Skip to main content

Advertisement

Log in

Molecular Biology of Pancreatic Cancer

Potential Clinical Implications

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

The development of cancer involves the accumulation of genetic changes. Over the past decade there has a been spectacular advance in the knowledge of the genetic basis of cancer, mainly as a result of the rapid progression of molecular technology. Pancreatic cancer is one of the most lethal cancers. Conventional therapeutic approaches have not had much impact on the course of this aggressive neoplasm. Knowledge of the molecular biology of pancreatic cancer has grown rapidly. Genetic alterations in pancreatic cancer include oncogene mutations (most commonly K-ras mutations), and tumour suppressor gene alterations (mainly p53, pl6, DCC, etc.). These advances have potential implications for the management of this deadly disease. Identification of a hereditary genetic predisposition to pancreatic cancer has led to the formation of pancreatic cancer registries around the world, with voluntary screening of patients and siblings for the hereditary genetic defect. Asymptomatic population screening remains unrealistic, but the recognition of subpopulations at increased risk from pancreatic cancer, along with novel and sensitive detection techniques, means that targeted population screening is a step closer. Intensive research is performed in specialist laboratories to improve the diagnostic approach in patients with pancreatic cancer. The use of such molecular diagnostic methods is likely to expand. Molecular biology may also have a great impact on the treatment of pancreatic cancer, and many therapeutic approaches are being evaluated in clinical trials, including gene replacement therapy, genetic prodrug activation therapy, antisense immunology and peptide technology. The ‘molecular age’ has the promise of delivering still better results. This review summarises recent data relating to the molecular biology of pancreatic cancer, with emphasis on features that may be of clinical significance for diagnosis and/or therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I

Similar content being viewed by others

References

  1. Greenlee RT, Murray T, Bolden S, et al. Cancer statistics, 2000. CA Cancer J Clin 2000; 50: 7–33

    Article  CAS  PubMed  Google Scholar 

  2. Niederhuber JE, Brennan MF, Menck HR. The National Cancer Data Base report on pancreatic cancer. Cancer 1995; 76: 1671–7

    Article  CAS  PubMed  Google Scholar 

  3. Devesa SS, Blot WJ, Stone BJ, et al. Recent cancer trends in the United States. J Natl Cancer Inst 1995; 87: 175–82

    Article  CAS  PubMed  Google Scholar 

  4. Ahlgren JD. Epidemiology and risk factors in pancreatic cancer. Semin Oncol 1996; 23: 241–50

    CAS  PubMed  Google Scholar 

  5. Warshaw AL, Fernandez-DelCastillo C. Pancreatic adenocarcinoma. N Engl J Med 1992; 326: 455–65

    Article  CAS  PubMed  Google Scholar 

  6. Sakorafas GH, Tsiotou AG, Tsiotos GG. Molecular biology of pancreatic cancer; oncogenes, tumor suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat Rev 2000; 26: 29–52

    Article  CAS  PubMed  Google Scholar 

  7. Parker SL, Tong T, Bolden S, et al. Cancer statistics. CA Cancer J Clin 1997; 47:5–27

    Article  CAS  PubMed  Google Scholar 

  8. Flanders TY, Foulkes WD. Pancreatic adenocarcinoma: epidemiology and genetics. J Med Genet 1996; 33: 889–98

    Article  CAS  PubMed  Google Scholar 

  9. Gold EB, Goldin SB. Epidemiology of and risk factors for pancreatic cancer. Surg Oncol Clin N Am 1998; 7: 67–91

    CAS  PubMed  Google Scholar 

  10. Gold EB. Epidemiology of and risk factors for pancreatic cancer. Surg Clin North Am 1995; 75: 819–43

    CAS  PubMed  Google Scholar 

  11. Howe GR, Burch JD. Nutrition and pancreatic cancer. Cancer Causes Control 1996; 7: 69–82

    Article  CAS  PubMed  Google Scholar 

  12. Zheng W, McLaughlin JK, Gridley G, et al. A cohort study of smoking, alcohol consumption, and dietary factors for pancreatic cancer (United States). Cancer Causes Control 1993; 4: 477–82

    Article  CAS  PubMed  Google Scholar 

  13. Friedman GD, van denEeden SK. Risk factors for pancreatic cancer: an exploratory study. Int J Epidemiol 1993; 22: 30–7

    Article  CAS  PubMed  Google Scholar 

  14. Norrell SE, Ahlbom A, Erwald R, et al. Diet and pancreatic cancer. A case-control study. Am J Epidemiol 1986; 124: 894–902

    Google Scholar 

  15. Zatonski WA, Przewozniak K, Howe GR, et al. Nutritional factors and pancreatic cancer. Int J Cancer 1991; 48: 390–4

    Article  CAS  PubMed  Google Scholar 

  16. Howe GR, Ghadirian P, Bueno de Mesquita HB, et al. A collaborative case-control study of nutrient intake and pancreatic cancer within the Search Program. Int J Cancer 1992; 51: 365–72

    Article  CAS  PubMed  Google Scholar 

  17. McMahon B, Yen S, Trichopoulos D, et al. Coffee and cancer of the pancreas. N Engl J Med 1981; 304: 630–3

    Article  Google Scholar 

  18. Feinstein A, Horrowitz E, Spitzer W, et al. Coffee and pancreatic cancer; the problems of etiologic science and epidemiologic case-control research. JAMA 1981; 246: 957–61

    Article  CAS  PubMed  Google Scholar 

  19. Kinlen LJ, McPherson K. Pancreas cancer and coffee and tea consumption; a case control study. Br J Cancer 1984; 49: 93–6

    Article  CAS  PubMed  Google Scholar 

  20. Gullo L, Pezzilli R, Morselli-Labate AM. Diabetes and the risk of pancreatic cancer. N Engl J Med 1994; 331: 81–4

    Article  CAS  PubMed  Google Scholar 

  21. Chow W-H, Gridley G, Nyren O, et al. Risk of pancreatic cancer following diabetes mellitus: a nationwide cohort study in Sweden. J Natl Cancer Inst 1995; 87: 930–41

    Article  CAS  PubMed  Google Scholar 

  22. Sakorafas GH. Tsiotou AG. Pancreatic cancer in patients with chronic pancreatitis: a challenge from a surgical perspective. Cancer Treat Rev 1999; 25: 207–19

    Article  CAS  PubMed  Google Scholar 

  23. Lowenfels AB, Maisonneuve P, Cavallini G, et al. Pancreatitis and the risk of pancreatic cancer. International Pancreatitis Study Group. N Engl J Med 1993; 328: 1433–7

    Article  CAS  PubMed  Google Scholar 

  24. Karlson BM, Ekbom A, Josefsson S, et al. The risk of pancreatic cancer following pancreatitis: An association due to confounding? Gastroenterology 1997; 113: 587–92

    Article  CAS  PubMed  Google Scholar 

  25. Garabrani DH, Held J, Langholz B, et al. DDT, and related compounds and the risk of pancreatic cancer. J Natl Cancer Inst 1992; 84: 764–71

    Article  Google Scholar 

  26. Mancuso TF, El-Attar AA. Cohort study of workers exposed to betanaphthylamine and benzidine. J Occup Med 1967; 9:277–85

    CAS  PubMed  Google Scholar 

  27. Krause JR, Ayuyang HQ, Ellis LD. Secondary non-hematopoietic cancers arising following treatment of hematopoietic disorders. Cancer 1985; 55: 512–5

    Article  CAS  PubMed  Google Scholar 

  28. Fernandez E, LaVecchia C, D’Avanzo B, et al. Family history and the risk of liver, gallbladder, and pancreatic cancer. Cancer Epidemiol Biomarkers Prev 1994; 3: 209–12

    CAS  PubMed  Google Scholar 

  29. Sakorafas GH, Tsiotou AG. Multistep pancreatic carcinogenesis and its clinical implications. Eur J Surg Oncol 1999; 25: 562–5

    Article  CAS  PubMed  Google Scholar 

  30. Sakorafas GH, Glynatsis MT. The clinical significance of oncogenes. Athens: Infomedia Editor 1993: 80

    Google Scholar 

  31. Manu M, Buckels J, Bramhall S. Molecular technology and pancreatic cancer. Br J Surg 2000; 87: 840–53

    Article  CAS  PubMed  Google Scholar 

  32. Lowy DR, Willumsen BM. Function and regulation of ras. Annu Rev Biochem 1993; 62: 851–91

    Article  CAS  PubMed  Google Scholar 

  33. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–9

    CAS  PubMed  Google Scholar 

  34. Rak J, Mitsuhashi Y, Bayko L, et al. Mutant ras oncogenes upregulate VEGF/VPF expression. Implications for induction and inhibition of tumor angiogenesis. Cancer Res 1995; 55: 4575–80

    CAS  PubMed  Google Scholar 

  35. Sakorafas GH. Pancreatic cancer. In: Kurzrock R, Talpaz M, editors. Molecular biology in cancer medicine. 2nd ed. London: Martin Dunitz Ltd, 1999: 393–409

    Google Scholar 

  36. Sakorafas GH. Oncogenes in the cancer of the pancreas. Ph.D. Thesis, First Propedeutic Department of Surgery, Athens Medical School, Athens, 1993: 90

  37. Sakorafas GH, Lazaris A, Tsiotou AG, et al. Oncogenes in the cancer of the pancreas. Eur J Surg Oncol 1995; 21: 251–3

    Article  CAS  PubMed  Google Scholar 

  38. Howe JR, Conlon KC. The molecular genetics of pancreatic cancer. Surg Oncol 1997; 6: 1–18

    Article  CAS  PubMed  Google Scholar 

  39. Hall PA, Hughes CM, Staddon SL, et al. The c-erbB-2 proto-oncogene in human pancreatic cancer. J Pathol 1990; 161: 195–200

    Article  CAS  PubMed  Google Scholar 

  40. Yamada H, Sakamoto H, Taire M. Amplification of both K-ras with a point mutation an dc-myc in a primary pancreatic cancer and its metastatic tumors in lymph nodes. Jpn J Cancer Res (Gann) 1986; 77: 370–5

    CAS  Google Scholar 

  41. Friess H, Yamanaka Y, Kobrin MS, et al. Enhanced erbB-3 expression in human pancreatic cancer correlates with tumor progression. Clin Cancer Res 1995; 1: 1413–20

    CAS  PubMed  Google Scholar 

  42. Lane DP. p53 guardian of the genome. Nature 1992; 358: 15–6

    Article  CAS  PubMed  Google Scholar 

  43. Lowe SW, Schmidt EM, Smith SW, et al. p53 is required for radiation-induced apoptosis in mouse thymocytes. Nature 1993; 362: 847–9

    Article  CAS  PubMed  Google Scholar 

  44. Redston MS, Caldas C, Seymour AB, et al. p53 mutations in pancreatic carcinoma and evidence of common involvement of homocopolymer tracts in DNA microdeletions. Cancer Res 1994; 54: 3025–33

    CAS  PubMed  Google Scholar 

  45. Mangray S, King TC. Molecular pathobiology of pancreatic adenocarcinoma. Frontiers Bioscience 1998; 3 (Nov): d1148–60

    Google Scholar 

  46. Nobori T, Miura KK, Wu DJ, et al. Deletions of the cyclindependent kinase-4 inhibitor gene in multiple human cancers. Nature 1994; 368: 753–6

    Article  CAS  PubMed  Google Scholar 

  47. Caldas C, Hahn SA, da Costa LT, et al. Frequent somatic mutations and homozygous deletions of the pl6 (MTS1) gene in pancreatic adenocarcinoma. Nat Genet 1994; 8: 27–32

    Article  CAS  PubMed  Google Scholar 

  48. Naumann M, Savitskaia N, Eilert C. Frequent codeletion of pl6/MTS 1 and pl5/MTS2 and genetic alterations inpl6/MTS 1 in pancreatic tumors. Gastroenterology 1996; 110: 1215–24

    Article  CAS  PubMed  Google Scholar 

  49. Hussusian CJ, Struewing JP, Goldstein AM. Germline pl6 mutations in familial melanoma. Nat Genet 1994; 8: 15–21

    Article  Google Scholar 

  50. Goldstein AM, Fraser MC, Struewing JP, et al. Increased risk of pancreatic cancer in melanoma prone kindreds with pl6INK4 mutations. N Engl J Med 1995; 333: 970–4

    Article  CAS  PubMed  Google Scholar 

  51. Rozenblum E, Schute M, Kern SE. INK4 genes in pancreatic carcinoma. Oncol Reports 1996; 3: 743–5

    CAS  Google Scholar 

  52. Rozenblum E, Schutte M, Goggins M, et al. Tumor suppressive pathways in pancreatic cancer. Cancer Res 1997; 57: 1731–4

    CAS  PubMed  Google Scholar 

  53. Brat DJ, Lillemoe KD, Yeo CJ, et al. Progression of pancreatic intraepithelial neoplasias to infiltrating adenocarcinoma of the pancreas. Am J Surg Pathol 1998; 22: 163–9

    Article  CAS  PubMed  Google Scholar 

  54. Gullick WJ, Handyside AH. Pre-implantation diagnosis of inherited predisposition to cancer. Eur J Cancer 1994; 13: 2030–2

    Article  Google Scholar 

  55. Whitcomb DC, Gorry MC, Preston RA, et al. Hereditary pancreatitis is caused by a mutation in the cationic trypsinogen gene. Nature Genet 1996; 14: 141–5

    Article  CAS  PubMed  Google Scholar 

  56. Lynch HT, Smyrk T, Kern SE, et al. Familial pancreatic cancer: Areview. Semin Oncol 1996; 23: 251–75

    CAS  PubMed  Google Scholar 

  57. Tada M, Omata M, Ohto M. Clinical application of ras gene mutation for diagnosis of pancreatic adenocarcinoma. Gastroenterology 1991; 100: 233–8

    CAS  PubMed  Google Scholar 

  58. Kondo H, Sugano K, Fukayama N, et al. Detection of point mutations in the K-ras oncogene at codon 12in pure pancreatic juice for the diagnosis of pancreatic carcinoma. Cancer 1994; 73: 1589–94

    Article  CAS  PubMed  Google Scholar 

  59. Watanabe H, Sawabu N, Ohta H, et al. Identification of K-rasoncogene mutations in the pure pancreatic juice of patients with pancreatic cancer. Japan J Cancer Res 1993; 84: 961–5

    Article  CAS  Google Scholar 

  60. Iguchi H, Sugano K, Fukayama N, et al. Analysis of K-ras codon 12 mutations in the duodenal juice of patients with pancreatic cancer. Gastroenterology 1996; 110: 221–6

    Article  CAS  PubMed  Google Scholar 

  61. Trumper LH, Burger B, vonBonin F, et al. Diagnosis of pancreatic adenocarcinoma by polymerase chain reaction from pancreatic secretions. Br J Cancer 1994; 70: 278–84

    Article  CAS  PubMed  Google Scholar 

  62. Urban T, Ricci S, Grange JD, et al. Detection of c-Ki-ras mutation by PCR/RFLP analysis and diagnosis of pancreatic adenocarcinomas. J Natl Cancer Inst 1993; 85: 2008–12

    Article  CAS  PubMed  Google Scholar 

  63. Shibata D, Almoguera C, Forrrester K, et al.Detection of c-K-ras mutations in fine needle aspirates from human pancreatic adenocarcinomas. Cancer Res 1990; 50: 1279–83

    CAS  PubMed  Google Scholar 

  64. Caldas C, Hahn SA, Hruban RH, et al. Detection of K-ras mutations in the stool of patients with pancreatic adenocarcinoma and pancreatic ductal hyperplasia. Cancer Res 1994; 54: 3568–73

    CAS  PubMed  Google Scholar 

  65. Nomoto S, Nakao A, Ando N, et al. Clinical application of K-ras oncogene mutations in pancreatic carcinoma; detection of micrometastases. Semin Surg Oncol 1998; 15: 40–6

    Article  CAS  PubMed  Google Scholar 

  66. Pellegata NS, Sessa F, Renault B, et al. K-ras and p53 gene mutations in pancreatic cancer: ductal and non-ductal tumors progress through different genetic lesions. Cancer Res 1994; 54: 1556–60

    CAS  PubMed  Google Scholar 

  67. Yanagisawa A, Ohtake K, Ohashi K, et al. Frequent c-Ki-ras oncogene activation in mucous cell hyperplasias of pancreas suffering from chronic inflammation. Cancer Res 1993; 53: 953–6

    CAS  PubMed  Google Scholar 

  68. Suwa H, Ohshio G, Okada N, et al. Clinical significance of serum p53 antigen in patients with pancreatic carcinomas. Gut 1997; 40: 647–53

    CAS  PubMed  Google Scholar 

  69. Nakamori S, Yashima K, Murakami Y, et al. Association of p53 gene mutations with short survival in pancreatic adenocarcinoma. Japan J Cancer Res 1995; 86; 174–81

    Article  CAS  Google Scholar 

  70. Bartsch D, Shevlin DW, Callery MP, et al. Reduced survival in patients with ductal pancreatic adenocarcinoma associated with CDKN2 mutation. J Natl Cancer Inst 1996; 88: 680–2

    Article  CAS  PubMed  Google Scholar 

  71. Lowe S, Ruley H, Jacks T, et al. p53-dependent apoptosis modulates the cytotoxicity of anticancer agents. Cell 1993; 74: 957–67

    Article  CAS  PubMed  Google Scholar 

  72. Lang D, Miknyoczki SJ, Huang L, et al. Stable reintroduction of wild-type p53 (MTmp53ts) causes the induction of apoptosis and neuroendocrine-like differentiation in human ductal pancreatic carcinoma cells. Oncogene 1998; 16: 1593–602

    Article  CAS  PubMed  Google Scholar 

  73. Liu TJ, Zhang WW, Taylor DL, et al. Growth suppression of human head and neck cancer cells by the introduction of a wild-type p53 gene via a recombinant adenovirus. Cancer Res 1994; 54: 3662–7

    CAS  PubMed  Google Scholar 

  74. Chen PL, Chen YM, Bookstein R, et al. Genetic mechanisms of tumor suppression by the human p53 gene. Science 1990; 250: 1576–80

    Article  CAS  PubMed  Google Scholar 

  75. Fujiwara T, Grimm EA, Mukhopadhyay T, et al. Induction of chemosensitivity in human lung cancer cells in vivo by ade-novirus-mediated transfer of the wild-type p53 gene. Cancer Res 1994; 54: 2287–91

    CAS  PubMed  Google Scholar 

  76. McCarty TM, Liu X, Sun J, et al. Targeting p53 for adoptive T-cell immunotherapy. Cancer Res 1998; 58: 2601–5

    CAS  PubMed  Google Scholar 

  77. Aoki K, Yoshida T, Sugimura T, et al. Liposome-mediated in vivo gene transfer of antisense K-ras construct inhibits pancreatic tumor dissemination in the murine peritoneal cavity. Cancer Res 1995; 55: 3810–6

    CAS  PubMed  Google Scholar 

  78. Barton CM, Lemoine NR. Antisense oligonucleotides directed against TP53 have antiproliferative effects unrelated to effects on p53 expression. Br J Cancer 1995; 71: 429–37

    Article  CAS  PubMed  Google Scholar 

  79. Schaber MD, O’Hara MB, Garsky VM, et al. Polyisoprenylation of Ras in vitro by a farnesyl-protein transferase. J Biol Chem 1990; 265: 701–4

    Google Scholar 

  80. Gibbs JB, Oliff A, Kohl NE. Farnesyl-transferase inhibitors: ras research yields a potential cancer therapeutic. Cell 1994; 77: 175–8

    Article  CAS  PubMed  Google Scholar 

  81. Ito T, Kawata S, Tamura S, et al. Suppression of human pancreatic cancer growth in BALB/c nude mice by manumycin, a farnesyl-protein transferase inhibitor. Jpn J Cancer Res 1996; 87: 113–6

    Article  CAS  PubMed  Google Scholar 

  82. Rosenberg L. Pancreatic cancer: a review of emerging therapies. Drugs 2000; 59: 1071–89

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George H. Sakorafas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sakorafas, G.H., Tsiotos, G.G. Molecular Biology of Pancreatic Cancer. BioDrugs 15, 439–452 (2001). https://doi.org/10.2165/00063030-200115070-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-200115070-00003

Keywords

Navigation