOD) mice. Clin Exp Immunol 1999: 117:38–43

    Article  PubMed  CAS  Google Scholar 

  73. Eggert AA, Schreurs MW, Boerman OC, et al. Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 1999; 59: 3340–3345

    PubMed  CAS  Google Scholar 

  74. Beatty G, Paterson Y. IFN-gamma-dependent inhibition of tumor angiogenesis by tumor-infiltrating CD4+T cells requires tumor responsiveness to IFN-gamma. J Immunol 2001; 166: 2276–82

    PubMed  CAS  Google Scholar 

  75. Smyth MJ, Crowe NY, Hayakawa Y, et al. NKT cells: conductors of tumor immunity? Curr Opin Immunol 2002; 14: 165–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The manuscript was supported by grants from the Swedish Medical Research Council and an unrestricted research grant from Biogen Inc., Cambridge, MA, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-Guo Xiao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, BG., Huang, YM. & Link, H. Dendritic Cell Vaccine Design: Strategies for Eliciting Peripheral Tolerance as Therapy of Autoimmune Diseases. BioDrugs 17, 103–111 (2003). https://doi.org/10.2165/00063030-200317020-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200317020-00003

Keywords

Navigation