Skip to main content
Log in

The CyberKnife®

Potential in Patients with Cranial and Spinal Tumors

  • Review Article
  • Published:
American Journal of Cancer

Abstract

Stereotactic radiosurgery has emerged as an accepted treatment for many types of intracranial tumors. Based on the understanding of the limitations of prior radiosurgical systems, image-guided robotic radiosurgery was developed to overcome many of these restrictions. The CyberKnife® is a commercially available frameless image-guided radiosurgical system that provides state-of-the-art radiosurgery for intracranial tumors, and has also revolutionized the use of radiosurgery to treat tumors in other parts of the body. This review focuses on the current use of the CyberKnife® to treat cranial and spinal tumors.

Brain metastases have long been treated with other radiosurgical systems, but the CyberKnife® allows patients with brain metastases to be treated multiple times as successive tumors are discovered, without the repetitive placement of a stereotactic head frame. Benign tumors such as acoustic neuromas, pituitary tumors, and meningiomas are also easily treated with the CyberKnife®, with radiographic tumor-control rates of >90% for pituitary tumors and 95% for acoustic neuromas and meningiomas. A subset of meningiomas and pituitary tumors surround the optic nerves and are considered to be perioptic tumors. Historically, these tumors have not been treatable with radiosurgery because of the risk of visual loss. The frameless nature of the CyberKnife® allows the radiosurgery treatment to be delivered in separate stages (typically 24 hours apart); this has been shown to significantly reduce the risk of visual loss, and thus allows effective radiosurgery treatment to be delivered. Staged radiosurgery treatment has also been used at our institution to treat acoustic neuromas, with the understanding that several stages of radiation delivery may be associated with a higher level of hearing preservation than a single-staged radiosurgery treatment. Malignant gliomas and nasopharyngeal carcinoma tumors have historically been treated with conventional radiotherapy techniques. However, we have learnt that supplementing these radiotherapy treatments with a CyberKnife® stereotactic boost after radiotherapy can improve response rates to treatment.

Spinal radiosurgery is a novel development; prior frame-based radiosurgery devices did not allow treatment of lesions outside the brain and neck. We have observed high rates of tumor control when treating benign spinal tumors with the CyberKnife®, and have noted excellent pain relief and tumor-control rates in patients with spinal metastases. Future CyberKnife® stereotactic applications will focus on the continual expansion of this technology to treat tumors outside the CNS, including cancers of the lung, pancreas, liver, and prostate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement

References

  1. Leksell L. The stereotactic method and radiosurgery of the brain. Acta Chir Scand 1951; 102: 316–9

    PubMed  CAS  Google Scholar 

  2. Adler JR, Murphy MJ, Chang SD, et al. Image-guided robotic radiosurgery. Neurosurgery 1999; 44: 1299–307

    PubMed  Google Scholar 

  3. Chang SD, Murphy MJ, Doty JR, et al. Stereotactic radiosurgery: new innovations. In: Fisher WS, editor. Perspectives in neurological surgery. Baltimore (MD): Williams and Wilkins, 1999: 145–53

    Google Scholar 

  4. Murphy MJ, Cox RS. Frameless radiosurgery using real-time image correlation for beam targeting [abstract]. Med Phys 1996; 25: 1052

    Google Scholar 

  5. Chang SD, Murphy MJ, Martin DP, et al. Image-guided robotic radiosurgery: clinical and radiographic results with the Cyberknife. In: Kondziolka D, editor. Radiosurgery. Basel: Karger Medical and Scientific Publishers, 2000: 22–33

    Google Scholar 

  6. Chang SD, Main W, Martin DP, et al. An analysis of the accuracy of the CyberKnife: a robotic frameless stereotactic radiosurgical system. Neurosurgery 2003; 52: 140–6

    PubMed  Google Scholar 

  7. Alexander E, Moriarty TM, Davis RB, et al. Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastasis. J Natl Cancer Inst 1995; 87: 34–40

    Article  PubMed  Google Scholar 

  8. Chang SD, Adler JR. Current treatment of patients with multiple brain metastases. Neurosurg Focus 2000; 9(5): 1–5

    Google Scholar 

  9. Chang SD, Lee E, Sakamoto GT, et al. The treatment of multiple brain metastases with stereotactic radiosurgery. Neurosurg Focus 2000; 9(3): 1–5

    Google Scholar 

  10. Engenhart R, Kimmig BN, Hover KH, et al. Long-term follow-up for brain metastases treated by percutaneous stereotactic single high-dose irradiation. Cancer 1993; 71: 1353–61

    Article  PubMed  CAS  Google Scholar 

  11. Joseph J, Adler JR, Cox RS, et al. Linear accelerator-based stereotactic radiosurgery for brain metastases: the influence of number of lesions on survival. J Clin Oncol 1996; 14: 1085–92

    PubMed  CAS  Google Scholar 

  12. Kihlstrom L, Karlsson B, Lindquist C. Gamma Knife surgery for cerebral metastases: implications for survival based on 16 years experience. Stereotact Funct Neurosurg 1993; 61Suppl. 1: 45–50

    Article  PubMed  Google Scholar 

  13. Loeffler J, Alexander III E. Radiosurgery for the treatment of intracranial metastasis. In: Alexander III E, Loeffler J, Lunsford LD, editors. Stereotactic radiosurgery. New York: McGraw-Hill, 1993: 197–206

    Google Scholar 

  14. Coffey RJ, Flickinger JC, Bissonette DJ, et al. Radiosurgery for solitary brain metastases using the cobalt-60 gamma unit: methods and results in 24 patients. Int J Radiat Oncol Biol Phys 1991; 20: 1287–95

    Article  PubMed  CAS  Google Scholar 

  15. Flickinger JC, Kondziolka D, Lunsford LD, et al. A multi-institutional experience with stereotactic radiosurgery for solitary brain metastasis. Int J Radiat Oncol Biol Phys 1994; 28: 797–802

    Article  PubMed  CAS  Google Scholar 

  16. Mehta MP, Rozental JM, Levin AB, et al. Defining the role of radiosurgery in the management of brain metastases. Int J Radiat Oncol Biol Phys 1992; 24: 619–25

    Article  PubMed  CAS  Google Scholar 

  17. Steiner L, Prasad D, Lindquist C, et al. Gamma knife surgery in vascular, neoplastic, and functional disorders of the nervous system. In: Schmidek HH, Sweet WH, editors. Operative neurosurgical techniques. Philadelphia (PA): WB Saunders, 1994: 667–94

    Google Scholar 

  18. Valentino V, Mirri MA, Schinaia G, et al. Linear accelerator and Greitz-Berg-strom’s head fixation system in radiosurgery of single cerebral metastases: a report of 86 cases. Ada Neurochir (Wien) 1993; 121: 140–5

    Article  CAS  Google Scholar 

  19. Ferrara M, Bizzozzero L, Talamonti G, et al. Surgical treatment of 100 single brain metastases: analysis of the results. J Neurosurg Sci 1990; 34: 303–8

    PubMed  CAS  Google Scholar 

  20. Sundaresan N, Galicich JH. Surgical treatment of brain metastases: clinical and computerized tomography evaluation of the results of treatment. Cancer 1985; 55: 1382–8

    Article  PubMed  CAS  Google Scholar 

  21. Somaza S, Kondziolka D, Lunsford LD, et al. Stereotactic radiosurgery for cerebral metastatic melanoma. J Neurosurg 1993; 79: 661–6

    Article  PubMed  CAS  Google Scholar 

  22. Sturm V, Kimmig B, Engenhardt R, et al. Radiosurgical treatment of cerebral metastases: method, indications and results. Stereotact Fund Neurosurg 1991; 57: 7–10

    Article  CAS  Google Scholar 

  23. Pollock BE. Management of patients with multiple brain metastases. Contemporary neurosurgery 1999; 21: 1–6

    Google Scholar 

  24. Dyer EH, Civit T, Visot A, et al. Transsphenoidal surgery for pituitary adenomas in children. Neurosurgery 1994; 34: 207–12

    Article  PubMed  CAS  Google Scholar 

  25. Laws E. Surgical management of pituitary tumors. In: Mazzaferri EL, Samaan N, editors. Endocrine tumors. Boston (MA): Blackwell Scientific Publishers, 1993: 215–22

    Google Scholar 

  26. Mindermann T, Wilson CB. Pediatrie pituitary adenomas. Neurosurgery 1995; 36: 259–68

    Article  PubMed  CAS  Google Scholar 

  27. Petruson B, Jakobsson KE, Elfverson J, et al. Five-year follow-up of nonsecreting pituitary adenomas. Arch Otolaryngol Head Neck Surg 1995; 121: 317–22

    Article  PubMed  CAS  Google Scholar 

  28. Hughes MN, Lamas KJ, Yelland ME, et al. Pituitary adenomas: long-term results for radiotherapy alone and post-operative radiotherapy. Int J Radiat Oncol Biol Phys 1993; 27: 1035–43

    Article  PubMed  CAS  Google Scholar 

  29. Tsang RW, Brierley JD, Panzarella T, et al. Radiation therapy for pituitary adenoma: treatment outcome and prognostic factors. Int J Radiat Oncol Biol Phys 1994; 30: 557–65

    Article  PubMed  CAS  Google Scholar 

  30. Tsang RW, Brierley JD, Panzarella T, et al. Role of radiation therapy in clinical hormonally active pituitary adenomas. Radiother Oncol 1996; 41: 45–53

    Article  PubMed  CAS  Google Scholar 

  31. Fisher BJ, Gaspar LE, Noone B. Radiation therapy of pituitary adenoma: delayed sequelae. Radiology 1993; 187: 843–6

    PubMed  CAS  Google Scholar 

  32. Ganz JC, Backlund EO, Thorsen FA. The effects of Gamma Knife surgery of pituitary adenomas on tumor growth and endocrinopathies. Stereotact Fund Neurosurg 1993; 61Suppl. 1: 30–7

    Google Scholar 

  33. Stephanian E, Lunsford LD, Coffey RJ, et al. Gamma knife surgery for sellar and suprasellar tumors. Neurosurg Clin N Am 1992; 3: 207–18

    PubMed  CAS  Google Scholar 

  34. Valentino V. Postoperative radiosurgery of pituitary adenomas. J Neurosurg Sci 1991; 35: 207–11

    PubMed  CAS  Google Scholar 

  35. Thoren M. Stereotactic radiosurgery with the cobalt-60 gamma unit in the treatment of growth hormone-producing pituitary tumors. Neurosurgery 1991; 29: 663–8

    Article  PubMed  CAS  Google Scholar 

  36. Pham CJ, Chang SD, Gibbs IC, et al. Preliminary visual field preservation after staged Cyberknife ablation of perioptic meninigoma and pituitary adenoma. Neurosurgery 2004; 54: 1–13

    Article  Google Scholar 

  37. Glasscock ME, Hays JW, Minor LB, et al. Preservation of hearing in surgery for acoustic neuromas. J Neurosurg 1993; 78: 864–70

    Article  PubMed  Google Scholar 

  38. Ojemann RG. Management of acoustic neuromas (vestibular schwannomas) [honored guest presentation]. Clin Neurosurg 1993; 40: 498–535

    PubMed  CAS  Google Scholar 

  39. Pellet W, Emram B, Cannoni M, et al. Functional results of the surgery of unilateral acoustic neuroma. Neurochirurgie 1993; 39: 24–40

    PubMed  CAS  Google Scholar 

  40. Eldridge R, Parry D. Vestibular schwannoma (acoustic neuroma). Consensus development conference. Neurosurgery 1992; 30: 962–4

    Article  PubMed  CAS  Google Scholar 

  41. Flickinger JC, Lunsford LD, Linskey ME, et al. Gamma knife radiosurgery for acoustic tumors: multivariate analysis of four year results. Radiother Oncol 1993; 27: 91–8

    Article  PubMed  CAS  Google Scholar 

  42. Lindquist C, Steiner L. Radiosurgery for tumors. In: Wilkins R, Rengachary S, editors. Neurosurgery. New York: McGraw-Hill, 1995: 185

    Google Scholar 

  43. Mendenhall WM, Friedman WA, Bova FJ. Linear accelerator-based stereotactic radiosurgery for acoustic schwannomas. Int J Radiat Oncol Biol Phys 1994; 28: 803–10

    Article  PubMed  CAS  Google Scholar 

  44. Noren G, Greitz D, Hirsch A, et al. Gamma knife surgery in acoustic tumours. Acta Neurochir Suppl (Wien) 1993; 58: 104–7

    CAS  Google Scholar 

  45. Chang SD, Gibbs IC, Sakamoto GT, et al. Staged stereotactic irradiation for acoustic neuroma. Neurosurgery 2005; 56(6): 1254–61

    Article  PubMed  Google Scholar 

  46. Chang SD, Adler JR. Stereotactic radiosurgery for cavernous sinus meningiomas: clinical and radiologic results. J Neurosurg 1997; 86: 359A

    Google Scholar 

  47. Chang SD, Adler JR. The treatment of skull base meningiomas with LINAC radiosurgery. Neurosurgery 1997; 41: 1022–9

    Article  Google Scholar 

  48. Kondziolka D, Lunsford LD. Radiosurgery of meningiomas. Neurosurg Clin N Am 1992; 3: 219–30

    PubMed  CAS  Google Scholar 

  49. Kondziolka D, Lunsford LD, Coffey RJ, et al. Stereotactic radiosurgery of meningiomas. J Neurosurg 1991; 74: 552–9

    Article  PubMed  CAS  Google Scholar 

  50. Ciric I, Landau B. Tentorial and posterior cranial fossa meningiomas: operative results and long term follow up: experience with 26 cases. Surg Neurol 1993; 39: 530–7

    Article  PubMed  CAS  Google Scholar 

  51. DeMonte F, Smith HK, al-Mefty O. Outcome of aggressive removal of cavernous sinus meningiomas. J Neurosurg 1994; 81: 245–51

    Article  PubMed  CAS  Google Scholar 

  52. Jaaskelainen J. Seemingly complete removal of histologically benign intracranial meningioma: late recurrence rate and factors predicting recurrence in 657 patients: a multivariate analysis. Surg Neurol 1986; 26: 461–9

    Article  PubMed  CAS  Google Scholar 

  53. Mahmood A, Qureshi NH, Malik GM. Intracranial meningiomas: analysis of recurrence after surgical treatment. Acta Neurochir (Wien) 1994; 126: 53–8

    Article  CAS  Google Scholar 

  54. Duma CM, Lunsford LD, Kondziolka D, et al. Stereotactic radiosurgery of cavernous sinus meningiomas as an addition or alternative to microsurgery. Neurosurgery 1993; 32: 699–704

    Article  PubMed  CAS  Google Scholar 

  55. Engenhart R, Kimmig BN, Hover KH, et al. Stereotactic single high dose radiation therapy of benign intracranial meningiomas. Int J Radiat Oncol Biol Phys 1990; 19: 1021–6

    Article  PubMed  CAS  Google Scholar 

  56. Valentino V, Schinaia G, Raimondi AJ. The results of radiosurgical management of 72 middle fossa meningiomas. Acta Neurochir (Wien) 1993; 122: 60–70

    Article  CAS  Google Scholar 

  57. Simpson JR, Horton J, Scott C, et al. Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 1993; 26: 239–44

    Article  PubMed  CAS  Google Scholar 

  58. Jeremic B, Grujicic D, Antunovic V, et al. Accelerated hyperfractionated radiation therapy for malignant glioma: a phase II study. Am J Clin Oncol 1995; 18: 449–53

    Article  PubMed  CAS  Google Scholar 

  59. Werner-Wasik M, Scott CB, Nelson DF, et al. Final report of a phase MI trial of hyperfractionated and accelerated hyperfractionated radiation therapy with carmustine for adults with supratentorial malignant gliomas. Radiation Therapy Oncology Group study. Cancer 1996; 77: 1535–43

    CAS  Google Scholar 

  60. Buatti JM, Friedman WA, Bova FJ, et al. Linac radiosurgery for high-grade gliomas: The University of Florida experience. Int J Radiat Oncol Biol Phys 1995; 32: 205–10

    Article  PubMed  CAS  Google Scholar 

  61. Chang SD, Gibbs IC. Stereotactic radiosurgery for gliomas. In: Krisht A, editor. Contemporary neurosurgery. Baltimore (MD): Lippincott Williams and Wilkins, 2003: 1–9

    Google Scholar 

  62. Kondziolka D, Flickinger JC, Bissonette DJ, et al. Survival benefit of stereotactic radiosurgery for patients with malignant glial neoplasms. Neurosurgery 1997; 41: 776–85

    Article  PubMed  CAS  Google Scholar 

  63. Larson DA, Gutin PH, McDermott M, et al. Gamma knife for glioma: selection factors and survival. Int J Radiat Oncol Biol Phys 1996; 36: 1045–53

    Article  PubMed  CAS  Google Scholar 

  64. Sanguineti G, Geara FB, Garden AS, et al. Carcinoma of the nasopharynx treated by radiotherapy alone: determinants of local and regional control. Int J Radiat Oncol Biol Phys 1997; 37: 985–96

    Article  PubMed  CAS  Google Scholar 

  65. Vikram B, Mishra UB, Strong EW, et al. Patterns of failure in carcinoma of the nasopharynx: I. failure at the primary site. Int J Radiat Oncol Biol Phys 1985; 11: 1455–9

    Article  PubMed  CAS  Google Scholar 

  66. Wang DC, Cai WM, Hu YH, et al. Long-term survival of 1035 cases of nasopharyngeal carcinoma. Cancer 1988; 61: 2338–41

    Article  PubMed  CAS  Google Scholar 

  67. Levendag PC, Schmitz PI, Jansen PP, et al. Fractionated high-dose-rate and pulsed-dose-rate brachytherapy: first clinical experience in squamous cell carcinoma of the tonsillar fossa and soft palate. Int J Radiat Oncol Biol Phys 1997; 38: 497–506

    Article  PubMed  CAS  Google Scholar 

  68. Qin DX, Hu YH, Yan JH, et al. Analysis of 1379 patients with nasopharyngeal carcinoma treated by radiation. Cancer 1988; 61: 1117–24

    Article  PubMed  CAS  Google Scholar 

  69. Le QT, Tate D, Koong A, et al. Improved local control with stereotactic radiosurgical boost in patients with nasopharyngeal carcinoma. Int J Radiat Oncol Biol Phys 2003; 56: 1046–54

    Article  PubMed  Google Scholar 

  70. American Joint Committee on Cancer. AJCC cancer staging manual. 5thed. Philadelphia (PA): Lippincott-Raven, 1997: 135–6

    Google Scholar 

  71. Peters LJ. Radiation therapy tolerance limits: for one of for all? Cancer 1996; 77: 2379–85

    Article  PubMed  CAS  Google Scholar 

  72. Philippens ME, Pop LA, Visser AG, et al. Dose-volume effects in rat thoracolumbar spinal cord: an evaluation of NTCP models. Int J Radiat Oncol Biol Phys 2004; 60: 578–90

    PubMed  Google Scholar 

  73. Chang SD, Gibbs IC, Martin DP, et al. Image-guided robotic radiosurgery. In: Germano IM, editor. Advanced techniques in image-guided brain and spine surgery. New York: Thieme Medical and Scientific Publishers, 2002: 107–13

    Google Scholar 

  74. Ryu S, Kim DH, Chang SD. Stereotactic radiosurgery for hemangiomas and ependymomas of the spinal cord. Neurosug Focus 2003; 15: 1–5

    Article  Google Scholar 

  75. Ryu S, Kim DH, Martin DP, et al. Image guided spinal stereotactic radiosurgery. In: Harkey L, editor. Techniques in neurosurgery. New York: Lippincott-Raven Publishers, 2003: 56–64

    Google Scholar 

  76. Gibbs IC, Chang SD. Radiosurgery and radiation therapy for sacral tumors. Neurosurg Focus 2003; 15: 1–5

    Article  Google Scholar 

  77. Ryu SI, Chang SD, Kim DH, et al. Image-guided hypo-fractionated stereotactic radiosurgery to spinal lesions. Neurosurgery 2001; 49: 838–46

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Steven D. Chang MD has received no funding and has no conflicts of interest relevant to the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, S.D. The CyberKnife®. Am J Cancer 4, 383–393 (2005). https://doi.org/10.2165/00024669-200504060-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200504060-00005

Keywords

Navigation