Skip to main content
Log in

Impact of Generic Substitution of Anticonvulsants on the Treatment of Epilepsy

  • Review Articles
  • Drug Therapy
  • Published:
CNS Drugs Aims and scope Submit manuscript

Summary

Two anticonvulsants, namely phenytoin and carbamazepine, are susceptible to bioavailability problems as a result of very low water solubility and a low therapeutic ratio. In addition, phenytoin has nonlinear pharmacokinetics that exaggerate the effects of changes in the fraction of the dose absorbed. There are many published reports of bioinequivalence with different formulations of phenytoin, but fewer with carbamazepine. However, regulatory bodies have developed criteria that have to be satisfied before a new formulation is licensed, and it is therefore considered unlikely that important incidents of bioinequivalence following generic substitution will occur with these drugs in the future. As an overall source of variation in therapeutic response, bioinequivalence is negligible.

However, generic substitution may cause confusion and anxiety in patients’ minds when it occurs without prior warning. These effects can be allayed by information given by prescribing physicians, pharmacists and patient organisations.

Given a positive approach to the issues that arise, the financial benefits of generic prescribing can be enjoyed by patients and by healthcare systems. The pharmaceutical industry should be expected to meet the challenge of fair competition in trading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. For and against generic prescribing. Drug Ther Bull 1987; 25: 24

    Google Scholar 

  2. Prescribing costs. Drug Ther Bull 1993; 31: 87

    Google Scholar 

  3. Snell ES. Generic substitution. BMJ 1983; 286: 1216–7

    Article  PubMed  CAS  Google Scholar 

  4. Hayward JL, Fentiman IS. Generic prescribing [letter]. BMJ 1986; 292: 762

    Article  PubMed  CAS  Google Scholar 

  5. Dill WA, Kazenko A, Wolf LM, et al. Studies on 5,5-diphenyl-hydantoin (Dilantin) in animals and man. J Pharmacol Exp Ther 1956; 118: 270–9

    PubMed  CAS  Google Scholar 

  6. Martin CM, Rubin M, O’Malley WG, et al. Comparative physiological availability of brand and generic drugs in man: chloramphenicol, sulfisoxazole and dephenylhydantoin. Pharmacologist 1968; 10: 167

    Google Scholar 

  7. Glazko AJ. Diphenylhydantoin. In: Brodie BB, Haller WM, editors. Proceedings of the Conference on Bioavailability of Drugs. Basel: Karger, 1972: 163–77

    Google Scholar 

  8. Albert KS, Sakmar E, Hallmark MR, et al. Bioavailability of dephenylhydantoin. Clin Pharmacol Ther 1974; 16: 727–35

    PubMed  CAS  Google Scholar 

  9. Lund L. Clinical significance of generic inequivalence of three different pharmaceutical preparations of phenytoin. Eur J Clin Pharmacol 1974; 7: 119–24

    Article  PubMed  CAS  Google Scholar 

  10. Alvan G, Bertler A, Eeg-Olofsson O, et al. Biological availability — a comparison of three phenytoin preparations. Lakartidningen 1975; 72: 2621–3

    PubMed  CAS  Google Scholar 

  11. Appleton DB, Eadie MJ, Hooper WD, et al. Blood phenytoin concentrations produced by ingestion of three different phenytoin preparations. Med J Aust 1972; 59: 410–2

    Google Scholar 

  12. Sansom LH, O’Reilly WJ, Wiseman CW, et al. Plasma phenytoin levels produced by various phenytoin preparations. Med J Aust 1975; 2: 593–5

    PubMed  CAS  Google Scholar 

  13. Manson JI, Beal SM, Magarey A, et al. Bioavailability of phenytoin from various pharmaceutical preparations in children. Med J Aust 1975; 2: 590–2

    PubMed  CAS  Google Scholar 

  14. Partington MW, Reilly DM, Stewart JH, et al. Serum diphenylhydantoin levels following a change in drug brand. Can J Pharm Sci 1972; 9: 31–2

    Google Scholar 

  15. Rambeck B, Boenigk HE, Stenzel E. Bioavailability of three phenytoin preparations in healthy subjects and in epileptics. Eur J Clin Pharmacol 1977; 12: 285–90

    Article  PubMed  CAS  Google Scholar 

  16. Pentikainen PJ, Neuvonen PJ, Elfving SM. Bioavailability of four brands of phenytoin tablets. Eur J Clin Pharmacol 1975; 9: 213–8

    Article  PubMed  CAS  Google Scholar 

  17. Neuvonen PJ, Brady A, Lehtovaara R. Effect of increased bioavailability of phenytoin tablets on serum phenytoin concentration in epileptic outpatients. Br J Pharmacol 1979; 8: 37–41

    Article  CAS  Google Scholar 

  18. Neuvonen PJ. Bioavailability of phenytoin. Clin Pharmacokinet 1979; 4: 91–103

    Article  PubMed  CAS  Google Scholar 

  19. Tammisto P, Kauko K, Viukari M. Bioavailability of phenytoin. Lancet 1976; I: 254–5

    Article  Google Scholar 

  20. Takahashi K, Honda J, Takahashi H, et al. Diphenylhydantoin blood levels in childhood epilepsy: a comparison of two preparations with different particle size. Brain Dev (Tokyo) 1979; 11: 278–84

    Google Scholar 

  21. Tsai J-J, Lau M-L, Yang Y-HK, et al. Comparison on bioequivalence of four phenytoin preparations in patients with multiple-dose treatment. J Clin Pharmacol 1992; 32: 272–6

    PubMed  CAS  Google Scholar 

  22. Stewart MJ, Ballinger BR, Devlin EJ, et al. Bioavailability of phenytoin: a comparison of two preparations. Eur J Clin Pharmacol 1975; 9: 209–12

    Article  PubMed  CAS  Google Scholar 

  23. Chen S, Allen K, Oxley J, et al. Comparative bioavailability of phenytoin from generic formulations in the United Kingdom. Epilepsia 1982; 23: 149–52

    Article  PubMed  CAS  Google Scholar 

  24. Hirji MR, Measuria H, Kuhn S, et al. A comparative study of the bioavailability of five different phenytoin preparations. J Pharm Pharmacol 1985; 37: 570–2

    Article  PubMed  CAS  Google Scholar 

  25. Hodges S, Forsythe WI, Gillies D, et al. Bioavailability and dissolution of three phenytoin preparations for children. Dev Med Child Neurol 1986; 28: 708–12

    Article  PubMed  CAS  Google Scholar 

  26. Soryal I, Richens A. Bioavailability and dissolution of proprietary and generic formulations of phenytoin. J Neurol Neurosurg Psychiatry 1992; 55: 688–91

    Article  PubMed  CAS  Google Scholar 

  27. Mikati M, Bassett N, Schachter S. Double-blind randomised study comparing brand-name and generic phenytoin monotherapy. Epilepsia 1992; 33: 359–65

    Article  PubMed  CAS  Google Scholar 

  28. Tyrer JH, Eadie MJ, Sutherland JM, et al. Outbreak of anticonvulsant intoxication in an Australian city. BMJ 1970; 4: 271–3

    Article  PubMed  CAS  Google Scholar 

  29. Bochner R, Hooper WD, Tyrer JH, et al. Factors involved in an outbreak of phenytoin intoxication. J Neurol Sci 1972; 16: 481–7

    Article  PubMed  CAS  Google Scholar 

  30. Richens A, Dunlop A. Serum phenytoin levels in management of epilepsy. Lancet 1975; 2: 247–8

    Article  PubMed  CAS  Google Scholar 

  31. Richens A. Clinical pharmacology of phenytoin. Clin Pharmacokinet 1979; 4: 153–69

    Article  PubMed  CAS  Google Scholar 

  32. British national formulary. London: British Medical Association and Royal Pharmaceutical Society of Great Britain, 1996; No. 31: 206

  33. Nuwer MR, Browne TR, Dodson FE, et al. Generic substitutions for antiepileptic drugs. Neurology 1990; 40: 1647–51

    Article  PubMed  CAS  Google Scholar 

  34. Neuvonen PJ. Bioavailability and central side effects of different carbamazepine tablets. Int J Clin Pharmacol Ther Toxicol 1985; 23: 226–32

    PubMed  CAS  Google Scholar 

  35. Faigle JW, Feldman KF. Pharmacokinetic data of carbamazepine and its major metabolites in man. In: Schneider H, Janz D, Gardner-Thorpe C, et al., editors. Clinical pharmacology of antiepileptic drugs. Berlin: Springer-Verlag, 1975: 166–80

    Google Scholar 

  36. Levy RH, Pitlick WH, Troupin AS, et al. Pharmacokinetics of carbamazepine in normal man. Clin Pharmacol Ther 1975; 17: 657–68

    PubMed  CAS  Google Scholar 

  37. Kauko K, Tammisto P. Comparison of two generically equivalent carbamazepine preparations. Ann Clin Res 1974; 6 Suppl. 11: 21–5

    PubMed  Google Scholar 

  38. Pynnonen S, Mantyla R, Iisalo E. Bioavailability of four different pharmaceutical preparations of carbamazepine. Acta Pharmacol Toxicol 1978; 43: 306–10

    Article  CAS  Google Scholar 

  39. Anttila M, Kahela P, Panelius M, et al. Comparative bioavailability of two commercial preparations of carbamazepine tablets. Eur J Clin Pharmacol 1979; 15: 421–5

    Article  PubMed  CAS  Google Scholar 

  40. Morselli PL, Monaco F, Gema M, et al. Bioavailability of two carbamazepine preparations during chronic administration of epileptic patients. Epilepsia 1975; 16: 759–64

    Article  PubMed  CAS  Google Scholar 

  41. Glende M, Huiler H, Mai I, et al. Comparative bioavailability of two carbamazepine tablets. Int J Clin Pharmacol Ther Toxicol 1983; 21: 631–3

    PubMed  CAS  Google Scholar 

  42. Jumaoas A, Bella I, Craig B, et al. Comparison of steady state blood levels of two carbamazepine formulations. Epilepsia 1989; 30: 67–70

    Article  CAS  Google Scholar 

  43. Hartley R, Aleksandrowicz J, Ng PC, et al. Breakthrough seizures with generic carbamazepine; a consequence of poorer bioavailability? Br J Clin Pharmacol 1990; 44: 270–3

    CAS  Google Scholar 

  44. Hartley R, Aleksandrowicz J, Bowmer CJ, et al. Dissolution and relative bioavailability of two carbamazepine preparations for children with epilepsy. J Pharm Pharmacol 1991; 43: 117–9

    Article  PubMed  CAS  Google Scholar 

  45. Oles KS, Penry JK, Smith LD, et al. Therapeutic bioequivalency study of brand name versus generic carbamazepine. Neurology 1992; 42: 1147–53

    Article  PubMed  CAS  Google Scholar 

  46. Gilman JT, Alvarez LA, Duchowny M. Carbamazepine toxicity resulting from generic substitution. Neurology 1993; 43: 2696–7

    Article  PubMed  CAS  Google Scholar 

  47. Sachdeo R, Belendiuk G. Generic versus branded carbamazepine [letter]. Lancet 1987; I: 1432

    Article  Google Scholar 

  48. Koch G, Allen JP Untoward effects of generic carbamazepine therapy [letter]. Arch Neurol 1987; 44: 578

    Article  PubMed  CAS  Google Scholar 

  49. Meyer MC, Straughn AB, Jarvi EJ, et al. The bioequivalence of carbamazepine tablets with a history of clinical failures. Pharm Res 1992; 9: 1612–6

    Article  PubMed  CAS  Google Scholar 

  50. Meyer MC, Straughn AB. Biopharmaceutical factors in seizure control and drug toxicity. Am J Hosp Pharm 1993; 50 Suppl.: S17–22

    PubMed  CAS  Google Scholar 

  51. Wolf P, May T, Tiska G, et al. Steady state concentrations and diurnal fluctuations of carbamazepine in patients after slow release formulations. Drug Res 1992; 42: 284–8

    CAS  Google Scholar 

  52. Reunanen M, Heinonen EH, Nyman L, et al. Comparative bio-availability of carbamazepine from two slow-release preparations. Epilepsy Res 1992; 11: 61–6

    Article  PubMed  CAS  Google Scholar 

  53. Bialer M. Pharmacokinetic evaluation of sustained release formulations of antiepileptic drugs. Clin Pharmacokinet 1992; 22: 11–21

    Article  PubMed  CAS  Google Scholar 

  54. Patsalos PN. A comparative pharmacokinetic study of conventional and chewable carbamazepine in epileptic patients. Br J Clin Pharmacol 1990; 29: 574–7

    Article  PubMed  CAS  Google Scholar 

  55. Cornaggia C, Gianetti S, Battino D, et al. Comparative pharmacokinetic study of chewable and conventional carbamazepine in children. Epilepsia 1993; 34: 158–60

    Article  PubMed  CAS  Google Scholar 

  56. Perucca E, Gatti G, Frigo GM, et al. Pharmacokinetics of valproic acid after oral and intravenous administration. Br J Clin Pharmacol 1978; 5: 313–8

    Article  CAS  Google Scholar 

  57. Klotz U, Antonin KH. Pharmacokinetics and bioavailability of sodium Valproate. Clin Pharmacol Ther 1977; 21: 736–43

    PubMed  CAS  Google Scholar 

  58. Macdonald JT. Breakthrough seizure following substitution of Depakene capsules (Abbott) with a generic product. Neurology 1987; 37: 1885

    Article  PubMed  CAS  Google Scholar 

  59. Trimble MR. Generic prescribing. Hum Psychopharmacol 1987; 2: 1–2

    Article  Google Scholar 

  60. Bielmann P, Levac T, Langlois Y, et al. Bioavailability of primidone in epileptic patients. Int J Clin Pharmacol 1974; 9: 132–7

    PubMed  CAS  Google Scholar 

  61. Wyllie E, Pippenger CE, Rothner AD. Increased seizure frequency with generic primidone. JAMA 1987; 258: 1216–7

    Article  PubMed  CAS  Google Scholar 

  62. Cloyd JC, Leppik IE. Primidone: absorption, distribution, excretion. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 459–66

    Google Scholar 

  63. Cramer JA, Mattson RH. Compliance with antiepileptic drug therapy. In: Levy RH, Mattson RH, Meldrum BS, editors. Antiepileptic drugs. 4th ed. New York: Raven Press, 1995: 149–59

    Google Scholar 

  64. Leppik IE, Cloyd JC, Sawchuk RJ, et al. Compliance and variability of plasma phenytoin levels in epileptic patients. Ther Drug Monit 1979; 1: 475–83

    Article  Google Scholar 

  65. Cramer JA, Mattson RH, Prevey ML, et al. How often is medication taken as prescribed? A novel assessment technique. JAMA 1989; 261: 3273–7

    Article  PubMed  CAS  Google Scholar 

  66. Report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Assessment: generic substitution for antiepileptic medication. Neurology 1990; 40: 1641–3

    Article  Google Scholar 

  67. FDA policy on generic anticonvulsants. Scrip 1989; 1469: 28

    Google Scholar 

  68. Food and Drug Administration. FDA findings on generic drugs. FDA Drug Bull 1990; 20: 4–5

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richens, A. Impact of Generic Substitution of Anticonvulsants on the Treatment of Epilepsy. CNS Drugs 8, 124–133 (1997). https://doi.org/10.2165/00023210-199708020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199708020-00004

Keywords

Navigation