Skip to main content
Log in

CNS Adverse Events Associated with Antiepileptic Drugs

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

A variety of newer antiepileptic drugs (AEDs) are now available for treating patients with epilepsy in addition to the ‘conventional’ drugs that have been available throughout a large part of the last century. Since these drugs act to suppress the pathological neuronal hyperexcitability that constitutes the final substrate in many seizure disorders, it is not surprising that they are prone to causing adverse reactions that affect the CNS.

Information on adverse effects of the older AEDs has been mainly observational. Equally, whilst the newer drugs have been more systematically studied, their long-term adverse effects are not clearly known. This is illustrated by the relatively late emergence of the knowledge of visual field constriction in the case of vigabatrin, which only became known after several hundred thousand patient-years of use. However, older drugs continue to be studied and there has been more recent comment on the possible effect of valproate (valproic acid) on cognition following exposure to this drug in utero.

With most AEDs, there are mainly dose-related adverse effects that could be considered generic, such as sedation, drowsiness, incoordination, nausea and fatigue. Careful dose titration with small initial doses can reduce the likelihood of these adverse effects occurring. Adverse effects such as paraesthesiae are more commonly reported with drugs such as topiramate and zonisamide that have carbonic anhydrase activity. Weight loss and anorexia can also be peculiar to these drugs. Neuropsychiatric adverse effects are reported with a variety of AEDs and may not be dose related. Some drugs, such as carbamazepine when used to treat primary generalized epilepsy, can exacerbate certain seizure types. Rare adverse effects such as hyperammonaemia with valproate are drug specific. There are relatively very few head-to-head comparisons of AEDs and limited information is available in this regard.

In this review, we discuss the available literature and provide a comprehensive summary of adverse drug reactions of AEDs affecting the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII

Similar content being viewed by others

References

  1. Femer RE, Aronson JK. Communicating information about drug safety. BMJ 2006; 333: 143–5

    Article  Google Scholar 

  2. Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effectiveness of carbamazepine, gabapentin, lamo-trigine, oxcarbazepine, or topiramate for treatment of partial epilepsy: an unblinded randomised controlled trial. Lancet 2007; 369: 1000–15

    Article  PubMed  CAS  Google Scholar 

  3. Marson AG, Al-Kharusi AM, Alwaidh M, et al. The SANAD study of effectiveness of valproate, lamotrigine, or topiramate for generalised and unclassifiable epilepsy: an unblinded randomised controlled trial. Lancet 2007; 369: 1016–26

    Article  PubMed  CAS  Google Scholar 

  4. Perucca E, Alexandre Jr V, Tomson T. Old versus new antiepileptic drugs: the SANAD study [letter]. Lancet 2007; 370: 313

    Article  PubMed  Google Scholar 

  5. Twyman RE, Rogers CJ, Macdonald RL. Differential regulation of gamma-aminobutyric acid receptor channels by diazepam and phenobarbital. Ann Neurol 1989; 25: 213–20

    Article  PubMed  CAS  Google Scholar 

  6. Koeppen D. A review of clobazam studies in epilepsy. In: Hindmarch I, Stonier PD, Trimble MR, editors. Clobazam, human psychopharmacology and clinical applications. London: Royal Society of Medicine; 1985: 1207–15

    Google Scholar 

  7. Cull CA, Trimble MR. Anticonvulsant benzodiazepines and performance. In: Hindmarch I, Stonier PD, Trimble MR, editors. Clobazam, human psychopharmacology and clinical applications. London: The Royal Society of Medicine, 1985: 121–8

    Google Scholar 

  8. Bawden HN, Camfield CS, Camfield PR, et al. The cognitive and behavioural effects of clobazam and standard monotherapy are comparable. Canadian Study Group for Childhood Epilepsy. Epilepsy Res 1999; 33(2–3): 133–43

    Article  PubMed  CAS  Google Scholar 

  9. Naito H, Wachi M, Nishida M. Clinical effects and plasma concentrations of long-term clonazepam monotherapy in previously untreated epileptics. Acta Neurologica Scandinavica 1987; 76: 58–63

    Article  PubMed  CAS  Google Scholar 

  10. Rothschild AJ, Shindul-Rothschild, Vinguera A, et al. Comparison of the frequency of behavioural disinhibition on alprazolam, clonazepam, or no benzodiazepine in hospitalized psychiatric patients. J Clin Psychopharmacol 2000; 20: 7–11

    Article  PubMed  CAS  Google Scholar 

  11. Sato S, Penry JK, Dreifuss FE, et al. Clonazepam in the treatment of absence seizures. Neurology (Minneap) 1977; 27: 371

    Article  Google Scholar 

  12. Colasanti BK, Craig CR. Reduction of seizure frequency by clonazepam during cobalt experimental epilepsy. Brain Res Bull 1992; 28: 329–31

    Article  PubMed  CAS  Google Scholar 

  13. Specht U, Boenigk HE, Wolf P. Discontinuation of clonazepam after long-term treatment. Epilepsia 1989; 30: 458–63

    Article  PubMed  CAS  Google Scholar 

  14. Wong T, Tiessen E. Scizure in gradual clonazepam withdrawal. Psychiatr J Univ Ottawa 1989; 14: 484

    CAS  Google Scholar 

  15. Bittencourt PRM, Richens A. Anticonvulsant-induced status epilepticus in Lennox-Gastaut syndrome. Epilepsia 1981; 22: 129–34

    Article  PubMed  CAS  Google Scholar 

  16. Bladin PF. The use of clonazepam as an anticonvulsant-clinical evaluation. Med J Aust 1973; 1: 683–8

    PubMed  CAS  Google Scholar 

  17. Munthe-Kaas AW, Strandjord RE. Clonazepam in the treatment of epileptic seizures. Acta Neurol Scand 1973; 49: 97–102

    Article  Google Scholar 

  18. Rosebuch PI, Mazurek MF. Catatonia after benzodiazepine withdrawal. J Clin Psychopharmacol 1996; 16: 315–9

    Article  Google Scholar 

  19. Schwartz JR, Grigat G. Phenytoin and carbamazepine: potential and frequency-dependent block of Na currents in mammalian myelinated nerve fibres. Epilepsia 1989; 30: 286–94

    Article  Google Scholar 

  20. Collaborative Group for Epidemiology of Epilepsy. Adverse reactions to antiepileptic drugs: a follow-up study of 355 patients with chronic antiepileptic drug treatment. Epilepsia 1988; 29: 787–93

    Article  Google Scholar 

  21. Smith DB, Mattson RH, Cramer J, et al. Results of a nationwide Veterans Administration Cooperative Study comparing the efficacy and toxicity of carbamazepine, phenobarbitone, phenytoin and primidone. Epilepsia 1987; 28 Suppl. 3: S50–8

    Article  PubMed  Google Scholar 

  22. Chadwick DW, Shaw MDM, Foy P, et al. Serum anticonvulsant concentrations and the risk of drug-induced skin eruptions. J Neurol Neurosurg Psychiatry 1984; 47: 642–4

    Article  PubMed  CAS  Google Scholar 

  23. Brent DA, Crumrine PK, Varma RR, et al. Phenobarbital treatment and major depressive disorder in children with epilepsy. Pediatrics 1987; 80: 909–17

    PubMed  CAS  Google Scholar 

  24. Pellock JM. Carbamazepine side effects in children and adults. Epilepsia 1987; 28 Suppl. 3: S64–70

    Article  PubMed  Google Scholar 

  25. Schmitz B, Trimble MR. PIP-syndrome in temporal lobe epilepsy. Epilepsy Res 1995; 22: 215–20

    Article  PubMed  CAS  Google Scholar 

  26. Dalby MA. Behavioural effects of carbamazepine. In: Penry JK, Daly DD, editors. Complex partial seizures and their treatment. Advances in neurology. Vol. 11. New York: Raven Press, 1975: 331–43

    Google Scholar 

  27. Drake ME, Peruzzi WT. Manic state with carbamazepine therapy of seizures. J Natl Med Assoc 1986; 78: 1105–10

    PubMed  Google Scholar 

  28. Gorman M, Barkley GL. Oculogyric crisis induced by carbamazepine. Epilepsia 1995; 36(11): 1158–60

    Article  PubMed  CAS  Google Scholar 

  29. Jacome D. Carbamazepine-induced dystonia [letter]. JAMA 1979; 241(21): 2263

    Article  PubMed  CAS  Google Scholar 

  30. Thomas P, Valton L, Genton P. Absence and myoclonic status epilepticus precipitated by antiepileptic drugs in idiopathic generalized epilepsy. Brain 2006; 129(5): 1281–92

    Article  PubMed  Google Scholar 

  31. Perucca E, Gram L, Avanzini G, et al. Antiepileptic drugs as a cause of worsening seizures. Epilepsia 1998; 39(1): 5–17

    Article  PubMed  CAS  Google Scholar 

  32. Snead OC, Hosey LC. Exacerbation of seizures in children by carbamazepine. New Engl J Med 1985; 313: 916–21

    Article  PubMed  Google Scholar 

  33. Coulter DA, Huguenard JR, Prince DA. Characterization of ethosuximide reduction of low-threshold calcium current in thalamic neurons. Ann Neurol 1989; 25: 582–93

    Article  PubMed  CAS  Google Scholar 

  34. Browne T. Ethosuximide (Zarontin) and other succinimides. In: Browne T, Feldman R, editors. Epilepsy, diagnosis and management. Boston (MA): Little, Brown, 1983: 215–24

    Google Scholar 

  35. Sato S, White BG, Penry JK, et al. Valproic acid versus ethosuximide in the treatment of absence seizures. Neurology 1982; 32(2): 157–63

    Article  PubMed  CAS  Google Scholar 

  36. Martinovic Z. Comparison of ethosuximide with sodium valproate as monotherapies of absence seizures. In: Parsonage M, Grant R, Craig A, et al., editors. Advances in epileptology: XIVth Epilepsy International Symposium. New York: Raven Press, 1983: 301–5

    Google Scholar 

  37. Callaghan N, O’Hare J, O’Driscoll D, et al. Comparative study of ethosuximide and sodium valproate in the treatment of typical absence seizures (petit mal). Dev Med Child Neurol 1982; 24(6): 830–6

    PubMed  CAS  Google Scholar 

  38. Schmitz B. Psychiatric syndromes related to antiepileptic drugs. Epilepsia 1999; 40 Suppl. 10: S65–70

    Article  PubMed  CAS  Google Scholar 

  39. Dreifuss F. Ethosuximide: toxicity. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. New York: Raven Press, 1995: 675–9

    Google Scholar 

  40. Todorov A, Lenn N, Gabor A. Exacerbation of generalized non-convulsive seizures with ethosuximide therapy. Arch Neurol 1978; 35: 389–91

    Article  PubMed  CAS  Google Scholar 

  41. Snead OC. Scizure aggrevation: clinical assessment and role of AEDs. Antiepileptic Therapy Symposium, 2005; Washington, DC

  42. Goldensohn E, Hardie J, Borea E. Ethosuximide in the treatment of epilepsy. JAMA 1962; 180: 840–2

    Article  PubMed  CAS  Google Scholar 

  43. Wang WZ, Wu JZ, Ma GY, et al. Efficacy assessment of phenobarbital in epilepsy: a large community-based intervention trial in rural China. Lancet Neurol 2006; 5(1): 46–52

    Article  PubMed  CAS  Google Scholar 

  44. Nimaga K, Desplats D, Duoumbo O, et al. Treatment with phenobarbital and monitoring of epileptic patients in rural Mali. Bull World Health Organ 2002; 80(7): 532–7

    PubMed  CAS  Google Scholar 

  45. Pal DK, Das T, Chaudhury G, et al. Randomised controlled trial to assess acceptability of phenobarbital for childhood epilepsy in rural India. Lancet 1998; 351(9095): 19–23

    Article  PubMed  CAS  Google Scholar 

  46. Theodore WH. Rational use of antiepileptic drug levels. Pharmacol Ther 1992; 54: 297–305

    Article  PubMed  CAS  Google Scholar 

  47. Pritchard JW, Mattson RA. Barbiturates: an update. In: Pedley TA, Meldrum BS, editors. Recent advances in epilepsy. Edinburgh: Churchill Livingstone, 1986: 261–77

    Google Scholar 

  48. Vining EP, Mellitis ED, Dorsen MM, et al. Psychological and behavioural effects of antiepileptic drugs in children: a double-blind comparison between phenobarbital and valproic acid. Pediatrics 1987; 80: 165–74

    PubMed  CAS  Google Scholar 

  49. Cramer J, Mattson RH. Phenobarbital: toxicity. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 409–20

    Google Scholar 

  50. Farwell JR, Lee YJ, Hirtz DG, et al. Phenobarbital for febrile seizures: effects on intelligence and on seizure recurrence [published erratum appears in N Engl J Med 1992 Jan 9; 326 (2): 144]. New Engl J Med 1990; 322(6): 364–9

    Article  PubMed  CAS  Google Scholar 

  51. Reinisch JM, Sanders SA, Mortensen EL, et al. In utero exposure to phenobarbital and intelligence deficits in adult men. JAMA 1995; 274: 1518–25

    Article  PubMed  CAS  Google Scholar 

  52. Heller AJ, Chesterman P, Elwes RD, et al. Phenobarbitone, phenytoin, carbamazepine, or sodium valproate for newly diagnosed adult epilepsy: a randomised comparative monotherapy trial. J Neurol Neurosurg Psychiatry 1995; 58(1): 44–50

    Article  PubMed  CAS  Google Scholar 

  53. Taylor S, Tudor SC, Williamson PR, et al. Phenobarbitone versus phenytoin monotherapy for partial-onset seizures and generalized onset tonic-clonic seizures. Cochrane Database Syst Rev 2001; (4): CD002217

  54. Mattson RH, Cramer J, Collins JF, et al. Comparison of carbamazepine, phenobarbital phenytoin, and primidone in partial and secondarily generalised tonic-clonic seizures. New Engl J Med 1985; 313: 145–51

    Article  PubMed  CAS  Google Scholar 

  55. Kwan P, Brodie MJ. Phenobarbital for the treatment of epilepsy in the 21st century: a critical review. Epilepsia 2004; 45(9): 1141–9

    Article  PubMed  CAS  Google Scholar 

  56. Meador KJ, Loring DW, Huh K, et al. Comparative cognitive effects of anticonvulsants. Neurology 1990; 40: 391–4

    Article  PubMed  CAS  Google Scholar 

  57. Vandam LD, Collins WL. Recovery from acute phenobarbital intoxication after prolonged coma. JAMA 1963 Apr 20; 184: 239–41

    Article  PubMed  CAS  Google Scholar 

  58. Guerrini R, Belmonte A, Strumia S, et al. Exacerbation of epileptic negative myoclonus by carbamazepine or phenobarbital in children with atypical benign rolandic epilepsy. Epilepsia 1995; 36 Suppl. 3: S65

    Google Scholar 

  59. Wilder BJ, Rangel RJ. Clinically relevant antiepileptic drug interactions. In: WH Pitlick, editor. Antiepileptic drug interactions. New York: Demos Publications, 1989: 65–75

    Google Scholar 

  60. Kutt H, Winters W, Kokenge R, et al. Diphenylhydantoin metabolism, blood levels and toxicity. Arch Neurol 1964; 11: 642–8

    Article  PubMed  CAS  Google Scholar 

  61. Chua HC, Venketasubramanian N, Tan CB, et al. Paradoxical seizures in phenytoin toxicity. Singapore Med 1999; 40: 276–7

    CAS  Google Scholar 

  62. McLellan DL, Swash M. Choreo-athetosis and encephalopathy induced by phenytoin. BMJ 1974; 2: 204–5

    Article  PubMed  CAS  Google Scholar 

  63. Shorvon SD, Reynolds EH. Anticonvulsant peripheral neuropathy: a clinical and electrophysiological study of patients on single drug treatment with phenytoin, carbamazepine or barbiturates. J Neurol Neurosurg Psychiatry 1982; 47: 621–6

    Google Scholar 

  64. Bayer AU, Thiel HJ, Zrenner E, et al. Color vision tests for early detection of antiepileptic drug toxicity. Neurology 1997; 48: 1394–7

    Article  PubMed  CAS  Google Scholar 

  65. Trimble MR. Anticonvulsant drugs and cognitive function: a review of the literature. Epilepsia 1987; 28 Suppl. 3: S37–45

    Article  PubMed  Google Scholar 

  66. Aldenkamp AP, Alpherts WC, Diepman L, et al. Cognitive side effects of phenytoin compared with carbamazepine in patients with localization-related epilepsy. Epilepsy Res 1994; 19: 37–43

    Article  PubMed  CAS  Google Scholar 

  67. Kalviainen R, Aikia M, Riekkinen P. Cognitive adverse effects of antiepileptic drugs: incidence, mechanisms and therapeutic implications. CNS Drugs 1996; 5: 358–68

    Article  CAS  Google Scholar 

  68. Tudur SC, Marson AG, Williamson PR. Phenytoin versus valproate monotherapy for partial-onset seizures and generalized onset tonic-clonic seizures. Cochrane Database Syst Rev 2001; (4): CD001769

  69. Tudur SC, Marson AG, Clough HE, et al. Carbamazepine versus phenytoin monotherapy for epilepsy. Cochrane Database Syst Rev 2002; (2): CD001911

  70. Ney GC, Lantos G, Barr WB, et al. Cerebellar atrophy in patients with long-term phenytoin exposure. Arch Neurol 1994; 51(8): 767–71

    Article  PubMed  CAS  Google Scholar 

  71. Leppick I, Cloyd JC. Primidone: toxicity. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 487–90

    Google Scholar 

  72. Randomised study of antiepileptic drug withdrawal in patients in remission. Medical Research Council Antiepileptic Drug Withdrawal Study Group. Lancet 1991; 337(8751): 1175–80

    Google Scholar 

  73. McLean MJ, Macdonald RL. Sodium valproate, but not ethosuximide, produces use- and voltage-dependent limitation of high frequency repetitive firing of action potentials of mouse central neurons in cell culture. J Pharmacol Exp Ther 1986; 237: 1001–11

    PubMed  CAS  Google Scholar 

  74. Kelly KM, Gross RA, Macdonald RL. Valproic acid selectivity reduces the low-threshold calcium current in rat nodose neurons. Neurosci Lett 1990; 116: 233–8

    Article  PubMed  CAS  Google Scholar 

  75. Goulden KJ, Dooley JM, Camfield PR, et al. Clinical valproate toxicity induced by acetylsalicylic acid. Neurology 1987; 37: 1392–4

    Article  PubMed  CAS  Google Scholar 

  76. Trimble MR, Thompson PJ. Sodium valproate and cognitive function. Epilepsia 1984; 25: S60–4

    Article  PubMed  Google Scholar 

  77. Meador KJ, Loring DW, Hulihan JF, et al. Differential cognitive and behavioural effects of topiramate and valproate. Neurology 2003; 60(9): 1483–8

    Article  PubMed  CAS  Google Scholar 

  78. Keranen T, Sivenius J. Side effects of carbamazepine, valproate and clonazepam during long-term treatment of epilepsy. Acta Neurol Scand Suppl 1983; 97: 69–80

    Article  CAS  Google Scholar 

  79. Masmoudi K, Gras-Champel V, Mason H, et al. Parkinsonism and/or cognitive impairment with valproic acid therapy: a report of ten cases. Pharmacopsychiatry 2006; 39(1): 9–12

    Article  PubMed  CAS  Google Scholar 

  80. Murphy JV, Marquardt K. Asymptomatic hyperammonemia in patients receiving valproic acid. Arch Neurol 1982; 39: 591–3

    Article  PubMed  CAS  Google Scholar 

  81. Vossler DG, Wilensky AJ, Cawthorn DF, et al. Serum and CSF glutamine levels in valproate-related hyperammonemic encephalopathy. Epilepsia 2002; 43: 154–9

    Article  PubMed  CAS  Google Scholar 

  82. Verrotti A, Trotta D, Morgese G, et al. Valproate-induced hyperammonemic encephalopathy. Metab Brain Dis 2002; 17: 367–73

    Article  PubMed  CAS  Google Scholar 

  83. Triggs WJ, Bohan TP, Lin S, et al. Valproate-induced coma with ketosis and carnitine insufficiency. Arch Neurol 1990; 47: 1131–3

    Article  PubMed  CAS  Google Scholar 

  84. Rottach KG, Weiss-Brummer J, Wieland U, et al. Valproic acid in prophylaxis of bipolar disorder: a case of valproate-induced encephalopathy. Nervenarzt 2000; 71: 401–3

    Article  PubMed  CAS  Google Scholar 

  85. Reif A, Leonhard C, Mossner R, et al. Encephalopathy and myoclonus triggered by valproic acid. Prog Neuropsycho-pharmacology Biol Psychiatry 2004; 28: 1061–3

    Article  CAS  Google Scholar 

  86. Vinten J, Adab N, Kini U, et al. Neuropsychological effects of exposure to anticonvulsant medication in utero. Neurology 2005; 64(6): 949–54

    Article  PubMed  CAS  Google Scholar 

  87. Motamedi GK, Meador KJ. Antiepileptic drugs and neurodevelopment. Curr Neurol Neurosci Rep 2006; 6(4): 341–6

    Article  PubMed  CAS  Google Scholar 

  88. Lhatoo SD, Wong IC, Polizzi G, et al. Long-term retention rates of lamotrigine, gabapentin, and topiramate in chronic epilepsy. Epilepsia 2000; 41(12): 1592–6

    Article  PubMed  CAS  Google Scholar 

  89. Depondt C, Yuen AW, Bell GS, et al. The long term retention of levetiracetam in a large cohort of patients with epilepsy. J Neurol Neurosurg Psychiatry 2006; 77(1): 101–3

    Article  PubMed  CAS  Google Scholar 

  90. Pellock JM, Watermberg N. New antiepileptic drugs in children: present and future. Semin Pediatr Neurol 1997; 4: 9–18

    Article  PubMed  CAS  Google Scholar 

  91. Pisani A, Spadoni F, Bernadi G. Electrophysiological actions of felbamate on rat striatal neurones. Br J Pharmacol 1995; 116: 2053–61

    Article  PubMed  CAS  Google Scholar 

  92. McCabe RT, Wasterlain CG, Kucharezyk N, et al. Evidence for anticonvulsant and neuroprotectant action of felbamate mediated by strychnine-insensitive glycine receptors. J Pharmacol Exp Ther 1993; 26: 1248–52

    Google Scholar 

  93. Leppick I. Felbamate. Epilepsia 1995; 36 Suppl. 2: S66–72

    Article  Google Scholar 

  94. Bourgeois B. Felbamate. Semin Pediatr Neurol 1997; 4: 3–8

    Article  PubMed  CAS  Google Scholar 

  95. O’Neil MG, Perdun CS, Wilson MB, et al. Felbamate-associated fatal acute hepatic necrosis. Neurology 1996; 46: 1457–9

    Article  PubMed  Google Scholar 

  96. Wamil AW, McLean MJ. Limitation by gabapentin of high frequency action potential firing by mouse central neurons in cell culture. Epilepsy Res 1994; 17(1): 1–11

    Article  PubMed  CAS  Google Scholar 

  97. Gotz E, Feuerstein TJ, Lais A, et al. Effects of gabapentin on release of gamma-amminobutyric acid from slices of rat neostriatum. Arzneimittelforschung 1993; 43(6): 636–8

    PubMed  CAS  Google Scholar 

  98. Gee NS, Brown JP, Dissanayake VU, et al. The novel anticonvulsant drug, gabapentin (Neurontin), binds to the alpha2delta subunit of a calcium channel. J Biol Chem 1996; 271(10): 5768–76

    Article  PubMed  CAS  Google Scholar 

  99. Hill DR, Suman-Chauhan N, Woodruff GN. Localization of [3H]gabapentin to a novel site in rat brain: autoradiographic studies. Eur J Pharmacology 1993; 244(3): 303–9

    Article  CAS  Google Scholar 

  100. Cramer J, Fisher R, Ben-Menachem E, et al. New antiepileptic drugs: a comparison of key clinical trials. Epilepsia 1999; 40: 590–600

    Article  PubMed  CAS  Google Scholar 

  101. Devinsky O, Cramer J. Safety and efficacy of standard and new antiepileptic drugs. Neurology 2000; 55Suppl. 3: 5–10

    Google Scholar 

  102. Marson AG, Kadir ZA, Hutton JL, et al. The new antiepileptic drugs: a systematic review of their efficacy and tolerability. Epilepsia 1997; 38(8): 859–80

    Article  PubMed  CAS  Google Scholar 

  103. Gabapentin as add-on therapy in refractory partial epilepsy: a double-blind, placebo-controlled, parallel-group study. The US Gabapentin Study Group. Neurology 1993; 43(11): 2292–8

    Article  Google Scholar 

  104. Gabapentin in partial epilepsy. UK Gabapentin Study Group. Lancet 1990; 335(8698): 1114–7

    Article  Google Scholar 

  105. Anhut H, Ashman P, Feuerstein TJ, et al. Gabapentin (Neurontin) as add-on therapy in patients with partial seizures: a double-blind, placebo-controlled study. The International Gabapentin Study Group. Epilepsia 1994; 35(4): 795–801

    Article  CAS  Google Scholar 

  106. Sivenius J, Kalviainen R, Ylinen A, et al. Double-blind study of gabapentin in the treatment of partial seizures. Epilepsia 1991; 32(4): 539–42

    Article  PubMed  CAS  Google Scholar 

  107. Litzinger MJ, Wiscombe N, Hanny A, et al. Increased seizures and aggression seen in persons with mental retardation and epilepsy treated with Neurontin [abstract]. Epilepsia 1995; 36Suppl. 4: 71

    Google Scholar 

  108. Doherty KP, Gates JR, Penovich PE, et al. Gabapentin in a medically refractory epilepsy population: seizure response and unusual side effects [abstract]. Epilepsia 1995; 36Suppl. 4: 71

    Google Scholar 

  109. Asconape J, Diedrich A, DellaBadia J. Myoclonus associated with the use of gabapentin. Epilepsia 2000; 41: 479–81

    Article  PubMed  CAS  Google Scholar 

  110. Leach JP, Marden CM, Miller AA. Pharmacological studies on lamotrigine, a novel potential antiepileptic drug: II. Neuro-chemical studies on the mechanism of action. Epilepsia 1986; 27: 490–7

    Article  PubMed  CAS  Google Scholar 

  111. Cheung H, Kamp D, Harris E. An in vitro investigation of the action of lamotrigine on neuronal voltage-activated sodium channels. Epilepsy Res 1992; 13: 107–12

    Article  PubMed  CAS  Google Scholar 

  112. Morrow J, Russell A, Guthrie L, et al. Malformation risks of antiepileptic drugs in pregnancy: a prospective study from the UK Epilepsy and Pregnancy Register. J Neurol Neurosurg Psychiatry 2006; 77: 193–8

    Article  PubMed  CAS  Google Scholar 

  113. Biton V, Sackellares JC, Vuong A, et al. Double-blind, placebo-controlled study of lamotrigine in primary generalized tonic-clonic seizures. Neurology 2005; 65(11): 1737–43

    Article  PubMed  CAS  Google Scholar 

  114. Gamble C, Williamson PR, Chadwick DW, et al. A meta-analysis of individual patient responses to lamotrigine or car-bamazepine therapy. Neurology 2006; 66(9): 1310–7

    Article  PubMed  CAS  Google Scholar 

  115. Gamble C, Williamson PR, Marson AG. Lamotrigine versus carbamazepine monotherapy for epilepsy. Cochrane Database Syst Rev 2006; (1): CD001031

  116. Matsuo F, Bergen D, Faught E, et al. Placebo-controlled study of the efficacy and safety of lamotrigine in patients with partial seizures. US Lamotrigine Protocol 0.5 Clinical Trial Group. Neurology 1993; 43(11): 2284–91

    CAS  Google Scholar 

  117. Binnie CD, Debets RM, Engelsman M, et al. Double-blind crossover trial of lamotrigine (Lamictal) as add-on therapy in intractable epilepsy. Epilepsy Res 1989; 4(3): 222–9

    Article  PubMed  CAS  Google Scholar 

  118. Jawad S, Richens A, Goodwin G, et al. Controlled trial of lamotrigine (Lamictal) for refractory partial seizures. Epilepsia 1989; 30(3): 356–63

    Article  PubMed  CAS  Google Scholar 

  119. Loiseau P, Yuen AW, Duche B, et al. A randomized double-blind placebo controlled crossover add-on trial of lamotrigine in patients with treatment resistant partial seizures. Epilepsy Res 1990; 7(2): 136–45

    Article  PubMed  CAS  Google Scholar 

  120. Messenheimer J, Ramsay RE, Willmore LJ, et al. Lamotrigine therapy for partial seizures: a multicenter, placebo-controlled, double-blind, crossover trial. Epilepsia 1994; 35(1): 113–21

    Article  PubMed  CAS  Google Scholar 

  121. Schapel GJ, Beran RG, Vajda FJ, et al. Double blind, placebo-controlled, crossover study of lamotrigine in treatment-resistant partial seizures. J Neurol Neurosurg Psychiatry 1993; 56(5): 448–53

    Article  PubMed  CAS  Google Scholar 

  122. Smith D, Baker G, Davies G, et al. Outcomes of add on treatment with lamotrigine in partial epilepsy. Epilepsia 1993; 34(2): 312–22

    Article  PubMed  CAS  Google Scholar 

  123. Committee on Safety of Medicines and the MHRA (medicines). Reminder: lamotrigine (Lamictal) and serious skin reactions. Curr Probl Pharmacovigilance 1996; 22: 12

    Google Scholar 

  124. Messenheimer J, Mullens EL, Giorgi L, et al. Safety review of adult clinical trial experience with lamotrigine. Drug Saf 1998; 18(4): 281–96

    Article  PubMed  CAS  Google Scholar 

  125. Beran RG, Gibson RJ. Aggressive behaviour in intellectually challenged patients with epilepsy treated with lamotrigine. Epilepsia 1998; 39(3): 280–2

    Article  PubMed  CAS  Google Scholar 

  126. Wong IC, Lhatoo SD. Adverse reactions to new anticonvulsant drugs. Drug Saf 2000; 23(1): 35–56

    Article  PubMed  CAS  Google Scholar 

  127. Aldenkamp AP, Arends J, Bootsman PR, et al. Randomized double-blind parallel-group study comparing cognitive effects of a low-dose lamotrigine with valproate and placebo in healthy volunteers. Epilepsia 2002; 43(1): 19–26

    Article  PubMed  CAS  Google Scholar 

  128. Smith D, Baker G, Davies G, et al. Outcomes of add-on treatment with lamotrigine in partial epilepsy. Epilepsia 1993; 34: 312–22

    Article  PubMed  CAS  Google Scholar 

  129. Guerrini R, Dravet C, Genton P, et al. Lamotrigine and seizure aggravation in severe myoclonic epilepsy. Epilepsia 1998; 39(5): 508–12

    Article  PubMed  CAS  Google Scholar 

  130. Biraben A, Allain H, Scarabin JM, et al. Exacerbation of juvenile myoclonic epilepsy with lamotrigine. Neurology 2000; 55(11): 1757–8

    Article  Google Scholar 

  131. Lynch AA, Lamberg N, Nocka K, et al. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc Natl Acad Sci 2004; 101(26): 9861–6

    Article  PubMed  CAS  Google Scholar 

  132. Shorvon SD, Lowenthal A, Janz D, et al. Multicenter double-blind, randomised, placebo-controlled trial of levetiracetam as add-on therapy in patients with refractory partial seizures. Epilepsia 2000; 41(9): 1179–86

    Article  PubMed  CAS  Google Scholar 

  133. Ramael S, Daoust A, Otoul C, et al. Levetiracetam intravenous infusion: a randomised, placebo-controlled safety and pharma-cokinetic study. Epilepsia 2006; 47(7): 1128–35

    Article  PubMed  CAS  Google Scholar 

  134. Mula M, Trimble MR, Yuen AW, et al. Psychiatric adverse events during levetiracetam therapy. Neurology 2003; 61(5): 704–6

    Article  PubMed  CAS  Google Scholar 

  135. Brodtkorb E, Klees TM, Nakken KO, et al. Levetiracetam in adult patients with and without learning disability: focus on behavioural adverse effects. Epilepsy Behav 2004; 5(2): 231–5

    Article  PubMed  Google Scholar 

  136. Mula M, Trimble MR, Sander JW. Psychiatric adverse events in patients with epilepsy and learning disabilities taking levetiracetam. Scizure 2004; 13(1): 55–7

    Article  Google Scholar 

  137. Kossoff EH, Bergey GK, Freeman JM, et al. Levetiracetam psychosis in children with epilepsy. Epilepsia 2001; 42(12): 1611–3

    Article  PubMed  CAS  Google Scholar 

  138. Glauser TA, Pellock JM, Bebin EM, et al. Efficacy and safety of levetiracetam in children with partial seizures: an open label trial. Epilepsia 2002; 43(5): 518–24

    Article  PubMed  CAS  Google Scholar 

  139. Houtkooper MA, Lammertsma A, Meyer JWA. et al. Oxcarbazepine (GP 47.680): a possible alternative to carbamazepine. Epilepsia 1987; 28: 693–8

    Article  PubMed  CAS  Google Scholar 

  140. Dam M, Ekberg R, Løyning Y, et al. A double-blind study comparing oxcarbazepine and carbamazepine in patients with newly diagnosed, previously untreated epilepsy. Epilepsy Res 1989; 3: 70–6

    Article  PubMed  CAS  Google Scholar 

  141. Van Amelsvoort T, Bakshi R, Devaux CB, et al. Hyponatremia associated with carbamazepine and oxcarbazepine therapy: a review. Epilepsia 1994; 35: 181–8

    Article  PubMed  Google Scholar 

  142. Schmidt D, Elger CE. What is the evidence that oxcarbazepine and carbamazepine are distinctly different antiepileptic drugs? Epilepsy Behaviour 2004; 5(5): 627–35

    Article  Google Scholar 

  143. Gram L. Oxcarbazepine. In: Engel S, Pedley T, editors. Epilepsy: a comprehensive textbook. Philadelphia (PA): Lippincott-Raven, 1997: 1541–6

    Google Scholar 

  144. Muller M, Marson AG, Williamson PR. Oxcarbazepine versus phenytoin monotherapy for epilepsy (review). Cochrane Database Syst Rev 2006; (3): CD003615

  145. Gelisse P, Genton P, Kuate C, et al. Worsening of seizures by oxcarbazepine in juvenile idiopathic generalized epilepsies. Epilepsia 2004; 45: 282–6

    Article  Google Scholar 

  146. Taylor CP, Vartanian MG. Profile of anticonvulsant activity of CI-1008 (pregabalin) in animal models. Epilepsia 1997; 38Suppl. 8: 8

    Google Scholar 

  147. Arroyo S, Anhut H, Kugler AR, et al. Pregabalin add-on treatment: a randomised, double-blind, placebo-controlled, dose-response study in adults with partial seizures. Epilepsia 2004; 45(1): 20–7

    Article  PubMed  CAS  Google Scholar 

  148. Elger CE, Brodie MJ, Anhut H, et al. Pregabalin add-on treatment in patients with partial seizures: a novel evaluation of flexible-dose and fixed-dose treatment in a double-blind, placebo-controlled study. Epilepsia 2005; 46(12): 1926–36

    Article  PubMed  CAS  Google Scholar 

  149. White SH. Clinical significance of animal seizure models and mechanism of action studies of potential antiepileptic drugs. Epilepsia 1997; 38(1): S9–17

    Article  PubMed  CAS  Google Scholar 

  150. Meldrum BS. Update on the mechanism of action of new antiepileptic drugs. Epilepsia 1996; 37(6): S4–11

    Article  PubMed  CAS  Google Scholar 

  151. Macdonald RL, Greenfield LJ. Mechanisms of action of new antiepileptic drugs. Curr Opin Neurol 1997; 10: 121–8

    Article  PubMed  CAS  Google Scholar 

  152. Crawford P, Meinardi H, Brown S, et al. Tiagabine: efficacy and safety in adjunctive treatment of partial seizures. Epilepsia 2001; 42(4): 531–8

    Article  PubMed  CAS  Google Scholar 

  153. Schachter SC. Tiagabine. Epilepsia 1999; 40 Suppl. 5: S17–22

    Article  PubMed  CAS  Google Scholar 

  154. Knake S, Hammer HM, Schomburg U, et al. Tiagabine-induced absence status in idiopathic generalised epilepsy. Scizure 1999; 8(5): 314–7

    Article  CAS  Google Scholar 

  155. Koepp MJ, Edwards M, Collins JF, et al. Status epilepticus and tiagabine therapy revisited. Epilepsia 2005; 46(10): 1625–32

    Article  PubMed  CAS  Google Scholar 

  156. Fulton JA, Hoffman RS, Nelson LSN. Tiagabine overdose: a case of status epilepticus in a non-epileptic patient. Clin Toxicol 2005; 43(7): 869–71

    Article  Google Scholar 

  157. Wolanczyk T, Grabowska-Grzyb A. Transient dystonias in three patients treated with tiagabine. Epilepsia 2001; 42(7): 944–6

    Article  PubMed  CAS  Google Scholar 

  158. Sorri I, Kalviainen R, Mantyjarvi M. Color vision and contrast sensitivity in epilepsy patients treated with initial tiagabine monotherapy. Epilepsy Res 2005; 67(3): 101–7

    Article  PubMed  CAS  Google Scholar 

  159. White HS, Brown SD, Woodhead JH, et al. Topiramate enhances GABA-mediated chloride flux and GABA-evoked chloride currents in murine brain neurons and increases seizure threshold. Epilepsy Res 1997; 23: 167–79

    Article  Google Scholar 

  160. Glauser TA. Topiramate. Epilepsia 1999; 40Suppl. 5: 71–80

    Article  Google Scholar 

  161. Privitera MD. Topiramate: a new antiepileptic drug. Ann Pharmacother 1997; 31: 1164–73

    PubMed  CAS  Google Scholar 

  162. Reife RA, Lim P, Pledger G. Topiramate: side effect profile in double-blind studies. Epilepsia 1995; 36Suppl. 4: 34

    Google Scholar 

  163. Lee S, Sziklas V, Andermann F, et al. The effects of adjunctive topiramate on cognitive function in patients with epilepsy. Epilepsia 2003; 44(3): 339–47

    Article  PubMed  CAS  Google Scholar 

  164. Lee HW, Jung DK, Suh CK, et al. Cognitive effects of low-dose topiramate monotherpay in epilepsy patients: a one-year follow up. Epilepsy Behav 2006; 8(4): 736–41

    Article  PubMed  Google Scholar 

  165. Sander JWAS. Practical aspects of the use of topiramate in patients with epilepsy. Epilepsia 1997; 38 Suppl. 1: S56–8

    Article  PubMed  Google Scholar 

  166. Gogol LM, Morris HH. The office use of topiramate:a review of seizure control and side effect profile [abstract]. Epilepsia 1998; 39Suppl. 6: 55

    Google Scholar 

  167. Meador KJ, Loring DW, Vahle VJ, et al. Cognitive and behavioural effects of lamotrigine and topiramate in healthy volunteers. Neurology 2005; 64: 2108–14

    Article  PubMed  CAS  Google Scholar 

  168. Majkowski J, Neto W, Wapenaar R, et al. Time course of adverse events in patients with localisation-related epilepsy receiving topiramate added to carbamazepine. Epilepsia 2005; 46(5): 648–53

    Article  PubMed  CAS  Google Scholar 

  169. Traub SJ, Howland MA, Hoffman RS, et al. Acute topiramate toxicity. J Toxicol Clin Toxicol 2003; 41(7): 987–90

    Article  PubMed  CAS  Google Scholar 

  170. Fakhoury T, Murray L, Seger D, et al. Topiramate overdose: clinical and laboratory features. Epilepsy Behav 2002; 3: 185–9

    Article  PubMed  Google Scholar 

  171. Chiron C, Dulac O, Beaumont D. Therapeutic trial of vigabatrin in refractory infantile spasms. J Child Neurol 1991; 6 Suppl. 2: S52–9

    Google Scholar 

  172. Chiron C, Dumas C, Jambaque I, et al. Randomized trial comparing vigabatrin and hydrocortisone in infantile spasms due to tuberous sclerosis. Epilepsy Res 1997; 26: 389–95

    Article  PubMed  CAS  Google Scholar 

  173. Livingston JH, Beaumont D, Arzimanoglou A, et al. Vigabatrin in the treatment of epilepsy in children. Br J Clin Pharmacol 1989; 27 Suppl. 1: S109–12

    Article  Google Scholar 

  174. Dulac O, Chiron C, Luna D, et al. Vigabatrin in childhood epilepsy. J Child Neurol 1991; 6 Suppl. 2: S30–7

    Google Scholar 

  175. Gibbs J, Appleton RE, Rosenbloom L. Vigabatrin in intractable childhood epilepsy: a retrospective study. Paediatr Neurol 1992; 8: 338–40

    Article  CAS  Google Scholar 

  176. Appleton RE. The role of vigabatrin in the management of infantile epileptic syndromes. Neurology 1993; 43: 21–3

    Article  Google Scholar 

  177. Curatolo P. Vigabatrin for refractory partial seizures in children with tuberous sclerosis [letter]. Neuropediatrics 1994; 25: 55

    Article  PubMed  CAS  Google Scholar 

  178. Constable S, Pirmohamed M. Drugs and the retina. Expert Opin Drug Saf 2004; 3: 249–59

    Article  PubMed  CAS  Google Scholar 

  179. van der Torren K, Graniewski-Wijnands HS, Polak BC. Visual field and electrophysiological abnormalities due to vigabatrin. Doc Ophthalmol 2002; 104(2): 181–8

    Article  PubMed  Google Scholar 

  180. Besch D, Kurtenbach A, Apfelstedt-Sylla E, et al. Visual field constriction and electrophysiological changes associated with vigabatrin. Doc Ophthalmol 2002; 104(2): 151–70

    Article  PubMed  Google Scholar 

  181. Krauss GL, Johnson MA, Mitler NR. Vigabatrin-associated retinal cone system dysfunction: electroretinogram and ophthalmologic findings. Neurol 1998; 50: 614–8

    Article  CAS  Google Scholar 

  182. Tassinari CA, Michelucci R, Ambrosetto G, et al. Double-blind study of vigabatrin in the treatment of drug-resistant epilepsy. Arch Neurol 1987; 44: 907–10

    Article  PubMed  CAS  Google Scholar 

  183. Browne TR, Mattson RH, Penry JK. Vigabatrin for refractory complex partial seizures: multicenter, single-blind study with long-term follow-up. Neurology 1987; 37: 184–9

    Article  PubMed  CAS  Google Scholar 

  184. Remy C, Beaumont D. Efficacy and safety of vigabatrin in the long-term treatment of refractory epilepsy. Br J Clin Pharmacol 1989; 27 Suppl. 1: S125–9

    Article  Google Scholar 

  185. Mumford J, Cannon DJ. Vigabatrin. Epilepsia 1994; 35 Suppl. 5: S25–8

    Article  PubMed  Google Scholar 

  186. Mumford J, Dam M. Meta-analysis of European placebo-controlled studies of vigabatrin in drug resistant epilepsy. Br J Clin Pharmacol 1989; 27: S101–7

    Article  Google Scholar 

  187. Shovorn SD, Stefan H, Overview of the safety of newer antiepileptic drugs. Epilepsia 1997; 38(1): S45–51

    Article  Google Scholar 

  188. Guberman A. Vigabatrin. Can J Neurol Sci 1996; 23(4): S13–7

    PubMed  CAS  Google Scholar 

  189. Ferrie CD, Robinson MK, Panayiotopolous CP. Psychotic and severe behavioural reactions with vigabatrin: a review. Acta Neurologica Scandinavica 1996; 93: 1–8

    Article  PubMed  CAS  Google Scholar 

  190. Tanganelli P, Regesta G. Vigabatrin vs carbamazepine mono-therapy in newly diagnosed epilepsy: a randomised response conditional crossover study. Epilepsy Res 1996; 25: 257–62

    Article  PubMed  CAS  Google Scholar 

  191. Kaelviaeinen R, Aeikiae M, Saukkonen AM, et al. Vigabatrin vs carbamazepine in patients with newly diagnosed epilepsy: a randomised, controlled study. Arch Neurol 1995; 52: 989–96

    Article  Google Scholar 

  192. Robinson MK, Richens A, Oxley R. Vigabatrin and behaviour disturbances [letter]. Lancet 1990; 336: 504

    Article  PubMed  CAS  Google Scholar 

  193. Ring HA, Reynolds EH. Vigabatrin and psychosis [letter]. Lancet 1990; 335: 970

    Article  PubMed  CAS  Google Scholar 

  194. Sander JW, Hart YM, Trimble MR, et al. Vigabatrin and psychosis. J Neurol Neurosurg Psychiatry 1991; 54: 435–9

    Article  PubMed  CAS  Google Scholar 

  195. Sander JW, Hart YM. Vigabatrin and behaviour disturbances [letter]. Lancet 1990; 335(8680): 57

    Article  PubMed  CAS  Google Scholar 

  196. Vigabatrin and behaviour disturbances [letter]. Lancet 1990; 335(8689): 605

  197. Brodie MJ, McKee PJW. Vigabatrin and psychosis [letter]. Lancet 1990; 335: 1279

    Article  PubMed  CAS  Google Scholar 

  198. French JA, Mosier M, Walker S, et al. A double-blind placebo-controlled study of vigabatrin three g/day in patients with uncontrolled partial complex seizures. Neurology 1996; 46: 54–61

    Article  PubMed  CAS  Google Scholar 

  199. Wong ICK, Tavernor S, Tavernor R. Psychiatric adverse effects of anticonvulsant drugs: incidence and therapeutic implications. CNS Drugs 1997; 8(6): 492–509

    Article  CAS  Google Scholar 

  200. Chadwick DW, Marson AG. Zonisamide add-on for drug-resistant epilepsy (review). Cochrane Database Syst Rev 2005; (4): CD001416

  201. Wilder BJ, Ramsay RE, Guterman A, et al. A double-blind multicenter placebo-controlled study of the efficacy and safety of zonisamide in the treatment of complex partial seizures in medically refractory patients. Osaka: Internal report of Dainippon Pharmaceutical Co. Ltd, 1986

    Google Scholar 

  202. Schmidt D, Jacob R, Loiseau P, et al. Zonisamide for add-on treatment of refractory partial epilepsy: a European double-blind trial. Epilepsy Res 1993; 15: 67–73

    Article  PubMed  CAS  Google Scholar 

  203. Zaccara G, Messori A, Cincotta M, et al. Comparison of the efficacy and tolerability of new antiepileptic drugs: what can we learn from long-term studies? Acta Neurol Scand 2006; 114(3): 157–68

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Dr S.D. Lhatoo has acted as a consultant for and received educational and travel grants from Janssen Cilag, Eisai Ltd, UCB Pharmaceuticals and Glaxo Wellcome. Dr G.M. Kennedy has no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samden D. Lhatoo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kennedy, G.M., Lhatoo, S.D. CNS Adverse Events Associated with Antiepileptic Drugs. CNS Drugs 22, 739–760 (2008). https://doi.org/10.2165/00023210-200822090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200822090-00003

Keywords

Navigation