Skip to main content
Log in

Immunological Aspects of Ischaemic Stroke

Therapeutic Implications

  • Review Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

There is increasing evidence that inflammatory processes play a central role in atherosclerosis and in secondary infarct growth after focal cerebral ischaemia. Focal cerebral ischaemia is often the result of arterio-arterial thromboembolism arising from plaques in the internal carotid artery (ICA). In the ICA, the extent of inflammatory infiltration by T cells and macrophages, and the expression of matrix metalloproteinase-9 in high grade stenoses, correlate with clinical features of plaque destabilisation.

Within the CNS, focal ischaemia induces a strong inflammatory response, with recruitment of granulocytes, T cells and macrophages which is facilitated by early upregulation of cell adhesion molecules. In experimental animals, anti-adhesion strategies have led to a dramatic reduction of stroke volumes; however, these strategies have failed to be effective in humans.

‘Immunological’ transcription factors and inducible nitric oxide synthase are upregulated in focal ischaemia and contribute to secondary infarct growth between 24 and 72 hours after the initial insult. The cytokines interleukin-1β and tumour necrosis factor-α are induced prior to inflammation. Functionally, these cytokines exert both neurotoxic and neuroprotective effects after cerebral ischaemia.

At present, immunological strategies targeted at a single immunomodulator for the treatment of stroke are hampered by an incomplete understanding of the complex cellular and molecular interactions that lead to divergent functional effects of inflammatory cells and immunological mediators after focal ischaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ross R. Atherosclerois — an inflammatory disease. N Engl J Med 1999; 340: 115–26

    Article  PubMed  CAS  Google Scholar 

  2. Stemme S, Faber B, Holm J et al. T lymphocytes from human atherosclerotic plaques recognize oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1995; 92: 3893–7

    Article  PubMed  CAS  Google Scholar 

  3. Zhou X, Stemme S, Hansson GK. Evidence for a local immune response in atherosclerosis: CD4+ T cells infiltrate lesions of apolipoprotein-E-deficient mice. Am J Pathol 1996; 149: 359–66

    PubMed  CAS  Google Scholar 

  4. North American Symptomatic Carotid Endarterectomy Trial Collaborators. Beneficial effect of carotid endarterectomy in symptomatic patients with high-grade carotid stenosis. N Engl J Med 1991; 325: 445–53

    Article  Google Scholar 

  5. European Carotid Surgery Trialists Collaborative Group. Randomised trial of endarterectomy for recently symptomatic carotid stenosis: final results of the MRC European Carotid Surgery Trial (ECST). Lancet 1998; 351: 1379–87

    Article  Google Scholar 

  6. CASANOVA Study Group. Carotid surgery versus medical treatment in asymptomatic carotid stenosis. Stroke 1991; 22: 1229–35

    Article  Google Scholar 

  7. Hobson RW, Weiss DG, Fields WS, et al. Efficacy of carotid endarterectomy for asymptomatic carotid artery stenosis. N Engl J Med 1993; 328: 221–7

    Article  PubMed  Google Scholar 

  8. Siebler M, Sitzer M, Rose G, et al. Silent cerebral embolism caused by neurologically symptomatic high-grade carotid stenosis: event rates before and after carotid endarterectomy. Brain 1993; 116: 1005–15

    Article  PubMed  Google Scholar 

  9. Siebler M, Kleinschmidt A, Sitzer M et al. Cerebral microembolism in symptomatic and asymptomatic high-grade internal carotid artery stenosis. Neurology 1994; 44: 615–8

    Article  PubMed  CAS  Google Scholar 

  10. Jander S, Sitzer M, Schumann R, et al. Inflammation in high-grade carotid stenosis: a possible role for macrophages and T cells in plaque destabilization. Stroke 1998; 29: 1625–30

    Article  PubMed  CAS  Google Scholar 

  11. Bassiouny HS, Sakaguchi Y, Mikucki SA, et al. Juxtalumenal location of plaque necrosis and neoformation in symptomatic carotid stenosis. J Vasc Surg 1997; 26: 585–94

    Article  PubMed  CAS  Google Scholar 

  12. DeGraba TJ, Siren AL, Penix L et al. Increased endothelial expression of intercellular adhesion molecule-1 in symptomatic versus asymptomatic human carotid atherosclerotic plaque. Stroke 1998; 29: 1405–10

    Article  Google Scholar 

  13. Del Prete G, De Carli M, Lammel RM, et al. Th1 and Th2 T-helper cells exert opposite regulatory effects on procoagulant activity and tissue factor production by human mono cytes. Blood 1995; 86: 250–7

    PubMed  Google Scholar 

  14. Loftus IM, Naylor AR, Goodall S, et al. Increased matrix metalloproteinase-9 activity in unstable carotid plaques: a potential role in acute plaque disruption. Stroke 2000; 31: 40–7

    Article  PubMed  CAS  Google Scholar 

  15. Tremoli E, Camera M, Toschi V, et al. Tissue factor in atherosclerosis. Atherosclerosis 1999; 144: 273–83

    Article  PubMed  CAS  Google Scholar 

  16. Mach F, Schonbeck U, Bonnefoy JY, et al. Activation of monocyte/macrophage functions related to acute atheroma complication by ligation of CD40: induction of collagenase, stromelysin, and tissue factor. Circulation 1997; 96: 396–9

    Article  PubMed  CAS  Google Scholar 

  17. Lutgens E, Gorelik L, Daemen MJ, et al. Requirement for CD154 in the progression of atherosclerosis. Nat Med 1999; 5: 1313–6

    Article  PubMed  CAS  Google Scholar 

  18. Badimon JJ, Lettino M, Toschi V, et al. Local inhibition of tissue factor reduces the thrombogenicity of disrupted human atherosclerotic plaques: effects of tissue factor pathway inhibitor on plaque thrombogenicity under flow conditions. Circulation 1999; 99: 1780–7

    Article  PubMed  CAS  Google Scholar 

  19. Antiplatelet Trialists’ Collaboration. Collaborative overview of randomised trials of antiplatelet therapy. I: Prevention of death, myocardial infarction, and stroke by prolonged anti-platelet therapy in various categories of patients. BMJ 1994; 308: 83–108

    Google Scholar 

  20. Taylor DW, Barnett HJM, Haynes RB, et al. Low-dose and high-dose acetylsalicylic acid for patients undergoing carotid enartercetomy: a randomised controlled trial. Lancet 1999; 353: 2179–84

    Article  PubMed  CAS  Google Scholar 

  21. Ridker PM, Hennekens CH, Buring JE, et al. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. N Engl J Med 1999; 342: 836–43

    Article  Google Scholar 

  22. Blauw GJ, Lagaay M, Smelt AHM, et al. Stroke, statins and cholesterol. Stroke 1997; 28: 946–50

    Article  PubMed  CAS  Google Scholar 

  23. McPherson R, Tsoukas C, Baines MG. Effect of lovastatin on natural killer cell function and other immunological parameters in man. J Clin Immunol 1993; 13: 439–44

    Article  PubMed  CAS  Google Scholar 

  24. Pahan K, Sheikh FG, Namboodiri AMS, et al. Lovastatin and phenylacetate inhibit the induction of nitric oxide synthase and cytokines in rat primary astrocytes, microglia, and macrophages. J Clin Invest 1997; 100: 2671–9

    Article  PubMed  CAS  Google Scholar 

  25. Curci JA, Petrinec D, Liao S, et al. Pharmacologic suppression of experimental abdominal aortic aneurysms: a comparison of doxycycline and four chemically modified tetracyclines. J Vasc Surg 1998; 28: 1082–93

    Article  PubMed  CAS  Google Scholar 

  26. Koroshetz WJ, Moskowitz MA. Emerging treatments for stroke in humans. Trends Pharmacol Sci 1996; 17: 227–33

    Article  PubMed  CAS  Google Scholar 

  27. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 1999; 22: 391–7

    Article  PubMed  CAS  Google Scholar 

  28. Manjo G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am JPathol 1995; 146: 3–15

    Google Scholar 

  29. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. Science 1995; 267: 1456–62

    Article  PubMed  CAS  Google Scholar 

  30. Bredesen DE. Neural apoptosis. Ann Neurol 1995; 38: 839–51

    Article  PubMed  CAS  Google Scholar 

  31. Li Y, Sharov VG, Jiang N, et al. Ultrastructural and light microscopic evidence of apoptosis after middle cerebral artery occlusion in the rat. Am J Pathol 1995; 146: 1045–51

    PubMed  CAS  Google Scholar 

  32. Chen J, Graham SH, Chan PH, et al. Bcl-2 is expressed in neurons that survive focal ischemia in the rat. Neuroreport 1995; 26: 394–8

    Article  Google Scholar 

  33. Krajewski S, Mai JK, Krajewska M, et al. Upregulation of Bax protein levels in neurons following cerebral ischemia. J Neurosci 1995; 15: 6364–76

    PubMed  CAS  Google Scholar 

  34. Isenmann S, Stoll G, Schroeter M, et al. Differential regulation of bax, bcl-2, and bcl-x proteins in focal cortical ischemia in the rat. Brain Pathol 1998; 8: 49–63

    Article  PubMed  CAS  Google Scholar 

  35. Martinou JC, Dubois-Dauphin M, Staple JK, et al. Overexpression of bcl-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 1994; 13: 1017–30

    Article  PubMed  CAS  Google Scholar 

  36. McAuley MA. Rodent models of focal ischemia. Cerebrovasc Brain Metab Rev 1995; 7: 153–80

    PubMed  CAS  Google Scholar 

  37. Garcia JH, Yoshida Y, Chen H, et al. Progression from ischemic injury to infarct following middle cerebral artery occlusion in the rat. Am J Pathol 1993; 142: 623–35

    PubMed  CAS  Google Scholar 

  38. Iadecola C, Salkowski CA, Zhang F, et al. The transcription factor interferon regulatory factor 1 is expressed after cerebral ischemia and contributes to ischemic brain injury. J Exp Med 1999; 189: 719–27

    Article  PubMed  CAS  Google Scholar 

  39. Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 1989; 20: 84–91

    Article  PubMed  CAS  Google Scholar 

  40. Memezawa H, Smith ML, Siesjö BK. Penumbral tissues salvaged by reperfusion following middle cerebral artery occlusion in rats. Stroke 1992; 23: 552–9

    Article  PubMed  CAS  Google Scholar 

  41. Hossmann KA. Viability thresholds and the penumbra of focal ischemia. Ann Neurol 1995; 36: 557–65

    Article  Google Scholar 

  42. Chen H, Chopp M, Schultz L, et al. Sequential neuronal and astrocytic changes after transient middle cerebral artery occlusion in the rat. J Neurol Sci 1993; 118: 109–16

    Article  PubMed  CAS  Google Scholar 

  43. Endres M, Namura S, Shimizu-Sasamata M, et al. Attenuation of delayed neuronal death after mild focal ischemia in mice by inhibition of the caspase family. J Cereb Blood Flow Metab 1998; 18: 238–47

    Article  PubMed  CAS  Google Scholar 

  44. Kochanek PM, Hallenbeck JM. Polymorphonuclear leukocytes and monocytes/macrophages in the pathogenesis of cerebral ischemia and stroke. Stroke 1992; 23: 1367–79

    Article  PubMed  CAS  Google Scholar 

  45. Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol 1998; 56: 149–61

    Article  PubMed  CAS  Google Scholar 

  46. Garcia JH, Liu KF, Yoshida Y, et al. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 1994; 144: 188–99

    PubMed  CAS  Google Scholar 

  47. Linsberg PJ, Carpen O, Paetau A, et al. Endothelial ICAM-1 expression associated with inflammatory cell response in human ischemic stroke. Circulation 1996; 94: 939–45

    Article  Google Scholar 

  48. Yamasaki Y, Matsuo Y, Matsuura N, et al. Transient increase of cytokine-induced neutrophil chemoattractant, a member of the interleukin-8 family, in ischemic brain areas after focal ischemia in rats. Stroke 1995; 26: 318–22

    Article  PubMed  CAS  Google Scholar 

  49. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996; 19: 312–8

    Article  PubMed  CAS  Google Scholar 

  50. Stoll G, Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol 1999; 58: 233–47

    Article  PubMed  CAS  Google Scholar 

  51. Kim JS, Gautam SC, Chopp M, et al. Expression of monocyte chemoattractant protein-1 and macrophage inflammatory protein-1 after focal cerebral ischemia in the rat. J Neuroimmunol 1995; 56: 127–34

    Article  PubMed  CAS  Google Scholar 

  52. Clark RK, Lee EV, White RF, et al. Reperfusion following focal stroke hastens inflammation and resolution of ischemic injured tissue. Brain Res Bull 1994; 35: 387–92

    Article  PubMed  CAS  Google Scholar 

  53. Schroeter M, Jander S, Witte OW, et al. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion. J Neuroimmunol 1994; 55: 195–203

    Article  PubMed  CAS  Google Scholar 

  54. Jander S, Kraemer M, Schroeter M, et al. Lymphocytic infiltration and expression of intercellular adhesion molecule-1 in photochemically induced ischemia of the rat cortex. J Cereb Blood Flow Metab 1995; 15: 42–51

    Article  PubMed  CAS  Google Scholar 

  55. Schroeter M, Jander S, Huitinga I, et al. Phagocytic response in photochemically induced infarction of the rat cerebral cortex: the role of resident microglia. Stroke 1997; 28: 382–6

    Article  PubMed  CAS  Google Scholar 

  56. Schroeter M, Jander S, Witte OW, et al. Heterogeneity of the microglial response in photochemically induced focal ischemia of the rat cerebral cortex. Neuroscience 1999; 89: 1367–77

    Article  PubMed  CAS  Google Scholar 

  57. Jander S, Schroeter M, D’Urso D, et al. Focal cerebral ischemia of the rat brain elicits an unusual inflammatory response: early appearance of CD8+ macrophages/microglia. Eur J Neurosci 1998; 10: 680–8

    Article  PubMed  CAS  Google Scholar 

  58. Perry VH, Gordon S. Modulation of CD4 antigen on marophages and microglia in rat brain. J Exp Med 1987; 166: 1138–43

    Article  PubMed  CAS  Google Scholar 

  59. Hirji N. Lin TJ, Bissonnette E, et al. Mechanisms of macrophage stimulation through CD8: macrophage CD8 alpha and CD8 beta induce nitric oxide production and associate killing of the parasite Leishmania major. J Immunol 1998; 160: 6004–11

    CAS  Google Scholar 

  60. Lehrmann E, Christensen T, Zimmer J, et al. Microglial and macrophage reactions mark progressive changes and define the penumbra in the rat neocortex and striatum after transient middle cerebral artery occlusion. J Comp Neurol 1997; 386: 461–76

    Article  PubMed  CAS  Google Scholar 

  61. Stoll G, Griffin JW, Trapp BD. Macrophage function during Wallerian degeneration of rat optic nerve: clearance of degenerating myelin and Ia expression. J Neurosci 1989; 9: 2327–35

    PubMed  CAS  Google Scholar 

  62. Wekerle H. Experimental autoimmune encephalomyelitis as a model of immune-mediated CNS disease. Curr Opin Neurobiol 1993; 3: 779–84

    Article  PubMed  CAS  Google Scholar 

  63. Becker KJ, Mc Carron RM, Ruetzler C, et al. Immunologic tolerance to myelin basic protein decreases stroke size after transient focal cerebral ischemia. Proc Natl Acad Sci U S A 1997; 94: 10873–8

    Article  PubMed  CAS  Google Scholar 

  64. Prehn JHM, Backhaup C, Krieglstein J. Transforming growth factor-beta 1 prevents glutamate neurotoxicity in rat neocortical cultures and protects mouse neocortex from ischemic injury in vivo. J Cereb Blood Flow Metab 1993; 13: 521–5

    Article  PubMed  CAS  Google Scholar 

  65. Gross CE, Bednar MM, Howard DB, et al. Transforming growth factor-beta 1 reduces infarct size after experimental cerebral ischemia in a rabbit model. Stroke 1993; 24; 558–62

    Article  PubMed  CAS  Google Scholar 

  66. McNeill H, Williams C, Guan J, et al. Neuronal rescue with transforming growth factor-beta 1 after hypoxic-ischemic brain injury. Neuroreport 1994; 14: 901–4

    Article  Google Scholar 

  67. Schwartz M, Moalem G, Leibowitz-Amit R, et al. Innate and adaptive immune responses can be beneficial for CNS repair. Trends Neurosci 1999; 22: 295–9

    Article  PubMed  CAS  Google Scholar 

  68. Kerschensteiner M, Gallmeier E, Behrens L, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 1999; 189: 865–70

    Article  PubMed  CAS  Google Scholar 

  69. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 1994; 76: 301–14

    Article  PubMed  CAS  Google Scholar 

  70. Clark WM, Zivin JA. Antileukocyte adhesion therapy: preclinical trials and combination therapy. Neurology 1997; 49 Suppl. 4: S32–S38

    Article  PubMed  CAS  Google Scholar 

  71. Okada Y, Copeland BR, Mori E, et al. P-selektin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 1994; 25: 202–11

    Article  PubMed  CAS  Google Scholar 

  72. Wang X, Feuerstein GZ. Induced expression of adhesion molecules following brain ischemia. J Neurotrauma 1995; 12: 825–32

    Article  PubMed  CAS  Google Scholar 

  73. Sobel RA, Mitchell ME, Fondren G. Intercellular adhesion molecule-1 in cellular immune reactions in the human central nervous system. Am J Pathol 1990; 136: 1309–16

    PubMed  CAS  Google Scholar 

  74. Zhang RL, Chopp M, Zalonga C, et al. The temporal profiles of ICAM-1 protein and mRNA expression after transient MCA occlusion in the rat. Brain Res. 1995; 682: 182–8

    Article  PubMed  CAS  Google Scholar 

  75. Jander S, Pohl J, Gillen C, et al. Vascular cell adhesion molecule-1 mRNA is expressed in immune-mediated and ischemic injury of the rat nervous system. J Neuroimmunol 1996; 70: 75–80

    Article  PubMed  CAS  Google Scholar 

  76. Chen H, Chopp M, Zhang RL, et al. Anti CD11b monoclonal antibody reduces ischemic cell damage after transient focal cerebral ischemia in rat. Ann Neurol 1994; 35: 458–63

    Article  PubMed  Google Scholar 

  77. Chopp M, Zhang RL, Chen H, et al. Postischemic administration of an anti-Mac-1 antibody reduces cell damage after transient middle cerebral artery occlusion in rats. Stroke 1994; 25: 869–76

    Article  PubMed  CAS  Google Scholar 

  78. Zhang ZG, Chopp M, Tang WX, et al. Postischemic treatment (2–4h) with anti CD11b and anti-CD18 monoclonal antibodies are neuroprotective after transient (2h) focal cerebral ischemia in the rat. Brain Res 1995; 698: 79–85

    Article  PubMed  CAS  Google Scholar 

  79. Chopp M, Li Y, Jiang N, et al. Antibodies against adhesion molecules reduce apoptosis after middle cerebral artery occlusion in rat brain. J Cereb Blood Flow Metab 1996; 16: 578–84

    Article  PubMed  CAS  Google Scholar 

  80. Jiang N, Moyle M, Soule HR, et al. Neutrophile inhibitory factor is neuroprotective after focal ischemia in rats. Ann Neurol 1995; 38: 935–42

    Article  PubMed  CAS  Google Scholar 

  81. Clark WM, Lauten JD, Lessov N, et al. The influence of anti-adhesion therapies on leukocyte accumulation in central nervous system ischemia in rats. J Mol Neurosci 1995; 6: 43–50

    Article  PubMed  CAS  Google Scholar 

  82. Zhang RL, Chopp M, Li Y, et al. Anti-ICAM-1 antibody reduces ischemic cell damage after transient but not permanent MCA occlusion in the Wistar rat. Stroke 1995; 26: 1438–43

    Article  PubMed  CAS  Google Scholar 

  83. Connolly ES, Winfree CJ, Springer TA, et al. Cerebral protection in homozygous null ICAM-1 mice after middle cerebral artery occlusion: role of neutrophil adhesion in the pathogenesis of stroke. J Clin Invest 1996; 97: 209–16

    Article  PubMed  CAS  Google Scholar 

  84. Soriano, SG, Lipton SA, Wang YF, et al. Intercellular adhesion molecule-1-deficient mice are less susceptible to cerebral ischemia-reperfusion injury. Ann Neurol 1996; 39: 618–24

    Article  PubMed  CAS  Google Scholar 

  85. Garcia JH, Liu KF, Bree MP. Effects of CD11b/18 monoclonal antibody on rats with permanent cerebral artery occlusion. Am J Pathol 1996; 148: 241–8

    PubMed  CAS  Google Scholar 

  86. Arai K, Lee F, Miyajima A, et al. Cytokines: coordinators of immune and inflammatory responses. Annu Rev Biochem 1990; 59: 783–836

    Article  PubMed  CAS  Google Scholar 

  87. Merril JE, Benveniste EN. Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 1996; 19: 331–6

    Article  Google Scholar 

  88. Stoll G, Jander S, Schroeter M. Cytokines in CNS disorders: neurotoxicity versus neuroprotection. J Neural Transm 2000; 59 Suppl. : 81–9

    CAS  Google Scholar 

  89. Nguyen H, Hiscott J, Pitha PM. The growing family of interferon regulatory factors. Cytokine Growth Factor Rev 1997; 8: 293–312

    Article  PubMed  CAS  Google Scholar 

  90. Baeuerle P, Henkel T. Function and activation of NF-κB in the immune system. Annu Rev Immunol 1994; 12: 141–79

    Article  PubMed  CAS  Google Scholar 

  91. Kaltschmidt C, Kaltschmidt B, Baeuerle PA. Stimulation of ionotropic glutamate receptors activates transcription factor NF-κB in primary neurons. Proc Natl Acad Sci U S A 1995; 92: 9618–22

    Article  PubMed  CAS  Google Scholar 

  92. Schneider A, Martin-Villalba A, Weih F, et al. NF-κB is activated and promotes cell death in focal cerebral ischemia. Nat Med 1999; 5: 554–9

    Article  PubMed  CAS  Google Scholar 

  93. Mattson MP, Culmsee C, Yu Z, et al. Roles of nuclear factor kappaB in neuronal survival and plasticity. J Neurochem 2000; 74: 443–56

    Article  PubMed  CAS  Google Scholar 

  94. Liu T, Mc Donnell PC, Young PR, et al. Interleukin-1β mRNA expression in ischemic rat cortex. Stroke 1993; 24: 1746–51

    Article  PubMed  CAS  Google Scholar 

  95. Buttini M, Sauter A, Boddeke HW. Induction of interleukin-1 beta mRNA after focal cerebral ischemia in the rat. Brain Res 1994; 23: 126–34

    Article  CAS  Google Scholar 

  96. Wang X, Barone FC, Aiyar NV, et al. Interleukin-1 receptor and receptor antagonist gene expression after focal stroke in rats. Stroke 1997; 28: 155–61

    Article  PubMed  CAS  Google Scholar 

  97. Zhang ZG, Chopp M, Goussev A. Cerebral vessels express interleukin 1 beta after focal ischemia. Brain Res 1998; 784: 210–7

    Article  PubMed  CAS  Google Scholar 

  98. Davies CA, Loddick SA, Toulmond S, et al. The progression and topographic distribution of interleukin-1 beta expression after permanent middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1999; 19: 87–98

    Article  PubMed  CAS  Google Scholar 

  99. Touzani O, Boutin H, Chuquet J, et al. Potential mechanisms of interleukin-1 involvement in cerebral ischaemia. J Neuroimmunol 1999; 100: 203–15

    Article  PubMed  CAS  Google Scholar 

  100. Yamasaki Y, Matsuura N, Shozuhara H, et al. Interleukin-1 as a pathogenic mediator of ischemic brain damage in rats. Stroke 1995; 26: 676–80

    Article  PubMed  CAS  Google Scholar 

  101. Stroemer RP, Rothwell NJ. Exacerbation of ischemic brain damage by localized striatal injection of interleukin-1 beta in the rat. J Cereb Blood Flow Metab 1998; 18: 833–9

    Article  PubMed  CAS  Google Scholar 

  102. Relton JK, Rothwell NJ. Interleukin-1 receptor antagonist inhibits ischemic and excitotoxic neuronal damage in the rat. Brain Res Bull 1992; 29: 243–6

    Article  PubMed  CAS  Google Scholar 

  103. Garcia JH, Liu KF, Relton JK. Interleukin-1 receptor antagonist decreases the number of necrotic neurons in rats with middle cerebral artery occlusion. Am J Pathol 1995; 147: 1477–86

    PubMed  CAS  Google Scholar 

  104. Relton JK, Martin D, Thompson RC, et al. Peripheral administration of interleukin-1 receptor antagonist inhibits brain damage after focal ischemica in the rat. Exp Neurol 1996; 138: 206–13

    Article  PubMed  CAS  Google Scholar 

  105. Betz AL, Yang GY, Davidson BL. Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. J Cereb Blood Flow Metab 1995; 15: 547–51

    Article  PubMed  CAS  Google Scholar 

  106. Hara H, Friedlander RM, Gagliardini V, et al. Inhibition of ICE family proteases reduces ischemic and excitotoxic neuronal damage. Proc Natl Acad Sci U S A 1997; 94: 2007–12

    Article  PubMed  CAS  Google Scholar 

  107. Loddick SA, MacKenzie A, Rothwell NJ. An ICE inhibitor, z-VAD-DCB attenuates ischemic brain damage in the rat. NeuroReport 1996; 7: 1465–8

    Article  PubMed  CAS  Google Scholar 

  108. Friedlander RM, Gagliardini V, Hara H, et al. Expression of a dominant negative mutant of interleukin-1 beta converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawl and ischemic brain injury. J Exp Med 1997; 185: 933–40

    Article  PubMed  CAS  Google Scholar 

  109. Hara H, Fink K, Endres M, et al. Attentuation of transient focal cerebral ischemic injury in transgenic mice expressing a mutant ICE inhibitory protein. J Cereb Blood Flow Metab 1997; 17: 370–5

    Article  PubMed  CAS  Google Scholar 

  110. Jander S, Schroeter M, Stoll G. Role of NMD A receptor signaling in the regulation of inflammatory gene expression after focal brain ischemia. J Neuroimmunol. In press

  111. Schneider H, Pitossi F, Balschun D, et al. A neuromodulatory role of interleukin-1β in the hippocampus. Proc Natl Acad Sci U S A 1998; 95: 7778–83

    Article  PubMed  CAS  Google Scholar 

  112. Hagemann G, Redecker C, Neumann-Haefelin T, et al. Increased long-term potentiation in the surround of experimentally induced focal cortical infarction. Ann Neurol 1998; 44: 255–8

    Article  PubMed  CAS  Google Scholar 

  113. Yang GY, Mao Y, Zhou LF. Expression of the intercellular adhesion molecule-1 (ICAM-1) is reduced in permanent focal cerebral ischemic mouse brain using an adenoviral vector to induce overexpression of the interleukin-1 receptor antagonist. Mol Brain Res 1999; 65: 143–50

    Article  PubMed  CAS  Google Scholar 

  114. Liu T, Clark RK, McDonnell PC, et al. Tumor necrosis factor-α expression in ischemic neurons. Stroke 1994; 25: 1481–8

    Article  PubMed  CAS  Google Scholar 

  115. Arvin B, Neville LF, Barone FC, et al. The role of inflammation and cytokines in brain injury. Neurosci Biobehav Rev 1996; 20: 445–52

    Article  PubMed  CAS  Google Scholar 

  116. Barone FC, Arvin B, White RF, et al. Tumor necrosis factor-alpha. A mediator of focal ischemic brain injury. Stroke 1997; 28: 1233–44

    CAS  Google Scholar 

  117. Botchkina GI, Meistrell ME, Botchkina IL, et al. Expression of TNF and TNF receptors (p55 and p75) in the rat brain after focal cerebral ischemia. Mol Med 1997; 3: 765–81

    PubMed  CAS  Google Scholar 

  118. Fehsel K, Kolb-Bachofen V, Kolb H. Analysis of TNF-α-induced DNA strand breaks at the single cell level. Am J Pathol 1991; 139: 251–4

    PubMed  CAS  Google Scholar 

  119. Cheng B, Christakos S, Mattson MP. Tumor necrosis factors protect neurons against metabolic-excitotoxic insults and promote maintenance of calcium homeostasis. Neuron 1994; 12: 139–53

    Article  PubMed  CAS  Google Scholar 

  120. Bruce AJ, Boling W, Kindy MS, et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors. Nat Med 1996; 2: 788–94

    Article  PubMed  CAS  Google Scholar 

  121. Gary DS, Bruce-Keller AJ, Kindy MS, et al. Ischemic and excitotoxic brain injury is enhanced in mice lacking the p55 tumor necrosis factor receptor. J Cereb Blood Flow Metab 1998; 18: 1283–7

    Article  PubMed  CAS  Google Scholar 

  122. Scherbel U, Raghupathi R, Nakamura M, et al. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci U S A 1999; 96: 8721–6

    Article  PubMed  CAS  Google Scholar 

  123. Shohami E, Ginis I, Hallenbeck JM. Dual role of tumor necrosis factor alpha in brain injury. Cytokine Growth Factor Rev 1999; 10: 119–30

    Article  PubMed  CAS  Google Scholar 

  124. Meirstrell III ME, Botchkina GI, Wang H, et al. Tumor necrosis factor is a brain damaging cytokine in cerebral ischemia. Shock 1997; 8: 341–8

    Google Scholar 

  125. Lecker R, Shohami E, Abramsky O, et al. Daxanabinol, a novel neuroprotective drug in experimental focal cerebral ischemia. J Neurol Sci 1999; 162: 114–9

    Article  Google Scholar 

  126. Lavine SD, Hofman FM, Zlokovic BV. Circulating antibody against tumor necrosis factor alpha protects rat brain from reperfusion injury. J Cereb Blood Flow Metab 1998; 18: 52–8

    Article  PubMed  CAS  Google Scholar 

  127. Nawashiro H, Martin D, Hallenbeck JM. Inhibition of tumor necrosis factor and amelioration of brain infarction in mice. J Cereb Blood Flow Metab 1997; 17: 229–32

    Article  PubMed  CAS  Google Scholar 

  128. Iadecola C. Bright and dark sides of nitric oxide in ischemic brain injury. Trends Neurosci 1997; 20: 132–9

    Article  PubMed  CAS  Google Scholar 

  129. Iadecola C, Zhang F, Casey R, et al. Delayed reduction of ischemic brain injury and neurological deficits in mice lacking the inducible nitric oxide synthase gene. J Neurosci 1997; 17: 9157–64

    PubMed  CAS  Google Scholar 

  130. Nagafuji T, Sugiyama M, Muto A, et al. The neuroprotective effect of a potent and selective inhibitor of type I NOS (L-MIN) in a rat model of focal cerebral ischemia. Neuroreport 1995; 6(11): 1541–5

    Article  PubMed  CAS  Google Scholar 

  131. Yoshida T, Limmroth V, Irikura K, et al. The NOS inhibitor, 7-nitroindazole, decreases focal infarct volume but not the response to topical acetylcholine in pial vessels. J Cereb Blood Flow Metab 1994; 14: 924–9

    Article  PubMed  CAS  Google Scholar 

  132. Zhang ZG, Reif D, MacDonald J, et al. ARL 17477; a potent and selective neuronal NOS inhibitor decreases infarct volume fter transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 1996; 16: 599–604

    Article  PubMed  CAS  Google Scholar 

  133. Iadecola C, Zhang F, Casey R, et al. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 1996; 27: 1373–80

    Article  PubMed  CAS  Google Scholar 

  134. Zhang F, Casey RM, Ross ME, et al. Aminoguanidine ameliorates and L-arginine worsens brain damage from intraluminal middle cerebral artery occlusion. Stroke 1996; 27: 317–23

    Article  PubMed  CAS  Google Scholar 

  135. Kaste M. Current therapeutic options for brain ischemia. Neurology 1997; 49 Suppl. 4: S56–S59

    Article  PubMed  CAS  Google Scholar 

  136. Hunter AJ, Mackay KB, Rogers DC. To what extent have functional studies of ischemia in animals been useful in the assessment of potential neuroprotective agents? Trends Pharmacol Sci 1998; 19: 59–65

    Article  PubMed  CAS  Google Scholar 

  137. Sacchetti ML, Toni D, Fiorelli M, et al. The concept of combination therapy in acute ischemic stroke. Neurology 1997; 49 Suppl. 4: S70–4

    Article  PubMed  CAS  Google Scholar 

  138. National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333: 1581–7

    Article  Google Scholar 

  139. Hacke W, Kaste M, Fieschi C, et al. Randomised double-blind placebo-controlled trial of thrombolytic therapy with intravenous alteplase in acute ischaemic stroke (ECASS II). Lancet 1998; 352: 1245–51

    Article  PubMed  CAS  Google Scholar 

  140. Wang YF, Tsirka S, Strickland S, et al. Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nat Med 1998; 4: 228–31

    Article  PubMed  CAS  Google Scholar 

  141. Furlan M, Marchai G, Viader F, et al. Spontaneous neurological recovery after stroke and the fate of the ischemic penumbra. Ann Neurol 1996; 40: 216–26

    Article  PubMed  CAS  Google Scholar 

  142. Beaulieu C, de Crespigny A, Tong DC, et al. Longitudinal magnetic resonance imaging study of perfusion and diffusion in stroke: evolution of lesion volume and correlation with clinical outcome. Ann Neurol 1999; 46(4): 568–78

    Article  PubMed  CAS  Google Scholar 

  143. Schneider D, Berrouschot J, Brandt T, et al. Safety, pharmacokinetics and biological activity of enlimomab (anti-ICAM-1 antibody): an open-label, dose escalation study in patients hospitalized for acute stroke. Eur Neurol 1998; 40: 78–83

    Article  PubMed  CAS  Google Scholar 

  144. DeGraba TJ. The role of inflammation after acute stroke: utility of pursuing anti-adhesion molecule therapy. Neurology 1998; 51 Suppl. : S62–8

    Article  Google Scholar 

  145. Nudo RJ. Recovery after damage to motor cortical areas. Curr Opin Neurobiol 1999; 9: 740–7

    Article  PubMed  CAS  Google Scholar 

  146. Yrjanheikki J, Tikka T, Keinanen R, et al. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci U S A 1999; 96: 13496–500

    Article  PubMed  CAS  Google Scholar 

  147. Yrjanheikki J, Keinanen R, Pellikka M, et al. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 1998; 95: 15769-74

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ work cited in this review was supported by the Deutsche Forschungsgemeinschaft (SFB 194, B6). Dr Stoll holds a Hermann- and Lilly-Schilling professorship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Stoll.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stoll, G., Jander, S., Siebler, M. et al. Immunological Aspects of Ischaemic Stroke. Mol Diag Ther 14, 213–228 (2000). https://doi.org/10.2165/00023210-200014030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200014030-00004

Keywords

Navigation