Skip to main content
Log in

Melanoma Vaccines

The Potential for Clinical Efficacy with Minimal Toxicity in the Adjuvant Setting

  • Review Article
  • Published:
American Journal of Cancer

Abstract

While surgical therapy alone is successful in the treatment of early stage melanoma, the outcome remains poor for patients with high-risk melanoma (elther thick [>4mm] primary tumors or those with nodal metastases). Adjuvant chemotherapy has shown limited impact on survival, and while high-dose interferon has been reported to improve survival, treatment with interferon is not without significant toxicity. Based on evidence that the immune system may play a prominent role in melanoma, researchers have long hoped that immunotherapies would make a significant clinical impact in the treatment of melanoma. Melanoma vaccines have the potential of not only significant clinical efficacy, but minimal toxicity. As opposed to other adjuvant therapies, where we accept small gains in exchange for tremendous toxicity, the adverse effects of vaccines have been extremely limited, confined mostly to mild flu-like symptoms and reactions at the injection site.

Multiple approaches to melanoma vaccines have been investigated, each with advantages and drawbacks. Several types of vaccines attempt to target antigens commonly found on a majority of melanomas. Examples include ganglioside and peptide vaccines, anti-idiotype vaccines and allogeneic tumor cell vaccines. These vaccines have several advantages regarding cost and feasibility as they could be applied on a wide scale in the adjuvant setting; this would also allow the therapies to be effectively tested in multicenter trials. However, the available data raise concerns that these approaches may not generate a strong enough immune response in a large enough group of patients to make a significant impact.

An alternate approach is to use the patient’s own tumor to create a vaccine. Methods to accomplish this include both autologous cellular vaccines and dendritic cell vaccines. While these may be more immunogenic, the cost and technical demands may be prohibitive to using them in the adjuvant setting, where immunotherapies are most likely to be beneficial.

Despite our increased understanding of the immune system, and several decades of clinical trials, to date there has not been a large, randomized trial demonstrating an impact on survival with a melanoma vaccine. Several questions need to be addressed to help move this research in the right direction. We need to identify those factors that may determine which patient should receive which vaccine so that in the future, adjuvant treatments can be increasingly refined to the populations in which they are most likely to succeed. A better understanding of tumor immune escape mechanisms is necessary to develop new approaches to overcome them. Finally, it is important to identify more clinically relevant surrogate markers for the generation of an immune response in order to select which strategies show the most potential for success. The prospect of engendering lifelong immunity to a patient’s cancer with minimal toxicity is sufficiently realistic to justify the extensive research effort that is necessary to make this a reality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Jemal A, Taylor M, Samuels A, et al. Cancer Statistics, 2003. CA Cancer J Clin 2003; 53(1): 5–26

    Article  PubMed  Google Scholar 

  2. Balch CM, Buzaid AC, Soong S-J, et al. Final version of the American Joint Committee on Cancer staging system for cutaneous melanoma. J Clin Oncol 2001; 19(16): 3635–48

    PubMed  CAS  Google Scholar 

  3. Sondak VK. Adjuvant therapy for melanoma. Cancer J 2001; 7Suppl. 1: S24–7

    PubMed  Google Scholar 

  4. Sondak VK, Wolfe JA. Adjuvant therapy for melanoma. Curr Opin Oncol 1997; 9: 189–204

    Article  PubMed  CAS  Google Scholar 

  5. Kirkwood JM, Ibrahim JG, Sosman JA, et al. High-dose interferon alfa-2b significantly prolongs relapse-free and overall survival compared with the GM2-KLH/QS-21 vaccine in patients with resected stage IIB-III melanoma: results of intergroup trial el694/S9512/C509801. J Clin Oncol 2001; 19(9): 2370–80

    PubMed  CAS  Google Scholar 

  6. Kirkwood JM, Strawderman MH, Ernstoff MS, et al. Interferon alfa-2b adjuvant therapy of high-risk resected cutaneous melanoma: the Eastern Cooperative Oncology Group Trial EST 1684. J Clin Oncol 1996; 14(1): 7–17

    PubMed  CAS  Google Scholar 

  7. Kirkwood JM, Manola J, Ibrahim J, et al. Pooled analysis of four ECOG/ Intergroup trials of high-dose interferon alpha-2b (HDI) in 1916 patients with high-risk resected cutaneous melanoma [abstract]. Proc Am Soc Clin Oncol 2001; 20: 350a

    Google Scholar 

  8. Euvrard S, Kanitakis J, Claudy A. Skin cancers after organ transplantation. N Engl J Med 2003; 348(17): 1681–91

    Article  PubMed  Google Scholar 

  9. Penn I. Malignant melanoma in organ allograft recipients. Transplantation 1996; 61: 274–8

    Article  PubMed  CAS  Google Scholar 

  10. Meyers ML, Balch CM. Diagnosis and treatment of metastatic melanoma. In Balch TCM, Houghton Jr AN, Sober AJ, et al., editors. Cutaneous Melanoma. St Louis (MO): Quality Medical Publishing, Inc., 1998: 327

    Google Scholar 

  11. Nauts H, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley’s toxin) on malignant tumors in man: a critical analysis of 30 inoperable cases treated by Coley’s mixed toxins, in which diagnosis was confirmed by microscopic examination selected for special study. Ada Med Scand Suppl 1953; 144(276): 1–103

    Google Scholar 

  12. Morton DL, Eilber FR, Malmgren RA, et al. Immunological factors which influence response to immunotherapy in malignant melanoma. Surgery 1970; 68: 158–64

    PubMed  CAS  Google Scholar 

  13. Morton DL, Ellber FR, Holmes EC, et al. BCG immunotherapy of malignant melanoma: summary of a seven-year experience. Ann Surg 1974; 180: 635–43

    Article  PubMed  CAS  Google Scholar 

  14. Ellber FR, Morton DL, Holmes EC, et al. Adjuvant immunotherapy with BCG in treatment of regional lymph node metastases from malignant melanoma. N Engl J Med 1976; 294: 237–40

    Article  Google Scholar 

  15. Gutterman JU, Richman SP, McBride CM, et al. Immunotherapy for recurrent malignant melanoma: efficacy of BCG in prolonging the postoperative diseasefree interval and survival. Recent Results Cancer Res 1979; 68: 359–62

    Article  Google Scholar 

  16. Ariyan S, Kirkwood JM, Mitchell MS, et al. Intralymphatic and regional surgical adjuvant immunotherapy in high-risk melanoma of the extremities. Surgery 1982; 92: 459–63

    PubMed  CAS  Google Scholar 

  17. Fisher RI, Terry WD, Hodes RJ, et al. Adjuvant immunotherapy or chemotherapy for malignant melanoma: preliminary report of the National Cancer Institute randomized clinical trial. Surg Clin N Am 1981; 61: 1267–77

    PubMed  CAS  Google Scholar 

  18. Veronesi U, Adamus J, Aubert C, et al. A randomized trial of adjuvant chemotherapy and immunotherapy in cutaneous melanoma. N Engl J Med 1982; 307: 913–6

    Article  PubMed  CAS  Google Scholar 

  19. Paterson AHG, Willans DJ, Jerry LM, et al. Adjuvant BCG immunotherapy for malignant melanoma. Can Med Assoc J 1984; 131: 744–8

    PubMed  CAS  Google Scholar 

  20. Karakousis CP, Emrich LJ. Adjuvant treatment of maligant melanoma with DTIC + estracyt or BCG. J Surg One 1987; 36: 235–8

    Article  CAS  Google Scholar 

  21. Czarnetzki BM, Macher E, Suciu S, et al. Long-term adjuvant immunotherapy in stage I high-risk malignant melanoma, comparing two BCG preparations versus non-treatment in a randomised multicentre study (EORTC protocol 18781). Eur J Cancer 1993; 29A(9): 1237–42

    Article  PubMed  CAS  Google Scholar 

  22. Lipton A, Harvey HA, Lawrence B, et al. Corynebacterium parvum versus BCG adjuvant therapy in human malignant melanoma. Cancer 1983; 51: 57–60

    Article  PubMed  CAS  Google Scholar 

  23. Balch CM, Smalley RV, Bartolucci AA, et al. A randomized prospective clinical trial of adjuvant C. parvum immunotherapy in 260 patients with clinical localized melanoma (stage I): prognostic factor analysis and preliminary results of immunotherapy. Cancer 1982; 49: 1079–84

    Article  PubMed  CAS  Google Scholar 

  24. Thatcher N, Mene A, Banerjee M, et al. Randomized study of Corynebacterium parvum adjuvant therapy following surgery for stage II malignant melanoma. Br JSurg 1986; 1986: 111–5

    Article  Google Scholar 

  25. Lipton A, Harvey HA, Balch CM, et al. Corynebacterium parvum versus BCG adjuvant immunotherapy of stage II malignant melanoma. J Clin Oncol 1991; 9: 1151–6

    PubMed  CAS  Google Scholar 

  26. Stevenson HC, Green I, Hamilton JM, et al. Levamisole: known effects on the immune system, clinical results, and future applications to the treatment of cancer. J Clin Oncol 1991; 9: 2052–66

    PubMed  CAS  Google Scholar 

  27. Spitler LE. A randomized trial of levamisole versus placebo as adjuvant therapy in malignant melanoma. J Clin Oncol 1991; 9: 736–40

    PubMed  CAS  Google Scholar 

  28. Loutfi A, Shakr A, Jerry M, et al. Double blind randomized prospective trial of levamisole/placebo in stage I cutaneous malignant melanoma. Clin Invest Med 1987; 10: 325–8

    PubMed  CAS  Google Scholar 

  29. Lejeune FJ, Macher E, Kleeberg U, et al. An assessement of DTIC versus levamisole or placebo in the treatment of high risk stage I patients after surgical removal of a primary melanoma of the skin: a phase III adjuvant study. EORTC protocol 18761. Eur J Cancer Clin Oncol 1988; 24: S81–90

    Google Scholar 

  30. Quirt IC, Shelley WE, Pater JL, et al. Improved survival in patients with poor-prognosis malignant melanoma treated with adjuvant levamisole: a phase III study by the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol 1991; 9: 729–35

    PubMed  CAS  Google Scholar 

  31. Bukowski RM, Deodhar S, Hewlett JS, et al. Randomized controlled trial of transfer factor in stage II malignant melanoma. Cancer 1983; 51: 269–72

    Article  PubMed  CAS  Google Scholar 

  32. Miller LL, Spitler LE, Allen RE, et al. A randomized, double-blind, placebocontrolled trial of transfer factor as adjuvant therapy for melanoma. Cancer 1988; 61: 1543–9

    Article  PubMed  CAS  Google Scholar 

  33. Martinez J, Miller LL, Allen RE, et al. A randomized trial of isoprinosine as surgical adjuvant therapy of melanoma: final report [abstract]. Proceedings of the American Association for Cancer Research. 1990; 31: 203

    Google Scholar 

  34. Azizi E, Brenner HJ, Shoham J. Postsurgical adjuvant treatment of malignant melanoma patients by the thymic factor thymostimulin. Arznelmittel Forschung 1984; 34: 1043–6

    CAS  Google Scholar 

  35. Hersey P. Ganglioside antigens in tissue sections of skin, naevi and melanoma: implications for treatment of melanoma. Cancer Treat Res 1991; 54: 137–51

    Article  PubMed  CAS  Google Scholar 

  36. Tai T, Cahan LD, Tsuchida T, et al. Immunogenicity of melanoma-associated gangliosides in cancer patients. Int J Cancer 1985; 35: 607–12

    Article  PubMed  CAS  Google Scholar 

  37. Livingston PO, Ritter G, Srivastava P, et al. Characterization of IgG and IgM antibodies induced in melanoma patients by immunization with purified GM2 ganglioside. Cancer Res 1989; 49: 7045–50

    PubMed  CAS  Google Scholar 

  38. Takahashi T, Chang C, Morton DL, et al. IgM antibodies to ganglioside GM3 and GD3 induced by active immunization correlated with survival in melanoma patients [abstract]. Proceedings of the American Association for Cancer Research 1995; 36: 485

  39. Livingston PO, Wong GY, Adluri S, et al. Improved survival in stage III melanoma patients with GM2 antibodies: a randomized trial of adjuvant vaccination with GM2 ganglioside. J Clin Oncol 1994; 12(5): 1036–44

    PubMed  CAS  Google Scholar 

  40. Helling F, Zhang S, Shang A, et al. GM2-KLH conjugate vaccine: increased immunogenicity in melanoma patients after administration with immunological adjuvant QS-21. Cancer Res 1995; 55: 2783–8

    PubMed  CAS  Google Scholar 

  41. Chapman BP, Morissey DM, Panageas KS, et al. Induction of antibodies against GM2 ganglioside by immunizing melanoma patients using GM2-KLH + QS21 vaccine: a dose-response study. Clin Cancer Res 2000; 6: 874–9

    PubMed  CAS  Google Scholar 

  42. Lindenmann J. Speculations on idiotypes of homobodies. Ann Immunol Paris 1973; 124: 171–84

    PubMed  CAS  Google Scholar 

  43. Jerne NK. Towards a network theory of the immune system. Ann Immunol Paris 1974; 125C: 373–89

    PubMed  CAS  Google Scholar 

  44. Chatterjee MB, Baral N, Chatterjee SK, et al. Counterpoint, cancer vaccines: single-epitope anti-idiotype vaccine versus multiple-epitope antigen vaccine. Cancer Immunol Immunother 2000; 49: 133–41

    Article  PubMed  Google Scholar 

  45. Bhattacharya-Chatterjee M, Kohler G. Anti-idiotype tumor vaccines. Adv Exp Med Biol 1990; 251: 113–28

    Google Scholar 

  46. Chatterjee MB, Foon KA, Kohler H. Idiotypic antibody immunotherapy of cancer. Cancer Immunol Immunother 1994; 38: 75–82

    Article  PubMed  CAS  Google Scholar 

  47. Mittelman A, Wang X, Matsumoto K, et al. Antiantiidiotypic response and clinical course of the disease in patients with malignant melanoma immunized with mouse antiidiotypic monoclonal antibody MK2-23. Hybridoma 1995; 14: 175–81

    Article  PubMed  CAS  Google Scholar 

  48. Saleh MN, Stapleton JD, Khazaeli MB, et al. Generation of a human anti-idiotypic antibody that mimics the GD2 antigen. J Immunol 1993; 151: 3390–8

    PubMed  CAS  Google Scholar 

  49. McCaffery M, Yao TJ, Williams L, et al. Immunization of melanoma patients with BEC2 anti-idiotypic monoclonal antibody that mimics GD3 ganglioside: enhanced immunogenicity when combined with adjuvant. Clin Cancer Res 1996; 2: 679–86

    PubMed  CAS  Google Scholar 

  50. Foon KA, Lutzky J, Baral N, et al. Clinical and immune responses in advanced melanoma patients immunized with an anti-idiotype antibody mimicking disia- loganglioside GD2. J Clin Oncol 2000; 18(2): 376–84

    PubMed  CAS  Google Scholar 

  51. Elsenbach L, Bar-Haim E, El-Shami K. Antitumor vaccination using peptide based vaccines. Immunol Lett 2000; 74: 27–34

    Article  Google Scholar 

  52. Weber J. Melanoma peptide vaccines: From preclinical background to clinical trials. Curr Oncol Rep 2000; 2: 38–47

    Article  PubMed  CAS  Google Scholar 

  53. Cebon JS, Jaeger E, Gibbs P, et al. Phase I studies of immunization with Melan-A and IL-12 in HLA-A2 positive patients with stage III and IV metastatic melanoma [abstract]. Proceedings of the American Society of Clinical Oncology 1999; 18: 436A

    Google Scholar 

  54. Lee PP, Wang F, Kuniyoshi J, et al. Effects of interleukin-12 on the immune response to a multipeptide vaccine for resected metastatic melanoma. J Clin Oncol 2001; 19: 3836–47

    PubMed  CAS  Google Scholar 

  55. Weber J, Sondak VK, Scotland R, et al. Granulocyte-macrophage-colony stimulating factor added to a multipeptide vaccine for resected stage II melanoma. Cancer 2003; 97: 186–200

    Article  PubMed  CAS  Google Scholar 

  56. Jaeger E, Ringhoffer M, Dienes HP, et al. Granulocyte-macrophage-colony stimulating factor enhances immune responses to melanoma associated peptides in vivo. Int J Cancer 1997; 67: 54–62

    Article  Google Scholar 

  57. Maeuer MJ, Storkus WJ, Kirkwood JM, et al. New treatment options for patients with melanoma: review of melanoma-derived T-cell epitope-based peptide vaccines. Melanoma Res 1996; 6: 11–24

    Article  Google Scholar 

  58. Byrstyn JC, Ortaz R, Roses D, et al. Relationship between immune response to melanoma vaccine immunization and clinical outcome in stage III malignant melanoma. Cancer 1992; 69: 1157–64

    Google Scholar 

  59. Byrstyn JC, Zeleniuch-Jacquotte A, Ortaz R, et al. Double blind trial of a polyvalent shed-antigen, melanoma vaccine. Clin Cancer Res 2001; 7(7): 1882–7

    Google Scholar 

  60. Takahashi T, Johnson TD, Nishinaka Y, et al. IgM anti-ganglioside antibodies induced by melanoma cell vaccine correlate with survival of melanoma patients. J Invest Dermatol 1999; 112: 205–9

    Article  PubMed  CAS  Google Scholar 

  61. Morton DL, Foshag LJ, Hoon DS, et al. Prolongation of survival in metastatic melanoma after specific immunotherapy with a new polyvalent melanoma vaccine. Ann Surg 1992; 216: 463–82

    Article  PubMed  CAS  Google Scholar 

  62. Morton DL, Barth A. Vaccine therapy for malignant melanoma. CA Cancer J Clin 1996; 46: 225–44

    Article  PubMed  CAS  Google Scholar 

  63. Chan AD, Morton DL. Active immunotherapy with allogenelc tumor cell vaccines: present status. Semin Oncol 1998; 25: 611–22

    PubMed  CAS  Google Scholar 

  64. DiFronzo LA, Gupta RK, Essner R, et al. Enhanced humoral immune response correlates with improved disease-free and overall survival in AJCC stage II melanoma patients recelving adjuvant polyvalent vaccine. J Clin Oncol 2002; 20(15): 3242–8

    PubMed  Google Scholar 

  65. Hsueh EC, Essner R, Foshag LJ, et al. Active immunotherapy by relnduction with a polyvalent allogenelc cell vaccine correlates with improved survival in recurrent metastatic melanoma. Ann Surg Oncol 2002; 9(5): 486–92

    Article  PubMed  Google Scholar 

  66. Morton DL. Cytoreductive surgery and adjuvant immunotherapy in the management of metastatic melanoma. Tumori 2001; 87(4): S57–9

    PubMed  CAS  Google Scholar 

  67. Takahashi T, Johnson TD, Nishinaka Y, et al. IgM anti-ganglioside antibodies induced by melanoma cell vaccine correlate with survival of melanoma patients. J Invest Dermatol 1999; 112(2): 205–9

    Article  PubMed  CAS  Google Scholar 

  68. Hsueh EC, Famatiga E, Gupta RK, et al. Enhancement of complement-dependent cytotoxicity by polyvalent melanoma cell vaccine (CancerVax): correlation with survival. Ann Surg Oncol 1998; 5(7): 595–602

    Article  PubMed  CAS  Google Scholar 

  69. Morton DL, Hsueh EC, Essner R, et al. Prolonged survival of patients recelving active immunotherapy with Canvaxin therapeutic polyvalent vaccine after complete resection of melanoma metastatic to regional lymph nodes. Ann Surg 2002; 236(4): 438–49

    Article  PubMed  Google Scholar 

  70. Mitchell MS, Harel W, Kempf RA, et al. Active specific immunotherapy of melanoma. J Clin Oncol 1992; 10: 1158–64

    PubMed  CAS  Google Scholar 

  71. Mitchell MS. Perspective on allogenelc melanoma lysates in active specific immunotherapy. Semin Oncol 1998; 25(6): 623–35

    PubMed  CAS  Google Scholar 

  72. Mitchell MS, Harel W, Kan-Mitchell J, et al. Active specific immunotherapy of melanoma with allogenelc cell lysates: rationale, results and possible mechanisms of action. Ann N Y Acad sci 1993; 690: 153–66

    Article  PubMed  CAS  Google Scholar 

  73. Mitchell MS, Harel W, Groshen SG. Association of HLA phenotype with response to active specific immunotherapy of melanoma. J Clin Oncol 1992; 10: 1158–64

    PubMed  CAS  Google Scholar 

  74. Mitchell MS, VonEschen KB. Phase III trial of Melacine melanoma vaccine versus combination chemotherapy in the treatment of stage IV melanoma [abstract 1778]. Proceedings of the American Society of Clinical Oncology 1997; 16: 494a

    Google Scholar 

  75. Sondak VK, Liu PY, Tuthill RJ, et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogenelc tumor vaccine: overall results of a randomized trial of the Southwest Oncology Group. J Clin Oncol 2002; 20(8): 2058–66

    Article  PubMed  CAS  Google Scholar 

  76. Sosman JA, Unger JM, Liu PY, et al. Adjuvant immunotherapy of resected, intermediate-thickness, node-negative melanoma with an allogenelc tumor vaccine: impact of HLA class I antigen expression on outcome. J Clin Oncol 2002; 20(8): 2067–75

    Article  PubMed  CAS  Google Scholar 

  77. Cassel WA, Murray DR, Phillips HS. A phase II study on the postsurgical management of stage II malignant melanoma with a Newcastle disease virus oncosylate. Cancer 1983; 52: 856–60

    Article  PubMed  CAS  Google Scholar 

  78. Wallack MK, McNally KR, Leftheriotis E, et al. A Southeastern Cancer Study Group phase I/II trial with vaccinia melanoma oncosylates. Cancer 1986; 57(3): 649–55

    Article  PubMed  CAS  Google Scholar 

  79. Wallack MK, Sivanandham M, Balch CM, et al. Surgical adjuvant active specific immunotherapy for patients with stage III melanoma: the final analysis of data from a phase III randomized, double-blind, multicenter vaccinia melanoma oncosylate trial. J Am Coll Surg 1998; 187: 69–77

    Article  PubMed  CAS  Google Scholar 

  80. Wallack MK, Sivanandham M, Balch CM, et al. A phase III randomized, doubleblind multiinstitutional trial of vaccinia melanoma oncosylate-active specific immunotherapy for patients with stage II melanoma. Cancer 1995; 75(1): 34–42

    Article  PubMed  CAS  Google Scholar 

  81. Hersey P. Evaluation of vaccinia viral lysates as therapeutic vaccines in the treatment of melanoma. Ann N Y Acad sci 1993; 690: 167–77

    Article  PubMed  CAS  Google Scholar 

  82. Hersey P. Active immunotherapy with viral lysates of micrometastases following surgical removal of high risk melanoma. World J Surg 1992; 16: 251–60

    Article  PubMed  CAS  Google Scholar 

  83. Hersey P, Coates AS, McCarthy WH, et al. Adjuvant immunotherapy of patients with high-risk melanoma using vaccinia viral lysates of melanoma: results of a randomized trial. J Clin Oncol 2002; 20(20): 4181–90

    Article  PubMed  CAS  Google Scholar 

  84. Mastrangelo MJ, Maguire Jr HC, Sato T, et al. Active specific immunization in the treatment of patients with melanoma. Semin Oncol 1996; 23: 773–81

    PubMed  CAS  Google Scholar 

  85. Sun Y, Paschen A, Schandorf D. Cell-based vaccination against melanoma-background, preliminary results and perspective. J Mol Med 1999; 77(8): 593–608

    Article  PubMed  CAS  Google Scholar 

  86. Berd D, Maguire Jr HC, McCue P, et al. Treatment of metastatic melanoma with an autologous tumor-cell vaccine: clinical and immunologie results in 64 patients. J Clin Oncol 1990; 8(11): 1858–67

    PubMed  CAS  Google Scholar 

  87. Berd D, Maguire Jr HC, Mastrangelo MJ. Treatment of human melanoma with a hapten modified autologous vaccine. Ann N Y Acad sci 1993; 690: 147–52

    Article  PubMed  CAS  Google Scholar 

  88. Berd D, Maguire Jr HC, Schuchter LM, et al. Autologous hapten-modified melanoma vaccine as postsurgical adjuvant treatment after resection of nodal metastases. J Clin Oncol 1997; 15: 2359–70

    PubMed  CAS  Google Scholar 

  89. Berd D, Kairys J, Dunton C, et al. Autologous, hapten-modified vaccine as a treatment for human cancers. Semin Oncol 1998; 25(6): 646–53

    PubMed  CAS  Google Scholar 

  90. McIllmurray MB, Embleton MJ, Reeves WG, et al. Controlled trial of active immunotherapy in the management of stage IIB malignant melanoma. BMJ 1977; 1(6060): 540–2

    Article  PubMed  CAS  Google Scholar 

  91. Aranha GV, McKhann CF, Grage TB, et al. Adjuvant immunotherapy of malignant melanoma. Cancer 1979; 43: 1297–303

    Article  PubMed  CAS  Google Scholar 

  92. Roth JA, Cristiano RJ. Gene therapy for cancer: what have we done and where are we going? J Natl Cancer Inst 1997; 88: 21–39

    Article  Google Scholar 

  93. Sun Y, Jurgovsky K, Moller P, et al. Vaccination with IL-12 gene modified autologous melanoma cells: preclinical results and a first clinical phase I study. Gene Ther 1998, 490)

  94. Moller P, Sun Y, Dorbic T, et al. Vaccination with IL-7 gene-modified autologous melanoma cells can enhance the anti-melanoma lytic activity in peripheral blood of patients with a good clinical performance status: a clinical phase I study. Br J Cancer 1998; 77: 1907–16

    Article  PubMed  CAS  Google Scholar 

  95. Abdel-Wahab Z, Weltz C, Hester D, et al. A phase I clinical trial of immunotherapy with interferon-gamma gene modified autologous melanoma cells: monitoring the humoral immune response. Cancer 1997; 80: 401–12

    Article  PubMed  CAS  Google Scholar 

  96. Dranoff G, Soiffer R, Lynct T, et al. A phase I study of vaccination with autologous irradiated melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor. Hum Gene Ther 1997; 8: 111–23

    Article  PubMed  CAS  Google Scholar 

  97. Soiffer R, Lynch T, Mihm MF, et al. Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony stimulating factor generates potent anti-tumor immunity in patients with metastatic melanoma. Proc Natl Acad sci U S A 1998; 85: 13141–6

    Article  Google Scholar 

  98. Arienti F, Sule-Soso J, Belli F, et al. Limited antitumor T cell response in melanoma patients vaccinated with interleukin-2 gene transduced allogenelc melanoma cells. Hum Gene Ther 1996; 7: 1955–63

    Article  PubMed  CAS  Google Scholar 

  99. Belli F, Arienti F, Sule-Soso J, et al. Active immunization of metastatic melanoma patients with interleukin-2 transduced allogenelc melanoma cells: evaluation of efficacy and tolerability. Cancer Immunol Immunother 1997; 44: 197–203

    Article  PubMed  CAS  Google Scholar 

  100. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 1998; 392: 245–52

    Article  PubMed  CAS  Google Scholar 

  101. Nestle FO, Banchereau J, Hart D. Dendritic cells: on the move from bench to bedside. Nat Med 2001; 7(7): 761–5

    Article  PubMed  CAS  Google Scholar 

  102. Chang AE, Redman BG, Whitfield JR, et al. A phase I trial of tumor lysate-pulsed dendritic cells in the treatment of advanced cancer. Clin Cancer Res 2002; 8: 1021–32

    PubMed  CAS  Google Scholar 

  103. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 1998; 4(3): 328–32

    Article  PubMed  CAS  Google Scholar 

  104. Banchereau J, Palucka AK, Dhodapkar M, et al. Immune and clinical response in patients with metastatic melanoma to CD34+ progenitor derived dendritic cell vaccine. Cancer Res 2001; 61: 6451–8

    PubMed  CAS  Google Scholar 

  105. Lau R, Wang F, Jeffery G, et al. Phase I trial of intravenous peptide-pulsed dendritic cells in patients with metastatic melanoma. J Immunother 2001; 24(1): 66–78

    Article  PubMed  CAS  Google Scholar 

  106. Thurner B, Haendle I, Roder C, et al. Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 1999; 190(11): 1669–78

    Article  PubMed  CAS  Google Scholar 

  107. Livingston PO. The unfulfilled promise of melanoma vaccines. Clin Cancer Res 2001; 7: 1837–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sabel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabel, M.S., Sondak, V.K. Melanoma Vaccines. Am J Cancer 3, 377–386 (2004). https://doi.org/10.2165/00024669-200403060-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024669-200403060-00005

Keywords

Navigation