Skip to main content

Advertisement

Log in

Delivery Systems for Immunomodulatory Proteins and Peptides

  • Immunology-Based Agents
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

Polypeptide and protein immunomodulators are subject to absorption, biodistribution, metabolism and degradation at sites and rates which may not permit effective interactions with components of the immune system. Drug carrier technology can overcome some of these obstacles. Because of the lipid and particulate nature of liposomes, increased delivery of immunomodulators to lymphatics, lymph nodes, lymphatic organs and concentrations of macrophages is possible when an immunomodulator is associated with a liposome. Interleukin-2 (IL-2) liposomes have been shown to have less toxicity and increased immunotherapeutic effects in a number of model systems and are currently in human clinical trials. Local routes such as aerosol delivery to the lung are particularly well suited to use with liposomes containing immunomodulators.

Polypeptides can also enhance the interaction of an immunomodulator with the immune system via increased immunostimulation; this can provide a means to enhance oral delivery and to achieve depot effects. Polysaccharide microspheres have been shown to be effective biodegradable carriers of immunomodulators.

Finally, genetically engineered bacteria, viruses and mammalian cells may function as delivery systems for immunomodulatory peptides and proteins. Attenuated Salmonella strains can deliver immunomodulators to the gut-associated lymphoid tissue, liver and spleen. In mouse experiments using tumour cells producing granulocyte-macrophage colony-stimulating factor (GM-CSF), irradiated tumour preparations produced GM-CSF and were capable of eliciting effective cell-mediated immune responses, including destruction and elimination of tumour as well as resistance to tumour challenge (i.e. memory response). A wide variety of immunomodulators have been tested using this strategy: IL-2 and GMCSF are among the most potent inducers of both cell-mediated effector and memory responses.

In summary, use of delivery systems can significantly enhance the immunomodulatory potential of polypeptides and proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weiner AL. Liposomes for protein delivery: selecting manufacture and development processes. Immunomethods 1994; 4: 201–9

    Article  PubMed  CAS  Google Scholar 

  2. Shahum E, Thérien HM. Correlation between in vitro and in vivo behavior of liposomal antigens. Vaccine 1994; 12(12): 1125–31

    Article  PubMed  CAS  Google Scholar 

  3. Alving CR. Liposomes as carriers of antigens and adjuvants. J Immunol Methods 1991; 140: 1–13

    Article  PubMed  CAS  Google Scholar 

  4. Bergers JJ, ten Hagen TLM, van Etten EWM, et al. Liposomes as delivery systems in the prevention and treatment of infectious diseases. Pharm World Sci 1995; 17: 1–11

    Article  PubMed  CAS  Google Scholar 

  5. Tan L, Gregoriadis G. A novel positively-charged lipid 1,2-bis-(hexadecylcycloxy)-3-trimethyl aminopropane (BisHOP) enhances the adjuvant effect of liposomes on encapsulated tetanus toxoid. Asian Pac J Allergy Immunol 1991; 9: 21–4

    PubMed  CAS  Google Scholar 

  6. Shahum E, Thérien HM. Liposomal adjuvanticity: effect of encapsulation and surface-linkage on antibody production and proliferative response. Int J Immunopharmacol 1995; 17(1): 9–20

    Article  PubMed  CAS  Google Scholar 

  7. Tan LSK. Liposomes as antigen vehicles to increase immunogenicity: effects of variation of structural characteristics. Ann Acad Med 1991; 20(1): 78–83

    CAS  Google Scholar 

  8. Kawamura H, Rosenberg SA, Berzofsky JA. Immunization with antigen and interleukin 2 in vivo overcomes Ir gene low responsiveness. J Exp Med 1985 Jul; 162: 381–6

    Article  PubMed  CAS  Google Scholar 

  9. Good MF, Pombo D, Lunde MN, et al. Recombinant human IL-2 overcomes genetic nonresponsiveness to malaria sporozoite peptides: correlation of effect with biologic activity of IL-2. J Immunol 1988 Aug 1; 141(3): 972–7

    PubMed  CAS  Google Scholar 

  10. Weinberg A, Merigan TC. Recombinant interleukin 2 as an adjuvant for vaccine-induced protection: immunization of guinea pigs with herpes simplex virus subunit vaccines. J Immunol 1988 Jan 1; 140(1): 294–9

    PubMed  CAS  Google Scholar 

  11. Siegel JP, Puri RK. Interleukin-2 toxicity. J Clin Oncol 1991 Apr; 9(4): 694–704

    PubMed  CAS  Google Scholar 

  12. Anderson PM, Katsanis E, Leonard AS, et al. Increased local anti-tumor effects of interleukin-2 liposomes in mice with MCA-106 sarcoma pulmonary metastases. Cancer Res 1990 Mar 15; 50: 1853–6

    PubMed  CAS  Google Scholar 

  13. Utsugi T, Dinney CPN, Killion JJ, et at. In situ activation of mouse lung macrophages by coadministration of liposomes containing the lipopeptide CGP 31362 and interleukin-2 involves interaction with T lymphocytes and natural killer cells. Lymphokine Cytokine Res 1991; 10(6): 487–93

    PubMed  CAS  Google Scholar 

  14. Loeffler CM, Piatt JL, Anderson PM, et al. Anti-tumor effects of IL-2 liposomes and anti-CD3 stimulated T cells against murine MCA-38 hepatic metastases. Cancer Res 1991; 51: 2127–32

    PubMed  CAS  Google Scholar 

  15. Konno H, Yamashita A, Tadakuma T, et al. Inhibition of growth of rat hepatoma by local injection of liposomes containing recombinant interleukin-2: anti-tumor effect of IL-2 liposome. Biotherapy 1991; 3: 211–8

    Article  PubMed  CAS  Google Scholar 

  16. Konno H, Maruo Y, Matin AF, et al. Effect of liposomal interleukin-2 on ascites-forming rat hepatoma. J Surg Oncol 1992; 51: 33–7

    Article  PubMed  CAS  Google Scholar 

  17. Oya M. anti-tumor effect of interleukin-2 entrapped in liposomes on murine renal cell carcinoma. Keio J Med 1994 Mar; 43(1): 37–44

    Article  PubMed  CAS  Google Scholar 

  18. Mbawuike IN, Wyde PR, Anderson PM. Enhancement of the protective efficacy of inactivated influenza A virus vaccine in aged mice by IL-2 liposomes. Vaccine 1990 Aug; 8: 347–52

    Article  PubMed  CAS  Google Scholar 

  19. Sencer SF, Rich ML, Katsanis E, et al. Anti-tumor vaccine adjuvant effects of IL-2 liposomes in mice immunized against MCA-102 sarcoma. Eur Cytokine Netw 1991; 25: 311–8

    PubMed  CAS  Google Scholar 

  20. Bergers JJ, Den Otter W, Dullens HFJ, et al. Interleukin-2 containing liposomes: interaction of interleukin-2 with liposomal bilayers and preliminary studies on application in cancer vaccines. Pharm Res 1993; 10(12) 1715–21

    Article  PubMed  CAS  Google Scholar 

  21. Ho RJY, Burke RL, Merigan TC. Liposome-formulated interleukin-2 as an adjuvant recombinant HSV glycoprotein gD for the treatment of recurrent genital HSV-2 in guinea-pigs. Vaccine 1992; 10(4): 209–13

    Article  PubMed  CAS  Google Scholar 

  22. Abraham E, Shah S. Intranasal immunization with liposomes containing IL-2 enhances bacterial polysaccharide antigen-specific pulmonary secretory antibody response. J Immunol 1992 Dec; 149(11): 3719–26

    PubMed  CAS  Google Scholar 

  23. Anderson PM, Katsanis E, Sencer SF, et al. Depot characteristics and biodistribution of interleukin-2 liposomes: importance of route of administration. J Immunother 1992; 12: 19–31

    Article  PubMed  CAS  Google Scholar 

  24. Anderson PM, Hasz D, Dickrell L, et al. Interleukin-2 in liposomes: increased intravenous potency and less pulmonary toxicity in the rat. Drug Dev Res 1992; 27: 15–31

    Article  CAS  Google Scholar 

  25. Kedar E, Rutkowski Y, Braun E, et al. Delivery of cytokines by liposomes. I. Preparation and characterization of interleukin-2 encapsulated in long-circulating sterically stabilized liposomes. J Immunother 1994; 16: 47–59

    Article  CAS  Google Scholar 

  26. Kedar E, Braun E, Rutkowski Y, et al. Delivery of cytokines by liposomes. II. Interleukin-2 encapsulated in long-circulating sterically stabilized liposomes: immunomodulatory and anti-tumor activity in mice. J Immunother 1994; 16: 115–24

    Article  CAS  Google Scholar 

  27. Anderson PM, Hanson DC, Hasz DE, et al. Cytokines in liposomes: preliminary studies with IL-1, IL-2, IL-6, GM-CSF and interferon-γ. Cytokine 1994 Jan; 6(1): 92–101

    Article  PubMed  CAS  Google Scholar 

  28. Lachman LB, Shih LCN, Rao XM, et al. Cytokine-containing liposomes as adjuvants for subunit vaccines. In: Powel MF, Newmann MJ, editors. Vaccine design: the subunit and adjuvant approach. New York: Plenum Press, 1995: 659–71

    Google Scholar 

  29. Eppstein DA, Marsh YV, Van Der Pas M, et al. Biological activity of liposome encapsulated murine interferon gamma is mediated by a cell membrane receptor. Proc Natl Acad Sci USA 1985; 82: 3688–92

    Article  PubMed  CAS  Google Scholar 

  30. Weiner N, Williama N, Birch G, etal. Topical delivery of liposomally encapsulated interferon evaluated in a cutaneous herpes guinea pig model. Antimicrob Agents Chemother 1989; 33: 1217–21

    Article  PubMed  CAS  Google Scholar 

  31. Jolivet M, Sache E, Audibert F. Biological studies of lipophilic MDP-derivatives incorporated in liposomes. Immunol Commun 1981; 10(6): 511–22

    PubMed  CAS  Google Scholar 

  32. Taubman MA, Ebersole JL, Smith DJ, et al. Adjuvants for secretory immune responses. Ann NY Acad Sci 1983; 409: 637–49

    Article  PubMed  CAS  Google Scholar 

  33. Fujimaki W, Itoh K, An T, et al. Cytokine production and immune cell activation in melanoma patients treated with liposomal muramyl tripeptide (CGP 19835A lipid). Cancer Biother 1993; 8(4): 307–18

    Article  PubMed  CAS  Google Scholar 

  34. Asano T, Kleinerman ES. Liposome-encapsulated MTP-PE: a novel biologic agent for cancer therapy. J Immunother 1993; 14: 286–92

    Article  CAS  Google Scholar 

  35. Bui T, Dykers T, Hu SL, et al. Effect of MTP-PE liposomes and interleukin-7 on induction of antibody and cell-mediated immune responses to a recombinant HIV-envelope protein. J Acquir Immune Defic Syndr 1994; 7: 799–806

    PubMed  CAS  Google Scholar 

  36. Bergers JJ, Den Otter W, Dullens HFJ, et al. Effect of immunomodulators on specific tumor immunity induced by liposome-encapsulated tumor-associated antigens. Int J Cancer 1994; 56: 721–6

    Article  PubMed  CAS  Google Scholar 

  37. Philip R, Brunette E, Kilinski L. Efficient and sustained gene expression in primary T lymphocytes and primary and cultured tumor cells mediated by adeno-associated virus plasmid DNAcomplexed cationic liposomes. Mol Cell Biol 1994 Apr; 2411–8

    Google Scholar 

  38. Vieweg J, Boczkowski D, Roberson KM, et al. Efficient gene transfer with adeno-associated virus-based plasmids complexed to cationic liposomes for gene therapy of human prostate cancer. Cancer Res 1995 Jun 1; 55: 2366–72

    PubMed  CAS  Google Scholar 

  39. Mori A, Huang L. Targeted immunoliposomes: potential role in the delivery of cytotoxic drugs. Clin Immunother 1995; 3(3): 227–40

    Google Scholar 

  40. Gilbert BE, Wilson SZ, Garcon NM, et al. Characterization and administration of cyclosporin A liposomes as a small particle aerosol. Transplantation 1993; 56: 974–7

    Article  PubMed  CAS  Google Scholar 

  41. Waldrep JC, Scherer PW, Keyhani K, et al. Cyclosporin A liposome aerosol: particle size and calculated respiratory deposition. Int J Pharm 1993; 97: 205–12

    Article  CAS  Google Scholar 

  42. Knight V, Waldrep JC. New approaches in aerosol drug delivery for the treatment of asthma. In: Kay B, editor. Allergy and allergic diseases. Oxford: Blackwell Science, 1997: 726–37

    Google Scholar 

  43. Goldbach P, Dumont S, Kessler et al. In situ activation of mouse alveolar macrophages by aerosolized liposomal interferon gamma and muramyl tripeptide. Am J Physiol (Lung Cell Mol Physiol) 1996; 270: L429–34

    CAS  Google Scholar 

  44. Khanna C, Hasz DE, Klausner JS, et al. Aerosol delivery of interleukin-2 liposomes is nontoxic and biologically effective: canine studies. Clin Cancer Res 1996; 2: 721–34

    PubMed  CAS  Google Scholar 

  45. Anderson PM, Sorenson MA. Effects of route and formulation on clinical pharmacokinetics of interleukin-2. Clin Pharmacokinet 1994; 27(1): 19–31

    Article  PubMed  CAS  Google Scholar 

  46. Clarke CJ, Stokes CR. The intestinal and serum humoral immune response of mice to systemically and orally administered antigens in liposomes. I. The response to liposome-entrapped soluble protein. Vet Immunol Immunopathol 1992; 32: 125–38

    Article  PubMed  CAS  Google Scholar 

  47. Clarke CJ, Stokes CR. The intestinal and serum humoral immune response of mice to orally administered antigens in liposomes. II. The response to liposome-entrapped bacterial proteins. Vet Immunol Immunopathol 1992; 32: 139–48

    Article  PubMed  CAS  Google Scholar 

  48. Lycke N, Bromander AK, Ekman L, et al. Cellular basis of immunomodulation by cholera toxin in vitro with possible association to the adjuvant function in vivo. J Immunol 1989 Jan 1; 142(1): 20–7

    PubMed  CAS  Google Scholar 

  49. Nashar TO, Amin T, Marcello A, et al. Current progress in the development of the B subunits of cholera toxin and Escherichia coli heat-labile enterotoxin as carriers for the oral delivery of heterologous antigens and epitopes. Vaccine 1993; 11(2): 235–40

    Article  PubMed  CAS  Google Scholar 

  50. Frenchick PJ, Sabara MIJ, Ready KFM, et al. Biochemical and immunological characterization of a novel peptide carrier system using rotavirus VP6 particles. Vaccine 1992; 10(11): 783–91

    Article  PubMed  CAS  Google Scholar 

  51. Loutan L, Bovier P, Althaus B, et al. Inactivated virosome hepatitis A vaccine. Lancet 1994; 343: 322–4

    Article  PubMed  CAS  Google Scholar 

  52. Hilbert A, Hudecz F, Mezo G, et al. The influence of branched polypeptide carriers on the immunogenicity of predicted epitopes of HSV-1 glycoprotein D. Scand J Immunol 1994; 40: 609–17

    Article  PubMed  CAS  Google Scholar 

  53. Van de Water B, Van Berkel TJC, Kuiper J. Activation of rat kupffer cells to tumoricidal cells by the immunomodulator muramyl tripeptide-phosphatidylethanolamine incorporated into the novel drug carrier lactosylated low density lipoprotein. Mol Pharmacol 1994; 45: 971–7

    PubMed  Google Scholar 

  54. Morein B, Sundquist B, Hoglund S, et al. Iscom, a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 1984 Mar 29; 308: 457–9

    Article  PubMed  CAS  Google Scholar 

  55. Morgan AJ, Finerty S, Lovgren K, et al. Prevention of Epstein-Barr (EB) virus-induced lymphoma in cottontop tamarins by vaccination with the EB virus envelope glycoprotein gp340 incorporated into immune-stimulated complexes. J Gen Virol 1988; 69: 2093–6

    Article  PubMed  CAS  Google Scholar 

  56. Ahmeida ETSB, Gregoriadis G, Potter CW, et al. Immuno-potentiation of local and systemic humoral immune responses by ISCOMs, liposomes and FCA: role in protection against influenza A in mice. Vaccine 1993; 11(13): 1302–9

    Article  PubMed  Google Scholar 

  57. Golumbek PT, Azhari R, Jaffe EM, et al. Controlled release, biodegradable cytokine depots: a new approach in cancer vaccine design. Cancer Res 1993 Dec 15; 53: 5841–4

    PubMed  CAS  Google Scholar 

  58. Langer R. New methods of drug delivery. Science 1990 Sep 28; 249: 1527–33

    Article  PubMed  CAS  Google Scholar 

  59. Eldridge JH, Staas JK, Meulbroek JA, et al. Biodegradable and biocompatible poly (DL-Lactide-co-Glycolide) microspheres as an adjuvant for staphylococcal enterotoxin B toxoid which enhances the level of toxin-neutralizing antibodies. Infect Immun 1991 Sept; 59(9): 2978–86

    PubMed  CAS  Google Scholar 

  60. Degling L, Sjarnkvist P, Sjoholm I. Interferon gamma in starch microparticles: nitric oxide generating activity in vitro and antileishmanial effect in mice. Pharm Res 1993; 10; 783–90

    Article  PubMed  CAS  Google Scholar 

  61. Kalish ML, Check IJ, Hunter RL. Murine IgG isotype responses to the Plasmodium cynomolgi circumsporozoite peptide (NAGG). I. Effects of carrier, copolymer adjuvants, and lipopolysaccharide on Isotype selection. J Immunol 1990 May 15; 146(10): 3583–90

    Google Scholar 

  62. Hunter RL, McNicholl J, Lai AA. Mechanisms of action of nonionic block copolymer adjuvants. AIDS Res Hum Retrovir 1994; 10Suppl. 2: S95–S98

    PubMed  CAS  Google Scholar 

  63. Sorenson MA, Zebede M, Anderson PM, et al. Interleukin-2 lipid microspheres. I. Development and evaluation of the colloidal drug carrier. Drug Deliv 1995; 2: 198–206

    Article  CAS  Google Scholar 

  64. Sorenson MA, Zebede M, Anderson PM, et al. Interleukin-2 lipid microspheres. II. In vitro and in vivo assessment of a colloidal drug carrier containing interleukin-2. Drug Deliv 1995; 2: 207–14

    Article  CAS  Google Scholar 

  65. Edelman ER, Nugent MA, Karnovsky MJ. Perivascular and intravenous administration of basic fibroblast growth factor: vascular and solid organ deposition. Proc Natl Acad Sci USA 1993 Feb; 90: 1513–7

    Article  PubMed  CAS  Google Scholar 

  66. Puolakkainen PA, Ranchalis JE, Gombotz WR, et al. Novel delivery system for inducing quiescence in intestinal stem cells in rats by transforming growth factor β1. Gastroenterology 1994; 107: 1319–26

    PubMed  CAS  Google Scholar 

  67. Sullivan LM, Bober LA, Grace MJ, et al. Potential interaction of interleukin-4 with endogenous cytokines in vivo. Pathobiology 1994; 62: 59–72

    Article  PubMed  CAS  Google Scholar 

  68. Al-Hendy A, Hortelano G, Tannenbaum GS, et al. Correction of the growth defect in dwarf mice with nonautologous micro-encapsulated myoblasts: an alternate approach to somatic gene therapy. Hum Gene Ther 1995; 6: 165–75

    Article  PubMed  CAS  Google Scholar 

  69. Nakayama K, Kelly SM, Curtiss R. Construction of an ASD+ expression-cloning vector: stable maintenance and high level expression of cloned genes in a Salmonella vaccine strain. Biotechnology 1988; 6: 693–7

    Article  CAS  Google Scholar 

  70. Saltzman DA, Heise CP, Katsanis E, et al. Patterns of hepatic and splenic colonization by an attenuated strain of Salmonella typhimurium containing the gene for human interleukin-2: a novel anti-tumor agent. Cancer Biother 1996. In press

    Google Scholar 

  71. Antimisiaris SG, Jayasekera P, Gregoriadis G. Liposomes as vaccine carriers: incorporation of soluble and particulate antigens in giant vesicles. J Immunol Methods 1993; 166: 271–80

    Article  PubMed  CAS  Google Scholar 

  72. Ramshaw IA, Andrew ME, Phillips SM, et al. Recovery of immunodeficient mice from a vaccinia virus/IL-2 recombinant infection. Nature 1987; 329: 547–50

    Article  Google Scholar 

  73. Olmssted RA, Buller RML, Murphy BR, et al. Evaluation in nonhuman primates of the safety, immunogenicity, and efficacy of recombinant vaccinia virus. In: Ginsberg H, Brown F, Lerner RA, et al., editors. Vaccines 88: new chemical and genetic approaches to vaccines. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory, 1988: 205–10

    Google Scholar 

  74. Flexner C, Moss B, London WT, et al. Attenuation and immunogenicity in primates of vaccinia virus recombinants expressing human interleukin-2. Vaccine 1990; 8: 17–21

    Article  PubMed  CAS  Google Scholar 

  75. Tepper RI, Pattengale PK, Leder P. Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 1989 May 5; 57: 503–12

    Article  PubMed  CAS  Google Scholar 

  76. Li W, Diamantstein T, Blankenstein T. Lack of tumorigenicity of interleukin 4 autocrine growing cells seems related to the anti-tumor function of interleukin 4. Mol Immunol 1990; 27(12): 1331–37

    Article  PubMed  CAS  Google Scholar 

  77. Golumbek PT, Lazenby AJ, Levitsky HI, et al. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 1991 Nov; 254: 713–6

    Article  PubMed  CAS  Google Scholar 

  78. Fearon E, Pardoll DM, Itaya T, et al. Interleukin-2 production by tumor cells bypasses T helper function in the generation of an anti-tumor response. Cell 1990 Feb 9; 60: 397–403

    Article  PubMed  CAS  Google Scholar 

  79. Gansbacher B, Zier K, Daniels B, et al. Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 1990 Oct; 172: 1217–24

    Article  PubMed  CAS  Google Scholar 

  80. Gansbacher B, Bannerji R, Daniels B, et al. Retroviral vector-mediated γ-interferon gene transfer into tumor cells generates potent and long lasting anti-tumor immunity. Cancer Res 1990 Dec 15; 50: 7820–5

    PubMed  CAS  Google Scholar 

  81. Watanabe Y, Kuribayashi K, Miyatake S, et al. Exogenous expression of mouse interferon γ cDNA in mouse neuroblastoma CI300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci USA 1989 Dec; 86: 9456–60

    Article  PubMed  CAS  Google Scholar 

  82. Asher AL, Mulé JJ, Kashid A, et al. Murine tumor cells transduced with the gene for tumor necrosis factor-α. J Immunol 1991 May 1; 146(9): 3227–34

    PubMed  CAS  Google Scholar 

  83. Blankenstein T, Qin Z, Uberla K, et al. Tumor suppression after tumor cell-targeted tumor necrosis factor-α gene transfer. J Exp Med 1991 May; 173: 1047–52

    Article  PubMed  CAS  Google Scholar 

  84. Teng MN, Park BH, Koeppen HKW, et al. Long-term inhibition of tumor growth by tumor necrosis factor in the absence of cachexia of T-cell immunity. Proc Natl Acad Sci USA 1991 May; 88: 3535–9

    Article  PubMed  CAS  Google Scholar 

  85. Colombo MP, Ferrari G, Stoppacciaro A, et al. Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med 1991 Apr; 173: 889–97

    Article  PubMed  CAS  Google Scholar 

  86. Rollins BJ, Sunday ME. Suppression of tumor formation in vivo by expression of the JE gene in malignant cells. Mol Cell Biol 1991 Jun; 11(6): 3125–31

    PubMed  CAS  Google Scholar 

  87. Hock H, Dorsch M, Diamantstein T, et al. Interleukin-7 induces CD4+ T cell-dependent tumor rejection. J Exp Med 1992 Dec; 174: 1291–8

    Article  Google Scholar 

  88. Aoki T, Tashiro K, Miyatake S, et al. Expression of murine interleukin-7 in a murine glioma cell line results in reduced tumorigenicity in vivo. Proc Natl Acad Sci USA 1992 May; 89: 3850–4

    Article  PubMed  CAS  Google Scholar 

  89. Porgador A, Tzhoval E, Katz A, et al. Interleukin-6 gene transfection into Lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic conpetence against parental metastatic cells. Cancer Res 1992; 52: 3679–86

    PubMed  CAS  Google Scholar 

  90. Dranoff G, Jaffee E, Lazenby A, et al. Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and long-lasting anti-tumor immunity. Proc Natl Acad Sci USA 1993; 90: 3539–43

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter M. Anderson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anderson, P.M. Delivery Systems for Immunomodulatory Proteins and Peptides. BioDrugs 7, 51–65 (1997). https://doi.org/10.2165/00063030-199707010-00007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199707010-00007

Keywords

Navigation