Skip to main content
Log in

Laboratory Testing of Cephalosporins

  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Summary

Cephalosporin drugs are stable, soluble at high concentrations and possess a characteristic ultraviolet absorption spectrum, which allows easy quantification. They are therefore relatively easy to work with under laboratory conditions. This chapter provides an overview of the laboratory tests available for assessing antimicrobial activity in research and clinical practice, and highlights the usefulness and drawbacks of such tests in the prediction of clinical efficacy with particular reference to newer cephalosporins, which are for oral administration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blumberg PM, Strominger JL. Interaction of penicillin with the bacterial cell: penicillin-binding proteins and penicillin-sensitive enzymes. Bacteriol Rev 1974; 38: 291–335

    PubMed  CAS  Google Scholar 

  2. Tomasz A. The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Ann Rev Microbiol 1979; 33: 113–37

    Article  CAS  Google Scholar 

  3. Georgopapadakou NH, Liu FY. Penicillin-binding proteins in bacteria. Antimicrob Agents Chemother 1980; 18: 148

    Article  PubMed  CAS  Google Scholar 

  4. Murphy TF, Barza M, Park JT. Penicillin-binding proteins in Clostridium perfringens. Antimicrob Agents Chemother 1981; 20: 809

    Article  PubMed  CAS  Google Scholar 

  5. Piddock LJV, Wise R. Properties of the penicillin-binding proteins of four species of the genus Bacteroides. Antimicrob Agents Chemother 1986; 29: 825

    Article  PubMed  CAS  Google Scholar 

  6. Tomasz A. Penicillin-binding proteins and the antibacterial effectiveness of β-lactam antibiotics. Rev Infect Dis 1986; 8 Suppl. 3: S260–S78

    Article  PubMed  CAS  Google Scholar 

  7. Waxman DJ, Strominger JL. Penicillin-binding proteins and the mechanism of action of β-lactam antibiotics. Ann Rev Biochem 1983; 52: 825–69

    Article  PubMed  CAS  Google Scholar 

  8. Donowitz GR, Mandell GL. Cephalosporins. In: Mandell GL, et al. editors. Principles and practice of infectious diseases, 3rd ed. New York: Churchill Livingstone, 1990: 246–55

    Google Scholar 

  9. Gutmann L, Vincent S, Billot-Klein D, et al. Involvement of penicillin-binding protein 2 with other penicillin-binding proteins in lysis of Escherichia coli by some β-lactam antibiotics alone and in synergistic lytic effect of amdinocillin (mecillinam). Antimicrob Agents Chemother 1986; 30: 906

    Article  PubMed  CAS  Google Scholar 

  10. Hanberger H. Pharmacodynamic effects of antibiotics. Studies on bacterial morphology, initial killing, postantibiotic effect and effective regrowth time. Scand J Infect Dis Suppl. 1992; 81: 1–52

    PubMed  CAS  Google Scholar 

  11. Hamilton-Miller JMT. Microbiological investigation of cephalosporins. Drugs 1987; 34 Suppl. 2: 23–43

    Article  PubMed  CAS  Google Scholar 

  12. Mine Y, Kamimura T, Watanabe Y, et al. In vitro antibacterial activity of FK482, a new orally active cephalosporin. J Anti-biot 1988; XLI: 1873–87

    Google Scholar 

  13. Yokota T, Suzuki E, Arai K. Cefdinir, its in vitro antibacterial activity, binding affinity to bacterial PBPs, stability to β-lactamases, and synergy of bactericidal effect with serum complement and mouse cultured macrophages. [English abstract] Chemotherapy (Tokyo) 1989; 37 Suppl. 2: 29

    Google Scholar 

  14. Turcotte A, Simard M, Bergeron MG. Differential, penetration, distribution and in vivo efficacy of cefdinir (CEF), a new semi-synthetic cephalosporin in the periphery (P) and core (C) of infected fibrin clots. Proceedings of the 34th ICAAC, Orlando, Florida, 1994

    Google Scholar 

  15. Hatano K, Nishino T. Morphologic alterations of Staphylococcus aureus and Streptococcus pyogenes exposed to cefdinir, a new oral broad-spectrum cephalosporin. Chemotherapy 1994; 40: 73–79

    Article  PubMed  CAS  Google Scholar 

  16. Rosenblatt JE. Laboratory tests used to guide antimicrobial therapy. Mayo Clin Proc 1991; 66: 942–8

    PubMed  CAS  Google Scholar 

  17. Barry AL, Schoenknecht FD, Shadomy S, et al. Interlaboratory variabilityof disc diffusion and agar dilution susceptibility tests with cefamandole and cephalothin. Curr Microb 1978; 1: 277

    Article  Google Scholar 

  18. Snell JJS, Brown DEJ, Gardner PS. Comparison of results from two antibiotic susceptibility testing trials that formed part of the United Kingdom national external quality assessment scheme. J Clin Pathol 1984; 37: 321

    Article  PubMed  CAS  Google Scholar 

  19. Murray PR, Jorgensen JH. Quantitative susceptibility test methods in major United States medical centers. Antimicrob Agents Chemother 1981; 20: 66

    Article  PubMed  CAS  Google Scholar 

  20. Amsterdam D. Instrumentation for antimicrobic susceptibility testing: yesterday, today, and tomorrow. Diagn Microbiol Infect Dis 1988; 9: 167–78

    Article  PubMed  CAS  Google Scholar 

  21. Greenwood D. Unrealistic nature of the ‘MIC’. J Antimicrob Chemother 1976; 2: 312

    Article  PubMed  CAS  Google Scholar 

  22. Thornsberry C, Gavan TL, Sherris JC, et al. Laboratory evaluation of a rapid, automated susceptibility testing system: report of a collaborative study. Antimicrob Agents Chemother 1975; 7: 466

    Article  PubMed  CAS  Google Scholar 

  23. Zinner SH, Blaser J, Gaya H. Laboratory support for choosing and monitoring antimicrobial therapy in severely ill patients. Am J Med 1986; 80 Suppl. 5C: 59–63

    PubMed  CAS  Google Scholar 

  24. Nightingale J. Clinical limitations of in vitro testing of microorganism susceptibility. Am J Hosp Pharm 1987; 44: 131–7

    PubMed  CAS  Google Scholar 

  25. Neu HC, Saha G, Chin N-X. Comparative in vitro activity and β-lactamase stability of FK482, a new oral cephalosporin. Antimicrob Agents Chemother 1989; 33: 1795–1800

    Article  PubMed  CAS  Google Scholar 

  26. Bryson HM, Brogden RN. Cefetamet pivoxil. A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 1993; 45: 589–621

    Article  PubMed  CAS  Google Scholar 

  27. Frampton JE, Brogden RN, Langtry HD, et al. Cefpodoxime proxetil. A review of its antibacterial activity, pharmacokinetic properties and therapeutic potential. Drugs 1992; 44: 889–917

    Article  PubMed  CAS  Google Scholar 

  28. Barry AL. Procedure for testing antibiotics in agar media: theoretical considerations. In: Lorian V, editor. Antibiotics in laboratory medicine. Baltimore: Williams and Wilkins, 1980: 1–23

    Google Scholar 

  29. Gilbert ON, Skutschere E, Ireland P, et al. Effect of the concentrations of magnesium and calcium on the in vitro susceptibility of Pseudomonas aeruginosa to gentamicin. J Infect Dis 1971; 124 Suppl.: S37–S45

    Article  PubMed  CAS  Google Scholar 

  30. Relier LB, Schoenknecht FD, Kenny MA, et al. Antibiotic susceptibility testing of Pseudomonas aeruginosa: selection of a control strain and criteria for magnesium and calcium content in media. J Infect Dis 1974; 130: 454–63

    Article  Google Scholar 

  31. Tomasz A. On the mechanism of the irreversible antimicrobial effects of β-lactams. Philos Trans R Soc Lond Biol 1980; 289: 303

    Article  PubMed  CAS  Google Scholar 

  32. Hamilton-Miller JMT, Ramsay J. Synergism between β-lactam antibiotics: a test of theoretical predictions made with Staphylococcus aureus. J Med Microbiol 1973; 6: 377

    Article  PubMed  CAS  Google Scholar 

  33. Yourassowsky E, Van der Linden MP, Crokaert F. Comparative kill and growth rates determined with cefdinir and cefaclor and with Streptococcus pneumoniae and β-lactamase-producing Haemophilus influenzae. Antimicrob Agents Chemother 1992; 36: 46–9

    Article  PubMed  CAS  Google Scholar 

  34. Klastersky J. Empiric treatment of infections in neutropenic patients with cancer. Rev Infect Dis 1983; 5 Suppl. 1: S21

    Article  PubMed  Google Scholar 

  35. NCCLS. National Committee for Clinical Laboratory Standards. Methods for determining bactericidal activity of antimicrobial agents: proposed guideline. NCCLS Publication No. M26-P. Villanova, PA, NCCLS, 1987

  36. Goessens WHF, Fontijne P, Michel MF. Factors influencing detection of tolerance in Staphylococcus aureus. Antimicrob Agents Chemother 1982; 22: 364

    Article  PubMed  CAS  Google Scholar 

  37. Sabath LD, Laverdiere M, Wheeler N, et al. A new type of penicillin resistance in Staphylococcus aureus. Lancet 1977; 1: 443

    Article  PubMed  CAS  Google Scholar 

  38. MacLowry JD, Witebsky FG. Critical reflections on current problems associated with susceptibility testing and monitoring of antimicrobial therapy. Antimicrob Newsletter 1987; 4: 77–84

    Article  Google Scholar 

  39. Goessens WHF. Basic mechanisms of bacterial tolerance of antimicrobial agents. Eur J Clin Microbiol Infect Dis 1993; 12 Suppl. 1: 9–12

    Article  Google Scholar 

  40. Rozenberg-Arska M, Fabius GTJ, Beens-Dekkers MAAJ, et al. Antibiotic sensitivity and synergism of ‘penicillin-tolerant’ Staphylococcus aureus. Chemotherapy 1979; 25: 352

    Article  PubMed  CAS  Google Scholar 

  41. Jones RN, Erwin ME, Gooding BB. Interpretive criteria for disk diffusion tests using 5-microgram cefdinir disks with rapidly growing clinical isolates. J Clin Microbiol 1992; 30: 1022–3

    PubMed  CAS  Google Scholar 

  42. Jones RN, Erwin ME. Haemophilus test medium interpretive criteria for disk diffusion susceptibility tests with cefdinir, cefetamet, cefmetazole, cefpodoxime, cefdaloxime (RU29246, HR-916 metabolite), and trospectomycin. Diagn Microbiol Infect Dis 1992; 15: 693–701

    Article  PubMed  CAS  Google Scholar 

  43. Barrett MS, Jones RN. Susceptibility testing interpretive criteria and drug stability for cefdinir, cefetamet, and cefpodoxime against Neisseria gonorrhoeae. Diagn Microbiol Infect Dis 1992; 15: 685–91

    Article  PubMed  CAS  Google Scholar 

  44. NCCLS. National Committee for Clinical Laboratory Standards. Performance standards for antimicrobial disk susceptibility tests. 5th ed. Approved standard. NCCLS document M2-A5. Vol. 13, no. 24: Villanova, PA, NCCLS, 1993

  45. McDonald PJ, Craig WA, Kunin CM. Persistent effect of antibiotics on Staphylococcus aureus after exposure for limited periods of time. J Infect Dis 1977; 135: 217–23

    Article  PubMed  CAS  Google Scholar 

  46. Bundtzen RW, Gerber AU, Cohn DL, et al. Postantibiotic suppression of bacterial growth. Rev Infect Dis 1981; 3: 217–23

    Article  Google Scholar 

  47. Vogelman BS, Craig WA. Postantibiotic effects. J Antimicrob Chemother 1985; 15 Suppl. A: 37–46

    PubMed  CAS  Google Scholar 

  48. Ebert SC. Characterization of the postantibiotic effect. Clin Pharm 1992; 11: 876–7

    PubMed  CAS  Google Scholar 

  49. Blandino G, Caccamo F, Di Marco R, et al. Bactercidal activity and postantibiotic effect of cefdinir (CI 983, FK 482) against selected pathogens. Drugs Exp Clin Res 1992; 18: 319–27

    PubMed  CAS  Google Scholar 

  50. Craig W. Relevance of animal models for clinical treatment. Eur J Clin Microbiol Infect Dis 1993; 12 Suppl. 1: 55–7

    Article  Google Scholar 

  51. Rouse MS, Tallan BM, Henry NK, et al. Animal models as predictors of outcome of therapy with broad spectrum cephalosporins. J Antimicrob Chemother 1992; 29 Suppl. A: 39–45

    PubMed  CAS  Google Scholar 

  52. Leitner F, Chisholm DR, Tsai YH, et al. BL-S640, a cephalosporin with a broad spectrum of antibacterial activity: bioavailability and therapeutic properties in rodents. Antimicrob Agents Chemother 1975; 7: 306

    Article  PubMed  CAS  Google Scholar 

  53. Miraglia GJ, Renz KJ, Gadebusch HH. Comparison of the chemotherapeutic and pharmacodynamic activities of cephradine, cephalothin, and cephaloridine in mice. Antimicrob Agents Chemother 1973; 3: 270

    Article  PubMed  CAS  Google Scholar 

  54. O’Callaghan CH, Kirby SM. Some cephalosporins in clinical use and their structure-activity relationships. Postgrad Med J 1970; 46 Suppl.: 9

    Google Scholar 

  55. Fare LR, Actor P, Sachs C, et al. Comparative serum levels and protective activity of parenterally administered cephalosporins in experimental animals. Antimicrob Agents Chemother 1974; 6: 150

    Article  PubMed  CAS  Google Scholar 

  56. Zak O, Tosch W, Sande MA. Correlation of antibacterial activities of antibiotics in vitro and in animal models of infection. J Antimicrob Chemother 1985; 15 Suppl. A: 273–82

    PubMed  CAS  Google Scholar 

  57. Anderson ET, Young LS, Hewitt WL. Simultaneous antibiotic levels in ‘breakthrough’ Gram-negative rod bacteremia. Am J Med 1976; 61: 493

    Article  PubMed  CAS  Google Scholar 

  58. Noone P, Parsons TMC, Pattison JR, et al. Experience in monitoring gentamicin therapy during treatment of Gram-negative sepsis. B Med J 1974; 1: 477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wiedemann, B. Laboratory Testing of Cephalosporins. Clin. Drug Invest. 9 (Suppl 3), 11–21 (1995). https://doi.org/10.2165/00044011-199500093-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00044011-199500093-00004

Keywords

Navigation