Skip to main content
Log in

Liposomes as delivery systems in the prevention and treatment of infectious diseases

  • Published:
Pharmacy World and Science Aims and scope Submit manuscript

Abstract

Research on the potential application of liposomes in the prevention and treatment of infectious diseases has focussed on improvement of the therapeutic index of antimicrobial drugs and immunomodulators and on stimulation of the immune response to otherwise weak antigens in vaccines composed of purified micro-organism subunits. In this review current approaches in this field are outlined. The improved therapeutic index of antimicrobial drugs after encapsulation in liposomes is a result of enhanced drug delivery to infected tissue or infected cells and/or a reduction of drug toxicity of potentially toxic antibiotics. Liposomal encapsulation of immunomodulators that activate macrophages aims at reducing the toxicity of these agents and targeting them to the cells of the mononuclear phagocyte system in order to increase the nonspecific resistance of the host against infections. Studies on the immunogenicity of liposomal antigens have demonstrated that liposomes can potentiate the humoral and cell mediated immunity to a variety of antigens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Swenson CE, Popescu MC, Ginsberg RS. Preparation and use of liposomes in the treatment of microbial infections. Crit Rev Microbiol 1988;15 Suppl 1:1–31.

    Google Scholar 

  2. Alving CR. Liposomes as carriers of antigens and adjuvants. J Immunol Methods 1991;140:1–13.

    Google Scholar 

  3. Barenholz Y, Crommelin DJA. Liposomes as pharmaceutical dosage forms. In: Swarbrick J, editor. Encyclopedia of pharmaceutical technology. Vol. 9. New York: Marcel Dekker, 1994:1–39.

    Google Scholar 

  4. Gregoriadis C. The carrier potential of liposomes in biology and medicine. N Engl J Med 1976;295:704–10.

    Google Scholar 

  5. Storm G, Oussoren C, Peeters PAM, Barenholz Y. Tolerability of liposomesin vivo. In: Gregoriadis G, editor. Liposome technology. Vol. III. 2nd ed. Boca Raton: CRC Press, 1993:345–83.

    Google Scholar 

  6. Sugerman SM, Perez-Soler R. Liposomes in the treatment of malignancy: a clinical perspective. Crit Rev Oncol Hematol 1992;12:231–42.

    Google Scholar 

  7. Senior JH. Fate and behavior of liposomesin vivo: a review of controlling factors. Crit Rev Ther Drug Carrier Syst 1987;3:123–93.

    Google Scholar 

  8. Van Rooijen N. Antigen processing and presentationin vivo: the microenvironment as a crucial factor. Immunol Today 1990;11:436–9.

    Google Scholar 

  9. Alving CR, Steck EA, Chapman WL, Waits VB, Hendricks LD, Swartz GM, Hanson WL. Therapy of leishmaniasis: superior efficacies of liposome-encapsulated drugs. Proc Natl Acad Sci USA 1978;75:2959–63.

    Google Scholar 

  10. New RRC, Chance ML, Thomas SC, Peters W. Antileishmanial activity of antimonials entrapped in liposomes. Nature 1978;272:55–6.

    Google Scholar 

  11. Croft SL. Liposomes in the treatment of parasitic diseases. Pharm Int 1986;7:229–33.

    Google Scholar 

  12. Davidson RN, Croft SL, Scott A, Maini M, Moody AH, Bryceson ADM. Liposomal amphotericin B in drug-resistant visceral leishmaniasis. Lancet 1991;337:1061–2.

    Google Scholar 

  13. Torre-Cisneros J, Villanueva JL, Kindelan JM, Jurado R, Sanchez-Guijo P. Successful treatment of antimony-resistant visceral leishmaniasis with liposomal amphotericin B in patients infected with human immunodeficiency virus. Clin Infect Dis 1993;17:625–7.

    Google Scholar 

  14. Lazanas MC, Tsekes GA, Papandreou S, Harhalakis N, Scandali A, Nikiforakis E, et al. Liposomal amphotericin B for leishmaniasis treatment of AIDS patients unresponsive to antimonium compounds. AIDS 1993;7:1018–9.

    Google Scholar 

  15. Peeters PAM, Huiskamp CWEM, Eling WMC, Crommelin DJA. Chloroquine containing liposomes in the chemotherapy of murine malaria. Parasitology 1989;98:381–6.

    Google Scholar 

  16. Kende M, Alving CR, Rill WL, Swartz GM, Canonico PG. Enhanced efficacy of liposome-encapsulated ribavirin against Rift Valley fever virus infection in mice. Antimicrob Agents Chemother 1985;27:903–7.

    Google Scholar 

  17. Gangemi JD, Nachtigal M, Barnhart D, Krech L, Jani P. Therapeutic efficacy of liposome-encapsulated ribavirin and muramyl tripeptide in experimental infection with influenza or herpes simplex virus. J Infect Dis 1987;155:510–7.

    Google Scholar 

  18. Phillips NC, Tsoukas C. Liposomal encapsulation of azidothymidine results in decreased hematopoietic toxicity and enhanced activity against murine acquired immunodeficiency syndrome. Blood 1992;79:1137–43.

    Google Scholar 

  19. Chu CJ, Szoka FC. Antiviral activity and pharmacokinetics of liposome-encapsulated phosphonoformate in Rauscher murine leukemia virus-infected mice. J Liposome Res 1992;2:67–92.

    Google Scholar 

  20. Szoka FC, Chu CJ. Increased efficacy of phosphonoformate and phosphonoacetate inhibition of herpes simplex virus type 2 replication by encapsulation in liposomes. Antimicrob Agents Chemother 1988;32:858–64.

    Google Scholar 

  21. Wyde PR, Six HR, Wilson SZ, Gilbert BE, Knight V. Activity against rhinoviruses, toxicity, and delivery in aerosol of enviroxime in liposomes. Antimicrob Agents Chemother 1988;32:890–5.

    Google Scholar 

  22. Norley SG, Huang L, Rouse BT. Targeting of drug loaded immunoliposomes to herpes simplex virus infected corneal cells: an effective means of inhibiting virus replicationin vitro. J Immunol 1986;136:681–5.

    Google Scholar 

  23. Gates C, Pinney RJ. Amphotericin B and its delivery by liposomal and lipid formulations. J Clin Pharm Ther 1993;18:147–53.

    Google Scholar 

  24. Graybill JR, Craven PC, Taylor RL, Williams DM, Magee WE. Treatment of murine cryptococcosis with liposome associated amphotericin B. J Infect Dis 1982;145:748–52.

    Google Scholar 

  25. Lopez-Berestein G, Hopfer RL, Mehta R, Mehta K, Hersh EM, Juliano RL. Liposome-encapsulated amphotericin B for treatment of disseminated candidiasis in neutropenic mice. J Infect Dis 1984;150:278–83.

    Google Scholar 

  26. Clark JM, Whitney RR, Olsen SJ, George RJ, Swerdel MR, Kuuselman L, et al. Amphotericin B lipid complex therapy of experimental fungal infections in mice. Antimicrob Agents Chemother 1991;35:615–21.

    Google Scholar 

  27. Adler-Moore JP, Chiang SM, Satorius A, Guerra D, Mc Andrews B, Mc Manus EJ, et al. Treatment of murine candidosis and cryptococcosis with unilamellar liposomal amphotericin B formulation (AmBisome). J Antimicrob Chemother 1991;28 Suppl B:63–71.

    Google Scholar 

  28. Clemons KV, Stevens DA. Comparative efficacy of amphotericin B colloidal dispersion and amphotericin B deoxycholate suspension in treatment of murine coccidioidomycosis. Antimicrob Agents Chemother 1991;35:1829–33.

    Google Scholar 

  29. Van Etten EWM, van den Heuvel-de Groot C, Bakker-Woudenberg IAJM. Efficacies of amphotericin B-desoxycholate (Fungizone), liposomal amphotericin B (AmBisome), and fluconazole in the treatment of systemic candidosis in immunocompetent and leukopenic mice. J Antimicrob Chemother 1993;32:723–39.

    Google Scholar 

  30. Hospenthal DR, Rogers AL, Beneke ES. Effect of attachment of anticandidal antibody to the surfaces of liposomes encapsulating amphotericin B in the treatment of murine candidiasis. Antimicrob Agents Chemother 1989;33:16–8.

    Google Scholar 

  31. Lopez-Berestein G, Fainstein V, Hopfer R, Mehta K, Sullivan MP, Keating M, et al. Liposomal amphotericin B for the treatment of systemic fungal infections in patients with cancer: a preliminary study. J Infect Dis 1985;151:704–10.

    Google Scholar 

  32. Chopra R, Fielding A, Goldstone AH. Successful treatment of fungal infections in neutropenic patients with liposomal amphotericin B (AmBisome). A report on 40 cases from a single center. Leuk Lymphoma 1992;7(Suppl):73–7.

    Google Scholar 

  33. Janknegt R, de Marie S, Bakker-Woudenberg IAJM, Crommelin DJA. Liposomal and lipid formulations of amphotericin B. Clinical pharmacokinetics. Clin Pharmacokinet 1992;23:279–91.

    Google Scholar 

  34. Karlowsky JA, Zhanel GG. Concepts on the use of liposomal antimicrobial agents: applications for aminoglycosides. Clin Infect Dis 1992;15:654–67.

    Google Scholar 

  35. Bakker-Woudenberg IAJM, Lokerse AF, ten Kate MT, Melissen PMB, van Vianen W, van Etten EWM. Liposomes as carriers of antimicrobial agents on immunomodulatory agents in the treatment of infections. Eur J Clin Microbiol Infect Dis 1993;12 Suppl 1:61–7.

    Google Scholar 

  36. Nightingale SD, Saletan SL, Swenson CE, Lawrence AJ, Watson DA, Pilkiewicz FG, et al. Liposome-encapsulated gentamicin treatment ofMycobacterium avium-Mycobacterium intracellulare complex bacteremia in AIDS patients. Antimicrob Agents Chemother 1993;37:1869–72.

    Google Scholar 

  37. Sunamoto J, Goto M, Iida T, Hara K, Saito A, Tomonaga A. Unexpected tissue distribution of liposomes coated with amylopectin derivatives and successful use in the treatment of experimental Legionaires' diseases. In: Gregoriadis G, Poste G, Senior J, Trouet A, editors. Receptor-mediated targeting of drugs. New York: Plenum Press, 1983:359–66.

    Google Scholar 

  38. Bakker-Woudenberg IAJM, Lokerse AF, Roerdink FH. Antibacterial activity of liposome-entrapped ampicillinin vitro andin vivo in relation to the lipid composition. J Pharmacol Exp Ther 1989;251:321–7.

    Google Scholar 

  39. Allen TM. Stealth liposomes: five years on. J Liposome Res 1992;2:289–305.

    Google Scholar 

  40. Gabizon A, Papahadjopoulos D. The role of surface charge and hydrophilic groups on liposome clearancein vivo. Biochim Biophys Acta 1992;1103:94–100.

    Google Scholar 

  41. Allen TM. Stealth liposomes: avoiding reticuloendothelial uptake. In: Lopez-Berestein G, Fidler I, editors. Liposomes in the therapy of infectious diseases and cancer. New Series, 89. New York: Alan R. Liss, 1989:405–15.

    Google Scholar 

  42. Gabizon A, Price DC, Huberty J, Bresalier RS, Papahadjopoulos D. Effect of liposome composition and other factors on the targeting of liposomes to experimental tumors: bio-distribution and imaging studies. Cancer Res 1990;50:6371–8.

    Google Scholar 

  43. Allen TM, Hansen C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim Biophys Acta 1991;1068:133–41.

    Google Scholar 

  44. Woodle MC, Matthay KK, Newman MS, Hidayat JE, Collins LR, Redemann C, et al. Versatility in lipid compositions showing prolonged circulation with sterically stabilized liposomes. Biochim Biophys Acta 1992;1105:193–200.

    Google Scholar 

  45. Woodle MC, Lasic DD. Sterically stabilized liposomes. Biochim Biophys Acta 1992;1113:171–99.

    Google Scholar 

  46. Bakker-Woudenberg IAJM, Lokerse AF, ten Kate MT, Storm G. Enhanced localization of liposomes with prolonged blood circulation time in infected lung tissue. Biochim Biophys Acta 1992;1138:318–26.

    Google Scholar 

  47. Bakker-Woudenberg IAJM, Lokerse AF, ten Kate MT, Mouton JW, Woodle MC, Storm G. Liposomes with prolonged blood circulation and selective localization inKlebsiella pneumoniae-infected lung tissue. J Infect Dis 1993;168:164–71.

    Google Scholar 

  48. Niesman MR. The use of liposomes as drug carriers in ophthalmology. Crit Rev Ther Drug Carrier Syst 1992;9:1–38.

    Google Scholar 

  49. Smolin D, Okumoto M, Feiler S, Condon D. Idoxuridineliposome therapy for herpes simplex keratitis. Am J Ophthalmol 1981;91:220–5.

    Google Scholar 

  50. Schaeffer HE, Krohn D. Liposomes in topical drug delivery. Invest Ophthalmol Vis Sci 1982;22:220–7.

    Google Scholar 

  51. Singh K, Mezei M. Liposomal ophthalmic drug delivery system. II. Dihydrostreptomycin sulphate. Int J Pharmaceutics 1984;19:263–9.

    Google Scholar 

  52. Barza M, Baum J, Szoka F. Pharmacokinetics of subconjunctival liposome-encapsulated gentamicin in normal rabbit eyes. Invest Ophthalmol Vis Sci 1984;25:486–90.

    Google Scholar 

  53. Assil KK, Frucht-Perry J, Ziegler E, Schnanzlin DJ, Schneiderman T, Weinreb RN. Tobramycin liposomes, single subconjunctival therapy of pseudomonal keratitis. Invest Ophthalmol Vis Sci 1991;32:3216–20.

    Google Scholar 

  54. Fishman PH, Peyman GA, Lesar T. Intravitreal liposomeencapsulated gentamicin in a rabbit model. Invest Ophthalmol Vis Sci 1986;27:1103–6.

    Google Scholar 

  55. Zeng S, Hu C, Wei H, Lu Y, Zhang Y, Yang J, et al. Intravitreal pharmacokinetics of liposome-encapsulated amikacin in a rabbit model. Ophthalmology 1993;100:1640–4.

    Google Scholar 

  56. Díaz-Lopis M, Martos MJ, España E, Cervera M, Vila AO, Navea A, et al. Liposomally-entrapped ganciclovir for the treatment of cytomegalovirus retinitis in AIDS patients. Doc Ophthalmol 1992;82:297–305.

    Google Scholar 

  57. Tremblay C, Barza M, Szoka F, Lahav M, Baum J. Reduced toxicity of liposome-associated amphotericin B injected intravitreally in rabbits. Invest Ophthalmol Vis Sci 1985;26:711–8.

    Google Scholar 

  58. Barza M, Stuart M, Szoka F. Effect of size and lipid composition on the pharmacokinetics of intravitreal liposomes. Invest Ophthalmol Vis Sci 1987;28:893–900.

    Google Scholar 

  59. Rao VS, Peyman GA, Khoobehi B, Vangipuram S. Evaluation of liposome-encapsulated clindamycin inStaphylococcus aureus endophthalmitis. Int Ophthalmol 1989;13:181–5.

    Google Scholar 

  60. Liu KR, Peyman GA, Khoobehi B. Efficacy of liposome-bound amphotericin B for the treatment of experimental fungal endophthalmitis in rabbits. Invest Ophthalmol Vis Sci 1989;30:1527–34.

    Google Scholar 

  61. Peyman GA, Charles HC, Liu KR, Khoobehi B, Niesman M. Intravitreal liposome-encapsulated drugs: a preliminary human report. Int Ophthalmol 1988;12:175–82.

    Google Scholar 

  62. Fidler IJ, Brown NO, Hart IR. Species variability for toxicity of free and liposome-encapsulated muramyl peptides administered intravenously. J Biol Resp Mod 1985;4:298–309.

    Google Scholar 

  63. Schumann GP, van Hoogevest P, Fankhauser P, Probst A, Peck A, Court M, et al. Comparison of free and liposomal MTPPE: pharmacological, toxicological and pharmacokinetic aspects. In: Lopez-Berestein G, Fidler IJ, editors. Liposomes in the therapy of infectious diseases and cancer. New Series 89. New York: Alan R. Liss, 1989:191–203.

    Google Scholar 

  64. Hockertz S, Franke G, Paulini I, Lohmann-Matthes ML. Immunotherapy of murine visceral leishmaniasis with murine recombinant interferon-γ and MTP-PE encapsulated in liposomes. J Interferon Res 1991;11:177–85.

    Google Scholar 

  65. Melissen PMB, van Vianen W, Bidjai O, van Marion M, Bakker-Woudenberg IAJM. Free versus liposome-encapsulated muramyl tripeptide phosphatidylethanolamide (MTPPE) and interferon-γ (IFN-γ) in experimental infection withListeria monocytogenes. Biotherapy 1993;6:113–24.

    Google Scholar 

  66. Mellors JW, Debs RJ, Ryan JL. Incorporation of recombinant gamma interferon into liposomes enhances its ability to induce peritoneal macrophage antitoxoplasma activity. Infect Immun 1989;57:132–7.

    Google Scholar 

  67. Kende M, Schroit AJ, Rill W, Canonico PG. Treatment of Rift Valley fever virus-infected swiss mice with liposome-encapsulated lipophilic muramyl dipeptide [abstract]. In: Abstracts of the International Conference on Antimicriobial Agents and Chemotherapy. 1983 Oct 24–26; Las Vegas. Washington DC: American Society for Microbiology, 1983:108.

    Google Scholar 

  68. Lazdins JK, Woods-Cook K, Walker M, Alteri E. The lipophilic muramyl peptide MTP-PE is a potent inhibitor of HIV replication in macrophages. AIDS Res Hum Retroviruses 1990;6:1157–61.

    Google Scholar 

  69. Hotta H, Hotta S. Dengue virus multiplication in cultures of mouse peritoneal macrophages: effects of macrophage activators. Microbiol Immunol 1982;26:665–76.

    Google Scholar 

  70. Saiki I, Fidler IJ. Synergistic activation by recombinant mouse interferon-γ and muramyl dipeptide of tumoricidal properties in mouse macrophages. J Immunol 1985;135:684–8.

    Google Scholar 

  71. Melissen PMB, van Vianen W, Bakker-Woudenberg IAJM. Treatment ofKlebsiella pneumoniae septicemia in normal and leukopenic mice by liposome-encapsulated muramyl tripeptide phosphatidylethanolamide. Antimicrob Agents Chemother 1994;38:147–50.

    Google Scholar 

  72. Eppstein DA, Van Der Pas MA, Fraser-Smith EB, Kurahara CG, Felgner PL, Matthews TR, et al. Liposome-encapsulated muramyl dipeptide analogue enhances non-specific host immunity. Int J Immunother 1986;2:115–26.

    Google Scholar 

  73. Gangemi JD, Nachtigal M, Barnhart D, Krech L, Jani P. Therapeutic efficacy of liposome-encapsulated ribavirin and muramyl tripeptide in experimental infection with influenza or herpes simplex virus. J Infect Dis 1987;155:510–7.

    Google Scholar 

  74. Koff WC, Showalter SD, Hampar B, Fidler IJ. Protection of mice against fatal herpes simplex type 2 infection by liposomes containing muramyl tripeptide. Science 1985;228:495–7.

    Google Scholar 

  75. Duzgunes N, Perumal VK, Brunette EN, Gangadharam PRJ, Debs RJ. Treatment ofMycobacterium avium complex infections by free and liposome-encapsulated tumor necrosis factor-alpha (Cachectin): studies on peritoneal macrophages and the beige mouse model. In: Lopez-Berestein G, Fidler IJ, editors. Liposomes in the therapy of infectious diseases and cancer. New Series 89. New York: Alan R. Liss, 1989:287–94.

    Google Scholar 

  76. Sheehan KCF, Schreiber RD. The synergy and antagonism of interferon-γ and TNF. In: Beutler B, editor. Tumor necrosis factor, the molecules and their emerging role in medicine. New York: Raven Press, 1992:145–78.

    Google Scholar 

  77. Murray JL, Kleinerman ES, Cunningham JE, Tatom JR, Andrejcio K, Lepe-Zuniga J, et al. Phase I trial of liposomal muramyl tripeptide phosphatidylethanolamine in cancer patients. J Clin Oncol 1989;7:1915–25.

    Google Scholar 

  78. Creaven PJ, Cowens JW, Brenner DE, Dadey BM, Han T, Huben R, et al. Initial clinical trial of the macrophage activator muramyl tripeptide-phosphatidylethanolamine encapsulated in liposomes in patients with advanced cancer. J Biol Resp Mod 1990;9:492–8.

    Google Scholar 

  79. Kleinerman ES, Fia SF, Griffin J, Seibel NL, Benjamin RS, Jaffe N. Phase II study of liposomal muramyl tripeptide in osteosarcoma: the cytokine cascade and monocyte activation following administration. J Clin Oncol 1992;10:1310–6.

    Google Scholar 

  80. Liebes L, Walsh CM, Chachoua R, Oratz R, Richards D, Hochster H, et al. Modulation of monocyte functions by muramyl tripeptide phosphatidylethanolamine in a phase II study in patients with metastatic melanoma. J Natl Cancer Inst 1992;84:694–9.

    Google Scholar 

  81. Allison AC, Gregoriadis G. Liposomes as immunological adjuvants. Nature (London) 1972;252:252.

    Google Scholar 

  82. Dal Monte PR, Szoka FC. Effect of liposome encapsulation on antigen presentationin vitro: comparison of presentation by peritoneal macrophages and B cell tumors. J Immunol 1989;142:1437–43.

    Google Scholar 

  83. Alving CR. Immunologic aspects of liposomes: presentation and processing of liposomal protein and phospholipid antigens. Biochim Biophys Acta 1992;1113:307–22.

    Google Scholar 

  84. Eppstein DA, Byars NE, Allison AC. New adjuvants for vaccines containing purified protein antigens. Adv Drug Del Rev 1989;4:233–53.

    Google Scholar 

  85. Gregoriadis G. Immunological adjuvants: a role for liposomes. Immunol Today 1990;11:89–97.

    Google Scholar 

  86. Burakoff SJ, Mescher MF. Reconstituted membranes and liposomes in the study of lymphocyte interaction. Cell Surface Rev 1982;8:173–213.

    Google Scholar 

  87. Noguchi Y, Noguchi T, Sato T, Yokoo Y, Itoh S, Yoshida M, et al. Priming forin vitro andin vivo anti-human T lymphotropic virus type 1 cellular immunity by virus-related protein reconstituted into liposome. J Immunol 1991;146:3599–603.

    Google Scholar 

  88. Miller MD, Gould-Fogerite S, Shen L, Woods RM, Koenig S, Mannino RJ, et al. Vaccination of rhesus monkeys with synthetic peptide in a fusogenic proteoliposome elicits simian immunodeficiency virus-specific CD8+ cytotoxic T lymphocytes. J Exp Med 1992;176:1739–44.

    Google Scholar 

  89. Lipford GB, Wagner H, Heeg K. Vaccination with immunodominant peptides encapsulated in Quil A-containing liposomes induces peptide-specific primary CD8+ cytotoxic T cells. Vaccine 1994;12:73–80.

    Google Scholar 

  90. Brynestad K, Babbitt B, Huang L, Rouse BT. Influence of peptide acylation, liposome incorporation, and synthetic immunomodulators on the immunogenicity of a 1–23 peptide of glycoprotein D of herpes simplex virus: implications for subunit vaccines. J Virol 1990;64:680–5.

    Google Scholar 

  91. Alving, CR. Lipopolysaccharide, lipid A, and liposomes containing lipid A as immunologic adjuvants. Immunobiol 1993;187:430–46.

    Google Scholar 

  92. Ho RJY, Burke RL, Merigan TC. Antigen-presenting liposomes are effective in treatment of recurrent herpes simplex virus genitalis in guinea pigs. J Virol 1989;63:2951–8.

    Google Scholar 

  93. Naylor PT, Larsen HS, Huang L, Rouse BT.In vivo induction of anti-herpes simplex virus immune response by type 1 antigens and lipid A incorporated into liposomes. InfectImmun 1982;36:1209–16.

    Google Scholar 

  94. Zhou F, Huang L. Monophoshoryl lipid A enhances specific CTL induction by a soluble protein antigen entrapped in liposomes. Vaccine 1993;11:1139–44.

    Google Scholar 

  95. Mbawuike IN, Wyde PR, Anderson PM. Enhancement of the protective efficacy of inactivated influenza A virus vaccine in aged mice by IL-2 liposomes. Vaccine 1990;8:347–52.

    Google Scholar 

  96. Bergers JJ, den Otter W, Dullens HFJ, Kerkvliet CTM, Crommelin DJA. Interleukin-2-containing liposomes: interaction of interleukin-2 with liposomal bilayers and preliminary studies on application in cancer vaccines. Pharm Res 1993;10:1715–21.

    Google Scholar 

  97. Abraham E. Intranasal immunization with bacterial polysaccharide containing liposomes enhances antigen-specific pulmonary secretory antibody response. Vaccine 1992;7:461–8.

    Google Scholar 

  98. Michalek SM, Childers NK, Katz J, Dertzbaugh M, Zhang S, Russell MW, et al. Liposomes and conjugate vaccines for antigen delivery and induction of mucosal immune responses. Adv Exp Med Biol 1992;327:191–8.

    Google Scholar 

  99. Fries LF, Gordon DM, Richards RL, Egan JE, Hollingdale MR, Gross M, et al. Liposomal malaria vaccine in humans: a safe and potent adjuvant strategy. Proc Natl Acad Sci USA 1992;89:358–62.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergers, J.J., ten Hagen, T.L.M., van Etten, E.W.M. et al. Liposomes as delivery systems in the prevention and treatment of infectious diseases. Pharm World Sci 17, 1–11 (1995). https://doi.org/10.1007/BF01875551

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01875551

Keywords

Navigation