Skip to main content
Log in

Correlation between Nonsteroidal Anti-Inflammatory Drug Efficacy in a Clinical Pain Model and the Dissociation of their Anti-Inflammatory and Analgesic Properties in Animal Models

  • Original Research
  • Pharmacodynamics
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Summary

Recently our group demonstrated that it is possible to differentiate nonsteroidal anti-inflammatory drugs (NSAIDs) as analgesic agents in the management of acute musculoskeletal pain. In this paper, we extend this work to investigate the notion that the analgesic and anti-inflammatory potency of an NSAID is not simply related through a common mechanism, namely the inhibition of peripheral prostaglandin (PG) synthesis. Following an extensive survey of the published literature for a series of acidic NSAIDs, we could not find any significant correlation between potency as an analgesic agent or as an anti-inflammatory agent and analgesic efficacy in clinical practice. Importantly, we now demonstrate for the first time that it is potency as an analgesic agent relative to potency as an anti-inflammatory agent that covaries with clinical efficacy. We discuss the possibility that, for a given NSAID, the magnitude of this dissociation between analgesic and anti-inflammatory potencies may reflect the net effect of a complex interaction between peripheral and central sites of action, and between diverse mechanisms of action that are independent of an inhibition of PG synthesis. Our results provide a clinically meaningful differentiation of NSAIDs through the use of in vivo data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Vane JR. Inhibition of prostaglandin-synthesis as a mechanism of action of aspirin-like drugs. Nature (New Biol) 1971; 231: 232–5

    CAS  Google Scholar 

  • Flower RJ. Drugs which inhibit prostaglandin biosynthesis. Pharmacol Rev 1974; 26: 33–67

    PubMed  CAS  Google Scholar 

  • Ferreira SH, Nakamura M. -Prostaglandin hyperalgesia: A cAMP/Ca2+ dependent process. Prostaglandins 1979; 18: 179–90

    Article  PubMed  CAS  Google Scholar 

  • Urquhart E. Central analgesic activity of nonsteroidal anti-inflammatory drugs in animal and human pain models. Semin Arthritis Rheum 1993; 23(3): 198–205

    Article  PubMed  CAS  Google Scholar 

  • McCormack K. The spinal actions of nonsteroidal anti-inflammatory drugs and the dissociation between their anti-inflammatory and analgesic effects. Drugs 1994; 47Suppl. 5: 28–45

    Article  PubMed  CAS  Google Scholar 

  • Okuyama S, Aihara S. The mode of action of analgesic drugs in adjuvant arthritic rats as an experimental model of chronic inflammatory pain: possible central analgesic action of acidic nonsteroidal anti-inflammatory drugs. Jpn J Pharmacol 1984; 35: 95–103

    Article  PubMed  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL. Pharmacology of the spinal action of ketorolac, morphine, ST-91, U50488H, and L-PIA on the formalin test and an isobolographic analysis of the NSAID interaction. Anesthesiology 1993; 27: 270–81

    Article  Google Scholar 

  • Ward SJ. Pravadoline. A dual-mechanism aminoalkylindole analgesic. In: Lewis AJ, Furst DE, editors. 2nd ed. Nonsteroidal anti-inflammatory drugs. Mechanisms and clinical uses. New York: Marcel Dekker Inc. 1994; 297–316

    Google Scholar 

  • McCormack K, Brune K. Dissociation between the antinociceptive and anti-inflammatory effects of the nonsteroidal anti-inflammatory drugs. Drugs 1991; 41 (Pt 4): 533–47

    Article  PubMed  CAS  Google Scholar 

  • McCormack K, Brune K. Toward defining the analgesic role of nonsteroidal anti-inflammatory drugs in the management of acute soft tissue injuries. Clin J Sport Med 1993; 3: 106–17

    Article  Google Scholar 

  • Brune K, Beck WS, Geisslinger G, et al. Aspirin-like drugs may block pain independently of prostaglandin synthesis inhibition. Experientia 1991; 47: 257–61

    Article  PubMed  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 1962; 111: 544–7

    PubMed  CAS  Google Scholar 

  • Siegmund EA, Cadmus RA, Lu G. A method for evaluating both non-narcotic and narcotic analgesics. Proc Soc Exp Biol Med 1957; 95: 729–31

    PubMed  CAS  Google Scholar 

  • Urquhart E. Differentiation of NSAID efficacy through metaanalysis. Implications for the treatment of musculoskeletal pain [abstract no. 123]. Scand J Rheumatol 1994; Suppl. 98

    Google Scholar 

  • Otterness IG, Bliven ML. Laboratory models for testing nonsteroidal antiinflammatory drugs. In: Lombardino JG, editor. Nonsteroidal antiinflammatory drugs. New York: John Wiley & Sons, 1985: 112–252

    Google Scholar 

  • Cooper SA, Berrie R, Cohn P. Comparison of ketoprofen, ibuprofen, and placebo in a dental surgery pain model. Adv Ther 1988; 5: 43–53

    Google Scholar 

  • Forbes JA, Beaver WT, Jones KF, et al. Analgesic efficacy of bromfenac, ibuprofen, and aspirin in postoperative oral surgery pain. Clin Pharmacol Ther 1992; 51: 343–52

    Article  PubMed  CAS  Google Scholar 

  • Akarasereenont P, Mitchell JA, Thiemermann C, et al. Relative potency of nonsteroid anti-inflammatory drugs as inhibitors of cyclooxygenase-1 or cyclooxygenase-2. Br J Pharmacol 1994; 112 (Proceedings Supplement): 183P

    Google Scholar 

  • Randall LO, Selitto JJ. A method for measurement of analgesic activity on inflammed tissue. Arch Int Pharmacodyn Ther 1957; 111: 409–19

    PubMed  CAS  Google Scholar 

  • Malmberg AB, Yaksh TL. Antinociceptive actions of spinal nonsteroidal anti-inflammatory agents on the formalin test in the rat. J Pharm Exp Ther 1992; 263: 136–46

    CAS  Google Scholar 

  • Reynolds IJ. [3H]CGP 39653 binding to the agonist site of the N-methyl-D-aspartate receptor is modulated by Mg2+ and polyamines independently of the arcaine-sensitive polyamine site. J Neurochem 1994; 62: 54–62

    Article  PubMed  CAS  Google Scholar 

  • Bruni G, Runci FM, Fiaschi AI, et al. Inhibition of ornithine-decarboxylase produced by S(+) and R(−) ibuprofen in rats. Pharmacol Res 1990; 22: 97–102

    Article  PubMed  CAS  Google Scholar 

  • Franzone JS, Cravanzola C, Reboani MC. Influence of non-steroidal anti-inflammatory compounds on the hepatic tryptophan pyrrolase activity in hypo- and hyperthyroid rats. Arch Int Pharmacodyn Ther 1980; 245: 156–65

    PubMed  CAS  Google Scholar 

Appendix: Animal Studies

  • Adams SS, McCullough KF, Nicholson JS. The pharmacological properties of ibuprofen, an anti-inflammatory, analgesic and antipyretic agent. Arch Int Pharmacodyn Ther 1969; 178: 115–29

    PubMed  CAS  Google Scholar 

  • Adams SS, McCullough KF, Nicholson JS. Some biological properties of flurbiprofen, an anti-inflammatory, analgesic and antipyretic agent. Arzneimittel Forschung 1975; 25(11): 1786–91

    PubMed  CAS  Google Scholar 

  • Adams SS, Buckler JW. Ibuprofen and flurbiprofen. Clin Rheum Dis 1979; 5(2): 359–79

    Google Scholar 

  • Aultz DE, Helsley GC, Hoffman D, et al. Dibenz[b,e]oxepinalkanoic acids as nonsteroidal antiinflammatory agents. 1. 6, 11-Dihydro-11-oxodibenz[b,e]oxepin-2-acetic acids. J Med Chem 1977; 20 (Pt 1): 66–70

    Article  PubMed  CAS  Google Scholar 

  • Bartlett RR, Anagnosotpulos H, Zielinski T, et al. Effects of leflunomide on immune responses and models of inflammation. Springer Semin Immunopathol 1993; 14: 381–94

    Article  PubMed  CAS  Google Scholar 

  • Beaver WT, Lasagna L. Zomepirac. J Clin Pharmacol 1980; 20(4) (Pt 2): 213–308

    PubMed  CAS  Google Scholar 

  • Boyle EA, Mangan FR. The histology and collagen content of cotton pellet and polyvinyl sponge-induced granulomas in normal and drug-treated rats. Br J Exp Pathol 1980; 61(4): 351–60

    PubMed  CAS  Google Scholar 

  • Boyle EA, Freeman PC, Mangan FR, et al. Nabumetone (BRL 14777, 4-[6-methoxy-2-naphthyl]-butan-2-one): a new anti-inflammatory agent. J Pharm Pharmacol 1982; 34: 562–9

    Article  PubMed  CAS  Google Scholar 

  • Capetola RJ, Shriver DA, Rosenthale ME. Activity of a new non-narcotic analgesic, suprofen, on pathologic-induced pain in the rat. Pharmacologist 1978; 20 (Pt 3): 270

    Google Scholar 

  • Capetola RJ, Shriver DA, Rosenthale ME. Suprofen, a new peripheral analgesic. J Pharmacol Exp Ther 1980; 214(1): 216–23

    Google Scholar 

  • Capetola RJ, Argentieri D, Weintraub HS, et al. Suprofen. In: Goldberg ME, editor. Pharmacological and biochemical properties of drug substances. American Pharmaceutical Association, 1981: 347–68

    Google Scholar 

  • Carson JR, Wong S. 5-benzoyl-1-methylpyrrole-2-acetic acids as antiinflammatory agents. 2. The 4-methyl compounds. J Med Chem 1973; 16(2): 172–4

    Article  PubMed  CAS  Google Scholar 

  • Castaner J, Hillier K. Amfenac. Drugs Future 1978; 3(5): 340–2

    Google Scholar 

  • Cerelli MJ, Curtis DL, Dunn JP, et al. Antiinflammatory and aldose reductase inhibitory activity of some tricyclic arylacetic acids. J Med Chem 1986; 29: 2347–51

    Article  PubMed  CAS  Google Scholar 

  • Chau TT, Weichman BM, Sanda M. Pemedolac. In: Lewis AJ, Furst DE, editors. Nonsteroidal anti-inflammatory drugs. Mechanisms and clinical uses. 2nd ed. New York: Marcel-Dekker Inc, 1994: 285–95

    Google Scholar 

  • Chi S-C, Jun HW. Anti-inflammatory activity of ketoprofen gel on carrageenan-induced paw edema in rats. J Pharm Sci 1990; 70(11): 974–7

    Article  Google Scholar 

  • Collier HOJ, Hammond AR, Horwood-Bennett S, et al. Rapid induction by acetylcholine, bradykinin and potassium of a nociceptive response in mice and its selective antagonism by aspirin. Nature 1964; 204: 1316–8

    Article  PubMed  CAS  Google Scholar 

  • Collier HOJ, Dinneen LC, Johnson CA, et al. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 1968; 32: 295–310

    PubMed  CAS  Google Scholar 

  • Deraedt R, Benzoni J, Delevallée F. Pharmacological profile of tiaprofenic acid. Rheumatology 1982; 7: 78–87

    CAS  Google Scholar 

  • Dubinsky B, Schupsky JJ. Mechanism of action of suprofen, a new peripheral analgesic, as demonstrated by its effects on several nociceptive mediators. Prostaglandins 1984; 28(2): 241–53

    Article  PubMed  CAS  Google Scholar 

  • Dubinsky B, Gebre-Mariam S, Capetola RJ, et al. The antialgesic drugs: Human therapeutic correlates of their potency in laboratory animal models of hyperalgesia. Agents Actions 1987; 20 (1/2): 50–60

    Article  PubMed  CAS  Google Scholar 

  • Faigle JW, Böttcher I, Godbillon J, et al. A new metabolite of diclofenac sodium in human plasma. Xenobiotica 1988; 18(10): 1191–7

    Article  PubMed  CAS  Google Scholar 

  • Fowler PD. Voltarol: diclofenac sodium. Clin Rheum Dis 1979; 5(2): 427–64

    Google Scholar 

  • Fujimura H, Tsurumi K, Hiramatsu Y, et al. Pharmacological studies of ketoprofen (19583 R.P.) (1) Anti-inflammatory, analgesic and antipyretic actions in oral administration. Folia Pharmacol Jpn 1974; 70: 543–69

    Article  CAS  Google Scholar 

  • Fujimura H, Tsurumi K, Hiramatsu Y, et al. 5-benzoyl-α-methyl-2-thiophene acetic acid (RU-15060). Pharmacometrics 1975; 9 (Pt 5): 715–25

    CAS  Google Scholar 

  • Fujimura H, Tsurumi K, Nakayama T, et al. Effect of α-(p-thenolyphenyl)-propionic acid (TN-762) on acute inflammatory reactions and prostaglandin biosynthesis. Nippon Yakurigaku Zasshi 1981; 77 (Pt 3): 321–6

    Article  PubMed  CAS  Google Scholar 

  • Fujimura H. Anti-inflammatory analgesic and antipyretic activities of α-(p-thenoylphenyl)-propionic acid (TN-762). Folia Pharmacol Jpn 1982; 79: 123–36

    Article  CAS  Google Scholar 

  • Fujiyoshi T, Iida H, Kuwashima M, et al. Pharmacological profile of alminoprofen among four writhing models of mice caused by kaolin, zymosan, acetylcholine and phenylquinone. J Pharmacobiodyn 1990; 13: 44–8

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Rafanell J, Forn J. Correlation between antiinflammatory activity and inhibition of prostaglandin biosynthesis by various non-steroidal antiinflammatory agents. Arzneimittel Forschung 1979; 29(4): 630–3

    PubMed  CAS  Google Scholar 

  • Gilman SC, Carlson RP, Chang J, et al. The antiinflammatory activity of the immunomodulator WY-18,251 (3-(p-chlorophenyl)thiazolo[3,2-a]benzimidazole-2-acetic acid). Agents Actions 1985; 17: 53–9

    Article  PubMed  CAS  Google Scholar 

  • Glenn EM, Rohloff NA, Bowman BJ, et al. The pharmacology of 2-(2-fluoro-4-biphenylyl) propionic acid (flurbiprofen). A potent non-steroidal anti-inflammatory drug. Agents Actions 1973; 3(4): 210–6

    Article  PubMed  CAS  Google Scholar 

  • Grau M, Guasch J, Montera JL, et al. Pharmacology of the potent new non-steroidal anti-inflammatory agent aceclofenac. Arzneimittel Forschung 1991; 41 (Pt) (12) 1265–76

    PubMed  CAS  Google Scholar 

  • Guillet MC, Molinie B, Laduron P, et al. Effects of ketoprofen in adjuvant-induced arthritis measured in a new telemetric model test. Eur J Pharmacol 1990; 183(6): 2266–7

    Article  Google Scholar 

  • Hannah J, Ruyle WV, Jones V, et al. Novel analgesic-antiinflammatory salicylates. J Med Chem 1978; 21(11): 1093–100

    Article  PubMed  CAS  Google Scholar 

  • Haubrich DR, Ward SJ, Baizman E, et al. Pharmacology of pravadoline: a new analgesic agent. J Pharmacol Exp Ther 1990; 255: 511–22

    PubMed  CAS  Google Scholar 

  • Hendershot LC, Forsaith J. Antagonism of the frequency of phenylquinone-induced writhing in the mouse by weak analgesics and nonanalgesics. J Pharmacol Exp Ther 1959; 125: 237–40

    PubMed  CAS  Google Scholar 

  • Higushi S, Otomo S. Antiedema effects of basic nonsteroidal anti-inflammatory drugs that are not inhibitors of prostaglandin biosynthesis. Folia Pharmacol Jpn 1985; 85: 343–6

    Article  Google Scholar 

  • Hirose K, Jyoyama Y, Kojima M, et al. Pharmacological properties of 2-[4-(2-thiazolyloxy)-phenyl]-propionic acid (480156-S), a new nonsteroidal anti-inflammatory agent. Arzneimittel Forschung 1984; 34 (Pt 1): 280–6

    PubMed  CAS  Google Scholar 

  • Hirschelmann R, Bekemeier II. Indirekte Wirkung nichtsteroidaler Antiphlogistika durch Hemmung der Phospholipase C? Pharmazie 1989; 44: H1

    Google Scholar 

  • Humber LG. Etodolac: the chemistry, pharmacology, metabolic disposition, and clinical profile of a novel anti-inflammatory pyranocarboxylic acid. Med Res Rev 1987; 7 (Pt 1): 1–28

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Fujisawa H, Sasaki Y, et al. Pharmacological properties of the new non-steroidal anti-inflammatory agent etodolac. Arzneimittel Forschung 1991; 41: 228–35

    PubMed  CAS  Google Scholar 

  • Ito R, Suga T, Shimura M, et al. Pharmacological comparison of azapropazone and phenylbutazone, a new anti-inflammatory agent. Med Treat 1969; 2(4): 49–58

    Google Scholar 

  • Jahn U, Adrian RW. Pharmakologische und toxikologische Prüfung des neuen Antiphlogisticums Azapropazon = 3-Dimethylamino-7-methyl-1-2-(2-propylmalonyl)-1, 2 dihydro-1, 2, 4-benzo-triazin. Arzneimittel Forschung 1969; 19: 36–52

    PubMed  CAS  Google Scholar 

  • Jahn U, Wagner-Jauregg T. Wirkungsvergleich säuer Antiphlogistika im Bradykinin, UB-Erythem und Rattenpfotenödem-Test. Arzneimittel Forschung 1974; 24: 494–9

    PubMed  CAS  Google Scholar 

  • Julou L, Guyonnet J-C, Ducrot R, et al. Étude des propriétés pharmacologiques d’un nouvel anti-inflammatoire, l’acide (benzoyl-3 phenyl)-2 propionique (19 583 RP). J Pharmacol (Paris) 1971; 2 (Pt 3): 259–86

    Google Scholar 

  • Julou J, Guyonnet JC, Ducrot R, et al. Ketoprofen (19.583 R.P.) (2-(3-benzoylphenyl)-propionic acid). Main pharmacological properties — outline of toxicological and pharmacokinetic data. Scand J Rheumatol 1976; 14 Suppl.: 33–44

    Google Scholar 

  • Kaltenbronn JS, Scherrer RA, Short FW, et al. Structure-activity relationships in a series of anti-inflammatory N-arylanthranilic acids. Arzneimittel Forschung 1983; 33(4A): 621–7

    PubMed  CAS  Google Scholar 

  • Kimura I, Yoshida M, Sato M. Combined effects of emorfazone with non-steroidal acidic anti-inflammatory drugs — Pharmacological effects and toxicity. Jpn J Pharmacol Ther 1985; 13 (Pt 5): 267–77

    Google Scholar 

  • Krupp PJ, Manassé-Gdynia R, Sallmann A, et al. Sodium (o-((2,6-dichlorophenyl)-amino)-phenyl)-acetate (GP45 840), a new non-steroidal anti-inflammatory agent. Experientia 1973; 29(4): 450–2

    Article  PubMed  CAS  Google Scholar 

  • Krupp P, Exer B, Menassé R, et al. New aspects of inflammation prevention by means of non-steroid antiphlogistics: the effect of Voltaren. Schweiz Med Wochenschr 1975; 105(20): 646–52

    PubMed  CAS  Google Scholar 

  • Lewis AJ, Carlson RP, Chang J, et al. The pharmacological profile of oxaprozin, an antiinflammatory and analgesic agent with low gastrointestinal toxicity. Curr Ther Res 1983; 34(5): 777–94

    CAS  Google Scholar 

  • Lombardino JG, Otterness IG, Wiseman EH. Acidic antiinflammatory agents — correlations of some physical, pharmacological and clinical data. Arzneimittel Forschung 1975; 25(10): 1629–35

    PubMed  CAS  Google Scholar 

  • Loux JJ, Smith S, Salem H. Comparative analgesic testing of various compounds in mice using writhing techniques. Arzneimittel Forschung 1978; 28: 1644–7

    PubMed  CAS  Google Scholar 

  • Luttinger D, Koonz D, Chippari S. Phenyl-p-quinone writhing in mice: can it predict analgesic efficacy? Pharmacologist 1988; 30: A155

    Google Scholar 

  • Mackenzie AR. Pharmacological properties of IX 207-887. In: Lewis AJ, Furst DE, editors. Nonsteroidal anti-inflammatory drugs. Mechanisms and clinical uses. 2nd ed. New York: Marcel-Dekker Inc, 1994: 391–410

    Google Scholar 

  • Maeda M, Tanaka Y, Suzuki T, et al. Pharmacological studies on carprofen, a new non-steroidal anti-inflammatory drug, in animals. Nippon Yakurigaku Zasshi 1977; 73(7): 757–77

    Article  PubMed  CAS  Google Scholar 

  • Maier R, Manassé R, Riesterer L, et al. The pharmacology of diclofenac sodium (Voltarol). Rheumatol Rehabil 1979; Suppl. 2: 11–21

    Google Scholar 

  • Martel RR, Klicius J. Anti-inflammatory and analgesic properties of etodolac acid in rats. Can J Physiol Pharmacol 1976; 54(3): 245–8

    Article  PubMed  CAS  Google Scholar 

  • Maruyama Y, Terasawa M, Anami K, et al. Pharmacological studies of 2-(5H-(1)benzopyrano(2,3-b)pyridin-7-yl) propionic acid (Y-8004). Anti-inflammatory, analgesic and antipyretic actions. Nippon Yakurigaku Zasshi 1975; 71(8): 857–73

    Article  PubMed  CAS  Google Scholar 

  • Maruyama Y, Anami K, Terasawa M, et al. Anti-inflammatory activity of an imidazopyridine derivative (miroprofen). Arzneimittel Forschung 1981; 31(7): 1111–8

    PubMed  CAS  Google Scholar 

  • Masumoto S, Masuda C. Mechanism of anti-inflammatory action of 2-(2-fluoro-4-biphenylyl) propionic acid (flurbiprofen). Nippon Yakurigaku Zasshi 1976; 72(6): 753–62

    Article  PubMed  CAS  Google Scholar 

  • McCord JM, Stokes SH, Wong K. In: Weissman G, Samuelsson B, Paoletti R, editors. Advances in inflammation research. New York: Raven Press, 1979; 1: 273–80

  • McGuire JL, Niemegeers CJE, Shriver DA, et al. Antinociceptive properties of suprofen, a new analgesic agent. Fed Proc 1978; 37(3): 769

    Google Scholar 

  • Melarange R, Gentry C, O’Connell C, et al. Anti-inflammatory efficacy and gastrointestinal irritancy: comparative 1 month repeat oral dose studies in the rat with nabumetone, ibuprofen and diclofenac. Agents Actions 1991; 32 Suppl: 33–7

    CAS  Google Scholar 

  • Menasse R, Hedwall PR, Kraetz J, et al. Pharmacological properties of diclofenac sodium and its metabolites. Scand J Rheumatol 1978; 22 Suppl.: 5–16

    Article  CAS  Google Scholar 

  • Metzner J, Paintz M. Analgestische, antiphlogistische und toxische Wirkungen von 3-substituierten Benzo-1,2,4-triazinen. Pharmazie 1981; 36(10): 714

    PubMed  CAS  Google Scholar 

  • Milne GM, Twomey TM. The analgetic properties of piroxicam in animals and correlation with experimentally determined plasma levels. Agents Actions 1980; 10(1) (Pt 2): 31–7

    Article  PubMed  CAS  Google Scholar 

  • Moreno JJ, Calvo L, Fernandez F, et al. Biological activity of ketoprofen and its optical isomers [abstract]. XIth International Congress of Pharmacology; 1990 July 6; Amsterdam, The Netherlands. Eur J Pharmacol 1990; 183 (Pt 6); 2263 Ab:PFT170

    Article  Google Scholar 

  • Mörsdorf K, Anspach K. Zur Wirkungspotenz verschiedener Antiphlogistika bei der ‘Carrageenin-Entzündung’ im Vergleich zu anderen Entzündungsmodellen. Arch Int Pharmacodyn Ther 1971; 192: 111–27

    PubMed  Google Scholar 

  • Mörsdorf K, Wolf G. Vergleichende Untersuchungen zur Wirkungspotenz neuerer Antiphlogistika. Arzneimittel Forschung 1972; 22(12): 2105–10

    PubMed  Google Scholar 

  • Muchowski JM, Unger SH, Ackrell J, et al. Synthesis and antiinflammatory and analgesic activity of 5-aroyl-1,2-dihydro-3H-pyrrolo[1-2a-]pyrrole-1-carboxylic acids and related compounds. J Med Chem 1985; 28: 1037–49

    Article  PubMed  CAS  Google Scholar 

  • Nakamura H, Yokoyama Y, Motoyoshi S, et al. Anti-inflammatory activity of a non-steroidal anti-inflammatory agent, zomepirac sodium, in experimental animals. Nippon Yakurigaku Zasshi 1982; 79(6): 509–27

    Article  PubMed  CAS  Google Scholar 

  • Nasa Y, Yano K, Shinozawa S, et al. Pharmacological profiles of Aneol suppository (ketoprofen rectal capsule). Jpn Pharmacol Ther 1986; 14 (Pt 4): 287–97

    Google Scholar 

  • Neuman RG, Wilson BD, Barkley M, et al. Inhibition of prostaglandin biosynthesis by etodolac. 1. Selective activities in arthritis. Agents Actions 1987; 2 (Pt 1–2): 160–5

    Article  Google Scholar 

  • Niemegeers CJE, Janssen PAJ. Suprofen, a potent antagonist of sodium urate crystal-induced arthritis in dogs. Arzneimittel Forschung 1975; 25(10): 1512–5

    PubMed  CAS  Google Scholar 

  • Niemegeers CJE, Verbruggen FJ, Janssen PAJ. Effect of various drugs on carrageenin-induced oedema in the rat hind paw. J Pharm Pharmacol 1964; 16(2): 810–6

    Article  PubMed  CAS  Google Scholar 

  • Niemegeers CJE, Van Bruggen JAA, Janssen PAJ. Suprofen, a potent antagonist of acetic acid-induced writhing in rats. Arzneimittel Forschung 1975; 25(10): 1505–9

    PubMed  CAS  Google Scholar 

  • Nikolov R, Stefanova D, Nikolova M, et al. Feloran (diclofenac sodium). Study on its analgesic effect. Medico-Biologic Information (Bg) 1983: 1: 3–5

    Google Scholar 

  • Noguchi Y, Ishiko J, Ohtsuki I. Comparative pharmacological profiles of piroxicam, indomethacin, phenylbutazone, diclofenac, ibuprofen, and mefenamic acid. RSM Int Cong Symp Series 1985; 67: 61–7

    CAS  Google Scholar 

  • Otterness IG, Wiseman EH, Gans DJ. A comparison of the carrageenan edema test and ultraviolet light-induced erythema test as predictors of the clinical dose in rheumatoid arthritis. Agents Actions 1979; 9(2): 177–83

    Article  PubMed  CAS  Google Scholar 

  • Otterness IG, Gans DJ. Nonsteroidal anti-inflammatory drugs: An analysis of the relationship between laboratory animal and clinical doses, including species scaling. J Pharm Sci 1988; 77(9): 790–5

    Article  PubMed  CAS  Google Scholar 

  • Pong SF, Demuth SM, Kinney CM, et al. Prediction of human analgesic dosages of nonsteroidal anti-inflammatory drugs (NSAIDs) from analgesic ED50 values in mice. Arch Int Pharmacodyn Ther 1985; 273: 212–20

    PubMed  CAS  Google Scholar 

  • Pruss TP, Gardocki JF, Taylor RJ, et al. Evaluation of the analgesic properties of zomepirac. J Clin Pharmacol 1980; 20: 216–22

    PubMed  CAS  Google Scholar 

  • Randall LO, Baruth H. Analgesic and anti-inflammatory activity of 6-chloro-alpha-methyl-carbazole-2-acetic acid (C-5720). Arch Int Pharmacodyn Ther 1976; 220(1): 94–114

    PubMed  CAS  Google Scholar 

  • Regan BA, Hanifin JW, Landes MJ, et al. Anti-inflammatory and analgesic profile of amidines of 3-amino-1,2,4-benzotriazine and 3-amino-1,2,4-benzotriazine-1-oxide. J Pharm Sci 1980; 69(7): 789–93

    Article  PubMed  CAS  Google Scholar 

  • Reiter MJ, Schwartzmiller DH, Swingle KF, et al. Comparison of anti-inflammatory compounds in the carrageenan induced paw edema model and the reversed passive arthus model utilizing the same animal. Life Sci 1985; 36: 1339–46

    Article  PubMed  CAS  Google Scholar 

  • Rooks WH, Tomolonis AJ, Maloney PJ, et al. The anti-inflammatory and analgesic profile of 6,11-dihydrodibenzo-[b.e.]-thiepin-11-one-3-acetic acid (Tiopinac). Agents Actions 1980; 10/3: 266–73

    Article  Google Scholar 

  • Rooks WH, Tomolonis AJ, Maloney PJ, et al. The analgesic and anti-inflammatory profile of (±)-5-benzoyl-1,2-dihydro-3H-pyrrolo [1,2a]pyrrole-1-carboxylic acid (RS-37619). Agents Actions 1982; 12: 684–90

    Article  PubMed  CAS  Google Scholar 

  • Rooks WH, Maloney JP, Shott LD, et al. The analgesic and anti-inflammatory profile of ketorolac and its tromethamine salt. Drugs Exp Clin Res 1985; 11(8): 479–92

    PubMed  CAS  Google Scholar 

  • Roszkowski AP, Rooks WH, Tomolonis AJ, et al. Anti-inflammatory and analgetic properties of d-2-(6′-methoxy-2′-naphthyl)-propionic acid (naproxen). J Pharmacol Exp Ther 1971; 179(1): 114–23

    PubMed  CAS  Google Scholar 

  • Sancilio LF, Reese DL, Cheung S, et al. AHR-5850: a potent anti-inflammatory compound. Agents Actions 1977; 7(1): 133–44

    Article  PubMed  CAS  Google Scholar 

  • Sancilio LF, Nolan JC, Wagner LE, et al. The analgesic and anti-inflammatory activity and pharmacologic properties of bromfenac. Arzneimittel Forschung 1987; 37(5): 513–9

    PubMed  CAS  Google Scholar 

  • Shirota H, Chiba K, Goto M, et al. Antiinflammatory properties of E5090, a novel orally active inhibitor of IL-1 generation. Agents Actions 1991; 20 Suppl.: 219–23

    Google Scholar 

  • Shvarts GIA, Siubaev RD. Sootnoshenie antieksudativnogo, anal’geticheskogo i zharoponizhaiushchego komponentov v deistvii nesteroidnykh protivovospalitel’nykh preparatov. Farmakol Toksikol 1982; 45(1): 46–9

    PubMed  CAS  Google Scholar 

  • Sloboda AE, Osterberg AC. The pharmacology of fenbufen, 3-(4-biphenylylcarbonyl) propionic acid, and 4-biphenylacetic acid, interesting anti-inflammatory-analgesic agents. Inflammation 1976; 1(4): 415–38

    Article  CAS  Google Scholar 

  • Sofia RD, Danielsen L, Vassar HB. Comparative effects of anti-arthritic and other pharmacological agents in the 18-hour arthritis and carrageenan edema tests in rats. Pharm Res Commun 1979; 11(2): 179–93

    Article  CAS  Google Scholar 

  • Stewart PE. A comprehensive approach to the development of a new potent and versatile analgesic: zomepirac sodium. Eur J Rheumatol Inflamm 1981; 4(4): 462–8

    CAS  Google Scholar 

  • Strub K, Aeppli L, Mueller RK. Pharmacological properties of carprofen. Eur J Rheumatol Inflamm 1982; 5(4): 478–87

    PubMed  CAS  Google Scholar 

  • Sunkel C, Cillero F, Armijo F, et al. Synthesis and pharmacological properties of eterylate, a new derivative of acetylsalicylic acid. Arzneimittel Forschung 1978; 28(10): 1692–4

    PubMed  CAS  Google Scholar 

  • Swingle KF, Grant TJ, Kvam DC. Quantal responses in the Randall-Selitto assay (35615). Proc Soc Exper Biol Med 1971; 137(2): 536–8

    CAS  Google Scholar 

  • Takesue El, Schaefer W, Jukniewicz E. Modification of the Randall-Selitto analgesic apparatus. J Pharm Pharmacol 1969; 21(11): 788–9

    Article  PubMed  CAS  Google Scholar 

  • Tarayre JP, Lauressergues H. Advantages of a combination of proteolytic enzymes, flavanoids and ascorbic acid in comparison with non-steroid anti-inflammatory agents. Arzneimittel Forschung 1977; 27(6): 1144–9

    PubMed  CAS  Google Scholar 

  • Tolman EL, Capetola RJ, McGuire JL, et al. Suprofen: Pharmacological, biochemical and clinical activities of a new, non-narcotic peripheral analgesic. In: Huskisson EC, editor. Anti-rheumatic drugs. Clinical pharmacology and therapeutics series. Vol. 3; Praeger Publishers, 1983: 439–51

    Google Scholar 

  • Ueno K, Kubo S, Tagawa H, et al. 6,11-dihydro-11-oxodibenz [b.e] oxepinacetic acids with potent antiinflammatory activity. J Med Chem 1976; 19(7): 941–6

    Article  PubMed  CAS  Google Scholar 

  • Van Daele PGH, Boey JM, Sipido VK, et al. Synthesis of α-methyl-4-(2-thienylcarbonyl)benzeneacetic acid, suprofen, and derivatives. Arzneimittel Forschung 1975; 25(10): 1495–501

    PubMed  Google Scholar 

  • Wagner-Jauregg T, Jahn U, Bürlimann W. Fibrinolytische Antirheumatika. Vergleich von Substanzen der Flufenamsäure-Reihe mit Trifluormethyl-Analogen des Azapropazons. Arzneimittel Forschung 1973; 23(7): 911–3

    PubMed  CAS  Google Scholar 

  • Walford GL, Jones H, Shen TY. Aza analogs of 5-(p-fluorophenyl) salicylic acid. J Med Chem 1971; 14: 339–44

    Article  PubMed  CAS  Google Scholar 

  • Welstead WJ Jr, Moran HW, Stauffer HF, et al. Antiinflammatory agents. 1. Synthesis and antiinflammatory activity of 2-amino-3-benzoylphenylacetic acid. J Med Chem 1979; 22 (Pt 9): 1074–9

    Article  PubMed  CAS  Google Scholar 

  • Wiesenberg-Boettcher J, Pfeilschifter J, Schweizer A, et al. Pharmacological properties of five diclofenac metabolites identified in human plasma. Agents Actions 1991; 34(1/2) 135–7

    Article  PubMed  CAS  Google Scholar 

  • Winder CV, Wax J, Scotti RA, et al. Anti-inflammatory, antipyretic and antinociceptive properties of N-(2,3-XYLYL) anthranilic acid (mefenamic acid). J Pharmacol Exp Ther 1962; 138(3): 405–13

    PubMed  CAS  Google Scholar 

  • Winter CA, Risley EA, Nuss GW. Carrageenin-induced edema in hind paw of the rat as an assay for anti-inflammatory drugs. Proc Soc Exp Biol Med 1962; 111: 544–7

    PubMed  CAS  Google Scholar 

  • Winter CA. Anti-inflammatory testing methods: Comparative evaluation of indomethacin and other agents. Int Congress Ser 1966; 82: 190–2

    Google Scholar 

  • Winter CA, Kling PJ, Tocco DJ, et al. Analgesic activity of diflunisal [MK-647; 5-(2,4-difluorophenyl) salicylic acid] in rats with hyperalgesia induced by Freund’s adjuvant. J Pharmacol Exp Ther 1979; 211(3): 678–85

    PubMed  CAS  Google Scholar 

  • Wiseman EH, Chang YH, Lombardino JG. Piroxicam, a novel anti-inflammatory agent. Arzneimittel Forschung 1976; 26(7): 1300–3

    PubMed  CAS  Google Scholar 

  • Wong S, Gardocki JF, Pruss TP. Pharmacologic evaluation of tolectin (tolmetin, mcn-2559) and mcn-2891, two anti-inflammatory agents. J Pharmacol Exp Ther 1973; 185(1): 127–38

    PubMed  CAS  Google Scholar 

  • Yamaguchi E, et al. The inhibitory activities of 480156-S and its related compounds on prostaglandin synthetase. Nippon Yakurigaku Zasshi 1987; 90(5): 295–302

    Article  PubMed  CAS  Google Scholar 

  • Yoshioka T, Kitagawa M, Oki M, et al. Nonsteroidal antiinflammatory agents. 2. Derivatives/analogues of dibenz[b,e]oxepin-3-acetic acid. J Med Chem 1978; 21 (Pt 7): 633–9

    Article  PubMed  CAS  Google Scholar 

  • Young JM, Yee JR. Ketorolac. In: Lewis AJ, Furst DE, editors. Nonsteroidal anti-inflammatory drugs. Mechanisms and clinical uses. 2nd ed. New York: Marcel-Dekker Inc, 1994: 247–66

    Google Scholar 

  • Zuccari G, Luzzani F, Fiorcari P, et al. Biological activities of CO/1828, a novel topical antiinflammatory agent [abstract]. XIth International Congress of Pharmacology; 1990 July 6; Amsterdam, The Netherlands. Eur J Pharmacol 1990; 183 (Pt 6); 2264 Ab:PFT171

    Article  Google Scholar 

Clinical Studies

  • Cooper SA, Needle SE, Kruger GO. Comparative analgesic potency of aspirin and ibuprofen. J Oral Surg 1977; 35: 898–903

    PubMed  CAS  Google Scholar 

  • Cooper SA, Engel J, Ladov M, et al. Analgesic efficacy of an ibuprofen-codeine combination. Pharmacotherapy 1982; 2: 162–7

    PubMed  CAS  Google Scholar 

  • Cooper SA, Gelb SB, Maggio Cavaliere MB, et al. An analgesic relative potency assay comparing ketoprofen and aspirin in postoperative dental pain. Adv Ther 1984; 6: 410–8

    Google Scholar 

  • Cooper SA, Wagenberg B, Zissu J, et al. The analgesic efficacy of suprofen in periodontal and oral surgical pain. Pharmacotherapy 1986; 6: 267–76

    PubMed  CAS  Google Scholar 

  • Cooper SA, Berrie R, Cohn P. Comparison of ketoprofen, ibuprofen, and placebo in a dental surgery pain model. Adv Ther 1988; 5: 43–53

    Google Scholar 

  • Cooper SA, Mardirossian G, Milles M. Analgesic relative potency assay comparing flurbiprofen 50, 100, and 150mg, aspirin 600mg, and placebo in postsurgical dental pain. Clin J Pain 1988; 4: 175–81

    Article  Google Scholar 

  • Dionne RA, Cooper SA. Evaluation of preoperative ibuprofen for postoperative pain after removal of third molars. Oral Surg 1978; 45: 851–6

    Article  PubMed  CAS  Google Scholar 

  • Fliedner L, Levsky M, Kechejian H, et al. Analgesia with etodolac in oral postsurgical pain. Curr Ther Res 1984; 36: 33–45

    Google Scholar 

  • Forbes JA, Calderazzo JP, Bowser MW, et al. A 12-hour evaluation of the analgesic efficacy of diflunisal, aspirin, and placebo in postoperative dental pain. J Clin Pharmacol 1982; 22: 89–96

    PubMed  CAS  Google Scholar 

  • Forbes JA, Butterworth GA, Burchfield WH, et al. A 12-hour evaluation of the analgesic efficacy of diflunisal, zomepirac sodium, aspirin, and placebo in postoperative oral surgery pain. Pharmacotherapy 1983, 3 Suppl.: 38S–46S

    PubMed  CAS  Google Scholar 

  • Forbes JA, Barkaszi BA, Ragland RN, et al. Analgesic effect of fendosal, ibuprofen and aspirin in postoperative oral surgery pain. Pharmacotherapy 1984; 4: 385–91

    PubMed  CAS  Google Scholar 

  • Forbes JA, Keller CK, Smith JW, et al. Analgesic effect of naproxen sodium, codeine, a naproxen-codeine combination and aspirin on the postoperative pain of oral surgery. Pharmacotherapy 1986; 6: 211–8

    PubMed  CAS  Google Scholar 

  • Forbes JA, Yorio CC, Selinger LR, et al. An evaluation of flurbiprofen, aspirin, and placebo in postoperative oral surgery pain. Pharmacotherapy 1989; 9: 66–73

    PubMed  CAS  Google Scholar 

  • Forbes JA, Butterworth GA, Burchfield WH, et al. Evaluation of ketorolac, aspirin, and an acetaminophen-codeine combination in postoperative oral surgery pain. Pharmacotherapy 1990; 10 Suppl.: 77S–93S

    PubMed  CAS  Google Scholar 

  • Forbes JA, Kehrn CJ, Grodin CD, et al. Evaluation of ketorolac, ibuprofen, acetaminophen, and an acetaminophen-codeine combination in postoperative oral surgery pain. Pharmacotherapy 1990; 10 Suppl.: 94S–105S

    PubMed  CAS  Google Scholar 

  • Forbes JA, Edquist IA, Smith FG, et al. Evaluation of bromfenac, aspirin, and ibuprofen in postoperative and surgery pain. Pharmacotherapy 1991; 11: 64–70

    PubMed  CAS  Google Scholar 

  • Gaston GW, Mallow RD, Frank JE. The efficacy of etodolac for patients with pain following oral surgery. J Oral Maxillofac Surg 1984; 42: 362–6

    Article  PubMed  CAS  Google Scholar 

  • Guedes MS, Coutinho A. Atividade analgésica do fenbufen em odontalgia: Comparação com aspirina, codeína, propoxifeno e placebo. Folha Médica 1975; 71: 593–6

    Google Scholar 

  • Henrikson P-Å, Thilander H, Wåhlander LÅ. Absorption and effect of diclofenac sodium after surgical removal of a lower wisdom tooth. Curr Ther Res 1982; 31: 20–6

    Google Scholar 

  • Hutton CE. The effectiveness of 100 and 200 mg etodolac (ultradol), aspirin, and placebo in patients with pain following oral surgery. Oral Surg Oral Med Oral Pathol 1983; 56: 575–80

    Article  PubMed  CAS  Google Scholar 

  • Jain AK, Hunley CC, Kuebel J, et al. Analgesic efficacy of amfenac, aspirin and placebo after extraction of impacted teeth. Pharmacotherapy 1986; 6: 236–40

    PubMed  CAS  Google Scholar 

  • Mardirossian G, Cooper SA. Comparison of the analgesic efficacy of flurbiprofen and aspirin for postsurgical dental pain. J Oral Maxillofac Surg 1985; 43: 106–9

    Article  PubMed  CAS  Google Scholar 

  • Mehlisch D, Frakes L, Cavaliere MB, et al. Double-blind parallel comparison of single oral doses of ketoprofen, codeine, and placebo in patients with moderate to severe dental pain. J Clin Pharmacol 1984; 24: 486–92

    PubMed  CAS  Google Scholar 

  • Melzack R, Bentley KC, Jeans ME. Piroxicam versus acetaminophen and placebo for the relief of postoperative dental pain. Curr Ther Res 1985; 37: 1134–40

    Google Scholar 

  • Rowe NH, Cudmore CL, Turner JL. Control of pain by mefenamic acid following removal of impacted molar. Oral Surg 1981; 51: 575–80

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McCormack, K., Urquhart, E. Correlation between Nonsteroidal Anti-Inflammatory Drug Efficacy in a Clinical Pain Model and the Dissociation of their Anti-Inflammatory and Analgesic Properties in Animal Models. Clin. Drug Invest. 9, 88–97 (1995). https://doi.org/10.2165/00044011-199509020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00044011-199509020-00005

Navigation