Skip to main content
Log in

Therapeutic Potential of AMPA Receptor Ligands in Neurological Disorders

  • Pharmacology and Pathophysiology
  • Therapeutic Potential of AMPA Receptor Ligands
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Summary

Neurodegeneration produced by toxic levels of glutamate is now suggested to be a causative factor in the pathologies found in a number of neurological diseases. This glutamate-induced toxicity is mainly due to activation of both the N-methyl-D-aspartate (NMDA) and non-NMDA classes of glutamate receptors. Hence, drugs that act as antagonists at these receptors are potentially neuroprotective in many diseases. Noncompetitive antagonists appear to be the preferred type of ligand because their action is not diminished by the levels of glutamate reached during a trauma. In addition, they may have reduced adverse effects compared with competitive antagonists.

The group of non-NMDA receptors consists of the a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) and kainate receptors, which can be defined on the basis of their pharmacology or by recombinant gene techniques. The latter methods demonstrate a far more complex picture for the receptors. Studies show the presence of at least 9 different protein subunits, which, when linked in groups of 5, comprise the AMPA and kainate subclasses of glutamate receptors.

The native non-NMDA receptor has at least 3 separate binding sites at which non-NMDA receptor antagonists can act: glutamate, desensitisation and intra-ion channel binding sites. The glutamate binding site is the site for competitive antagonists such as 2,3-dihydroxy-6-nitro-7-sulphamoyl-benzo(F)quinoxaline (NBQX). Non-NMDA receptors show rapid desensitisation, which limits the duration of activation of the receptor. One group of noncompetitive antagonists (e.g. GYKI 52466) binds at this desensitisation site. Another group of noncompetitive antagonists, the spider and wasp toxins, bind at the third site within the ion channel.

Protection against ischaemic damage is the most well researched indication for the application of non-NMDA receptor antagonists and the one that shows the most promise. However, almost all studies in any indication so far have only been carried out in rodents. Recent evidence suggests that antagonists at non-NMDA receptors are more effective neuroprotective agents than NMDA receptor antagonists after ischaemic attacks, and that their administration can be delayed for up to 12 hours without seriously compromising the extent of neuroprotection.

Protection against neuronal loss caused by physical injury to the brain or motor neuron disease are other potential uses for non-NMDA receptor antagonists. The antagonists are less effective than the NMDA receptor antagonists against neuronal loss caused by hypoglycaemia or status epilepticus. Non-NMDA receptor antagonists are also effective as anticonvulsants and as antiemetics during cancer chemotherapy. As antiparkinsonian drugs, they show marked synergistic effects when given in combination with levodopa, but are unlikely to be useful as a monotherapy for this disorder.

Despite evidence for potential in a number of disorders, prolonged use of non-NMDA receptor antagonists may be contraindicated due to their adverse effects on memory, cognition, motor activity and autonomic functions. Nephrotoxicity due to poor solubility and a short duration of action are also limitations of at least some of the current generation of non-NMDA receptor antagonists. Minimising these adverse effects, particularly with drugs that are selective for the receptor subunits, and translating the results of animal studies to human conditions will be awaited with interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon RP, Swan lH, Griffiths T, et al. Blockade of N-methy1-D-aspartate receptors may protect against ischemic damage in the brain. Science 1984; 226: 850–2

    Article  PubMed  CAS  Google Scholar 

  2. Garthwaite G, Williams GD, Garthwaite J. Glutamate toxicity: an experimental and theoretical analysis. Eur J Neurosci 1992; 4: 353–60

    Article  PubMed  Google Scholar 

  3. Kohmura E, Yamada K, Hayakawa T, et al. Hippocampal neurons become more vulnerable to glutamate after subcritical hypoxia: an in vitro study. J Cereb Blood Flow Metab 1990; 10: 877–84

    Article  PubMed  CAS  Google Scholar 

  4. Novelli A, Reilly lA, Lysko PG, et al. Glutamate becomes neurotoxic via the N-methyl-D-aspartate receptor when intracellular energy levels are reduced. Brain Res 1988; 451: 205–12

    Article  PubMed  CAS  Google Scholar 

  5. Zeevalk GD, Nicklas Wl. Evidence that the loss of the voltagedependent Mg2+ block at the N-methyl-D-aspartate receptor underlies receptor activation during inhibition of neuronal metabolism. J Neurochem 1992; 59: 1211–20

    Article  PubMed  CAS  Google Scholar 

  6. Beal ME. Does impairment of energy metabolism result in excitotoxic neuronal death in neurodegenerative illnesses? Ann Neurol 1992; 31: 119–30

    Article  PubMed  CAS  Google Scholar 

  7. Choi DW, Rothman SM. The role of glutamate neurotoxicity in hypoxic-ischemic neuronal death. Annu Rev Neurosci 1990; 13: 171–82

    Article  PubMed  CAS  Google Scholar 

  8. Lees Gl. Contributory mechanisms in the causation of neurodegenerative disorders. Neuroscience 1993; 54: 287–322

    Article  PubMed  CAS  Google Scholar 

  9. Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med 1994; 330: 613–22

    Article  PubMed  CAS  Google Scholar 

  10. Meldrum B. Amino acids as dietary excitotoxins: a contribution to understanding neurodegenerative disorders. Brain Res Rev 1993; 18: 293–314

    Article  PubMed  CAS  Google Scholar 

  11. Meldrum B, Garthwaite J. Excitatory amino acid neurotoxicity and neurodegenerative disease. Trends Pharmacol Sci 1990; 11: 379–87

    Article  PubMed  CAS  Google Scholar 

  12. Olney lW. Excitotoxic amino acids and neuropsychiatric disorders. Annu Rev Pharmacol Toxicol 1990; 30: 47–71

    Article  PubMed  CAS  Google Scholar 

  13. Albin RL, Greenamyre IT. Alternative excitotoxic hypotheses. Neurology 1992; 42: 733–8

    Article  PubMed  CAS  Google Scholar 

  14. Bowling AC. Beal ME Bioenergetic and oxidative stress in neurodegenerative diseases. Life Sci 1995; 56: 1151–71

    Article  PubMed  CAS  Google Scholar 

  15. Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science 1993; 262: 689–95

    Article  PubMed  CAS  Google Scholar 

  16. Lees GJ. Common threads in neurodegenerative disorders. Today’s Life Sci 1992; 4: 24–9

    Google Scholar 

  17. Olanow CW. A radical hypothesis for neurodegeneration. Trends Neurosci 1993; 16: 439–44

    Article  PubMed  CAS  Google Scholar 

  18. Bondy SC, Lee DK. Oxidative stress induced by glutamate receptor agonists. Brain Res 1993; 610: 229–33

    Article  PubMed  CAS  Google Scholar 

  19. Murphy TH, Miyamato M, Sastre A, et al. Glutamate toxicity in a neuronal cell line involves inhibition of cystine transport leading to oxidative stress. Neuron 1989; 2: 1547–58

    Article  PubMed  CAS  Google Scholar 

  20. Monaghan DT, Bridges Rl, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 1989; 29: 365–402

    Article  PubMed  CAS  Google Scholar 

  21. Young AB, Fagg GE. Excitatory amino acid receptors in the brain: membrane binding and receptor autoradiographic approaches. Trends Pharmacol Sci 1990; 11: 126–33

    Article  PubMed  CAS  Google Scholar 

  22. Yoshioka A, Hardy M, Younkin DP, et al. a-Amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors mediate excitotoxicity in the oligodendroglial lineage. J Neurochem 1995; 64: 2442–8

    Article  PubMed  CAS  Google Scholar 

  23. Sheardown Ml, Nielsen EO, Hansen Al, et al. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo(F)quinoxaline: a neuroprotectant for cerebral ischemia. Science 1990; 247: 571–4

    Article  PubMed  CAS  Google Scholar 

  24. Pin J-P, Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology 1995; 34: 1–26

    Article  PubMed  CAS  Google Scholar 

  25. Schoepp DD, Conn Pl. Metabotropic glutamate receptors in brain function and pathology. Trends Pharmacol Sci 1993; 14: 13–20

    Article  PubMed  CAS  Google Scholar 

  26. Porter RHP, Greenamyre IT. Regional variations in the pharmacology of AMPA receptors as revealed by receptor autoradiography. Brain Res 1994; 664: 202–6

    Article  PubMed  CAS  Google Scholar 

  27. Johansen TH, Drejer 1, Watjen F, et al. A novel non-NMDA receptor antagonist shows selective displacement of lowaffinity [3H]kainate binding. Eur J Pharmacol 1993; 246: 195–204

    Article  PubMed  CAS  Google Scholar 

  28. Kwak S, Aizawa H, Ishida M. New, potent kainate derivatives: comparison of their affinity for [3H]kainate and [3H]AMPA binding sites. Neurosci Lett 1992; 139: 114–7

    Article  PubMed  CAS  Google Scholar 

  29. Ross SM, Roy DN, Spencer PS. β-N-oxalylamino-L-alanine action on glutamate receptors. J Neurochem 1989; 53: 710–5

    Article  PubMed  CAS  Google Scholar 

  30. Smith AL, McIlhinney RA1. Effects of acromelic acid A on the binding of [3H]-kainic acid and [3H]-AMPA to rat brain synaptic plasma membranes. Br J Pharmacol 1992; 105: 83–6

    Article  PubMed  CAS  Google Scholar 

  31. Künig G, Hartmann J, Krause F, et al. Regional differences in the interaction of the excitotoxins domoate and L-~-oxalylamino-alanine with [3H]kainate binding sites in human hippocampus. Neurosci Lett 1995; 187: 107–10

    Article  PubMed  Google Scholar 

  32. Bridges Rl, Stevens DR, Kahle lS, et al. Structure-function studies on N-oxalyl-diamino-dicarboxylic acids and excitatory amino acid receptors: evidence that ~-L-ODAP is a selective non-NMDA agonist. J Neurosci 1989; 9: 2073–9

    PubMed  CAS  Google Scholar 

  33. Ohmori J, Sakamoto S, Kubota H, et al. 6-(lH-imidazol-1-yl)-7-nitro-2,3(1H,4H)-quinoxalinedione hydrochloride (YM90K) and related compounds: structure-activity relationships for the AMPA-type non-NMDA receptor. J Med Chern 1994; 37: 467–75

    Article  CAS  Google Scholar 

  34. Ornstein PL, Arnold MB, Augenstein NK, et al. (3SR, 4aRS, 6RS, 8aRS)-6-[2-( IH-tetrazol-5-yl) ethyl] decabydroisoquinoline-3-carboxylic acid: a structurally novel, systemically active, competitive AMPA receptor antagonist. J Med Chern 1993; 36: 2046–8

    Article  CAS  Google Scholar 

  35. Watjen F, Bigge FC, Jensen LH, et al. NS 257 (1,2,3,6,7,8-hexahydro-3(hydrox yimino)-N,N, 7 -trimethy 1-2-oxobenzo [2,I-b:3,4-c’]dipyrrole-5-sulfonamine) is a potent, systemically active AMPAreceptorantagonist. Bioorg Med Chern Lett 1994; 4: 371–6

    Article  CAS  Google Scholar 

  36. Davies SN, Collingridge GL. Quinoxalinediones as excitatory amino acid antagonists in the vertebrate central nervous system. Int Rev Neurobiol 1990; 32: 281–303

    Article  PubMed  CAS  Google Scholar 

  37. Randle JCR, Guet T, Bobichon C, et al. Quinoxaline derivatives: structure-activity relationships and physiological implications of inhibition of N-methyl-D-aspartate and non-Nmethyl-D-aspartate receptor-mediated currents and synaptic potentials. Mol Pharmacol 1992; 41: 337–45

    PubMed  CAS  Google Scholar 

  38. Paternain AV, Morales M, Lerma J. Selective antagonism of AMPA receptors unmasks kainate receptor-mediated responses in hippocampal neurons. Neuron 1995; 14: 185–9

    Article  PubMed  CAS  Google Scholar 

  39. Verdoorn TA, Johansen TH, Drejer J, et al. Selective block of recombinant glur6 receptors by NS-102, a novel non-NMDA receptor antagonist. Eur J Pharmacol 1994; 269: 43–9

    Article  PubMed  CAS  Google Scholar 

  40. Parsons CG, Cruner R, Rozental J. Comparative patch clamp studies on the kinetics and selectivity of glutamate receptor antagonism by 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo (F) quinoxaline (NBQX) and 1-(4-amino-phenyl)-4-methyl-7,8-methylendioxyl-5H-2,3-benzodiazepine (GYKI 52466). Neuropharmacology 1994; 33: 589–604

    Article  PubMed  CAS  Google Scholar 

  41. Suzdak PD, Sheardown MJ, Honore T. Characterization of the metabotropic glutamate receptor in mouse cerebellar granule cells: lack of effect of 2,3-dihydroxy-6-nitro-7-sulphamoylbenzo( F)-quinoxaline (NBQX). Eur J Pharmacol 1993; 245: 215–20

    Article  PubMed  CAS  Google Scholar 

  42. Chizh BA, Cumberbatch MJ, Headley PM. A comparison of intravenous NBQX and GYKI 53655 as AMPA antagonists in the rat spinal cord. Br J Pharmacol 1994; 112: 843–6

    Article  PubMed  CAS  Google Scholar 

  43. Bettler B, Mulle C. AMPA and kainate receptors. Neuropharmacology 1995; 34: 123–39

    Article  PubMed  CAS  Google Scholar 

  44. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994; 17: 31–108

    Article  PubMed  CAS  Google Scholar 

  45. Henley JM. Kainate-binding proteins: phylogeny, structures and possible functions. Trends Pharmacol Sci 1994; 15: 182–90

    Article  PubMed  CAS  Google Scholar 

  46. Schoepfer R, Monyer H, Sommer B, et al. Molecular biology of glutamate receptors. Prog Neurobiol 1994; 42: 353–7

    Article  PubMed  CAS  Google Scholar 

  47. Seeburg PH. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci 1993; 16: 359–65

    Article  PubMed  CAS  Google Scholar 

  48. Nutt SL, Kamboj RK. RNA editing of human kainate receptor subunits. Neuroreport 1994; 5: 2625–9

    Article  PubMed  CAS  Google Scholar 

  49. Paschen W, Hedreen JC, Ross CA. RNA editing of the glutamate receptor subunits GluR2 and GluR6 in human brain tissue. J Neurochem 1994; 63: 1596–602

    Article  PubMed  CAS  Google Scholar 

  50. Szpirer C, Moine M, Antonacci R, et al. The genes encoding the glutamate receptor subunits KA I and KA2 (GRIK4 and GRIK5) are located on separate chromosomes in human, mouse, and rat. Proc Natl Acad Sci USA 1994; 91: 11849–53

    Article  PubMed  CAS  Google Scholar 

  51. Gregor P, Reeves RH, Jabs EW, et al. Chromosomal localization of glutamate receptor genes — relationship to familial amyotrophic lateral sclerosis and other neurological disorders of mice and humans. Proc Natl Acad Sci USA 1993; 90: 3053–7

    Article  PubMed  CAS  Google Scholar 

  52. Garcia-Ladona FJ, Palacios JM, Probst A, et al. Excitatory amino acid AMPA receptor mRNA localization in several regions of normal and neurological disease affected human brain. An in situ hybridization histochemistry study. Mol Brain Res 1994; 21: 75–84

    Article  PubMed  CAS  Google Scholar 

  53. Hampson DR, Huang XP, Oberdorfer MD, et al. Localization of AMPA receptors in the hippocampus and cerebellum of the rat using an anti-receptor monoclonal antibody. Neuroscience 1992; 50: 11–22

    Article  PubMed  CAS  Google Scholar 

  54. Henley JM. Localization of AMPA receptor subunits in rat CNS using anti-peptide antibodies. Neuroreport 1993; 4: 334–6

    Article  PubMed  CAS  Google Scholar 

  55. Herb A, Burnashev N, Werner P, et al. The KA-2 subunit of excitatory amino acid receptors shows widespread expression in brain and forms ion channels with distantly related subunits. Neuron 1992; 8: 775–85

    Article  PubMed  CAS  Google Scholar 

  56. Huntley GW, Rogers SW, Moran T, et al. Selective distribution of kainate receptor subunit immunoreactivity in monkey neocortex revealed by a monoclonal antibody that recognizes glutamate receptor subunits GluR5/6/7. J Neurosci 1993; 13: 2965–81

    PubMed  CAS  Google Scholar 

  57. Martin LJ, Blackstone CD, Levey AI, et al. AMPA glutamate receptor subunits are differentially distributed in rat brain. Neuroscience 1993; 53: 327–58

    Article  PubMed  CAS  Google Scholar 

  58. Rogers SW, Hughes TE, Hollmann M, et al. The characterization and localization of the glutamate receptor subunit GluR I in the rat brain. J Neurosci 1991; 11: 2713–24

    PubMed  CAS  Google Scholar 

  59. Sato K, Kiyama H, Tohyama M. The differential expression patterns of messenger RNAs encoding non-N-methyl-Daspartate glutamate receptor subunits (GluR 1-4) in the rat brain. Neuroscience 1993; 52: 515–39

    Article  PubMed  CAS  Google Scholar 

  60. Tallaksengreene SJ, Albin RL. Localization of AMPA-selective excitatory amino acid receptor subunits in identified populations of striatal neurons. Neuroscience 1994; 61: 509–19

    Article  CAS  Google Scholar 

  61. Vickers JC, Huntley GW, Edwards AM, et al. Quantitative localization of AMPA/kainate and kainate glutamate receptor subunit immunoreactivity in neurochemically identified subpopulations of neurons in the prefrontal cortex of the Macaque monkey. J Neurosci 1993; 13: 2982–92

    PubMed  CAS  Google Scholar 

  62. Vickers JC, Huntley GW, Hof PR, et al. Immunocytochemical localization of non-NMDA ionotropic excitatory amino acid receptor subunits in human neocortex. Brain Res 1995; 671: 175–80

    Article  PubMed  CAS  Google Scholar 

  63. Wisden W, Seeburg PH. Acomplex mosaic of high-affinity kainate receptors in rat brain. J Neurosci 1993; 13: 3582–98

    PubMed  CAS  Google Scholar 

  64. Condorelli DF, Belluardo N, Mudo G, et al. Changes in gene expression of AMPA-selective glutamate receptor subunits induced by status epilepticus in rat brain. Neurochem Int 1994; 25: 367–76

    Article  PubMed  CAS  Google Scholar 

  65. Heurteaux C, Lauritzen I, Widmann C, et al. Glutamate-induced overexpression of NMDA receptor messenger RNAs and protein triggered by activation of AMPAikainate receptors in rat hippocampus following forebrain ischemia. Brain Res 1994; 659: 67–74

    Article  PubMed  CAS  Google Scholar 

  66. Pellegrini-Giampietro DE, Zukin RS, Bennett MVL, et al. Switch in glutamate receptor subunit gene expression in CA1 subfield of hippocampus following global ischemia in rats [published erratum appears in Proc Natl Acad Sci USA 1993; 90: 780]. Proc Natl Acad Sci USA 1992; 89: 10499–503

    Article  PubMed  CAS  Google Scholar 

  67. Pollard H, Heron A, Moreau J, et al. Alterations of the GluR-B AMPA receptor subunit flip flop expression in kainate-induced epilepsy and ischemia. Neuroscience 1993; 57: 545–54

    Article  PubMed  CAS  Google Scholar 

  68. Stein E, Cox JA, Seeburg PH, et al. Complex pharmacological properties of recombinant a-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor subtypes. Mol PharmacoI 1992; 42: 864–71

    CAS  Google Scholar 

  69. Blaschke M, Keller BU, Rivosecchi R, et al. A single amino acid detennines the subunit-specific spider toxin block of a-amino-3-hydroxy-5-methylisoxazole-4-propionatelkainate receptor channels. Proc Natl Acad Sci USA 1993; 90: 6528–32

    Article  PubMed  CAS  Google Scholar 

  70. Brackley PTH, Bell DR, Choi S-K, et al. Selective antagonism of native and cloned kainate and NMDA receptors by polyamine-containing toxins. J Pharmacol Exp Ther 1993; 266: 1573–80

    PubMed  CAS  Google Scholar 

  71. Herlitze S, Raditsch M, Ruppersberg JP, et al. Argiotoxin detects molecular differences in AMPA receptor channels. Neuron 1993; 10: 1131–40

    Article  PubMed  CAS  Google Scholar 

  72. Keller BU, Blaschke M, Rivosecchi R, et al. Identification of a subunit-specific antagonist of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionate/kainate receptor channels. Proc Nail Acad Sci USA 1993; 90: 605–9

    Article  CAS  Google Scholar 

  73. Kiskin NI, Krishtal OA, Tsyndrenko AYa. Cross-desensitization reveals pharmacological specificity of excitatory amino acid receptors in isolated hippocampal neurons. Eur J Neurosci 1990; 2: 461–70

    Article  PubMed  Google Scholar 

  74. Patneau DK, Vyklicky Jr L, Mayer ML. Hippocampal neurons exhibit cyclothiazide-sensitive rapidly desensitizing responses to kainate. J Neurosci 1993; 13: 3496–509

    PubMed  CAS  Google Scholar 

  75. Wong LA, Mayer ML. Differential modulation by cyclothiazide and concanavalin A of desensitization at native a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-and kainatepreferring glutamate receptors. Mol Pharmacol 1993; 44: 504–10

    PubMed  CAS  Google Scholar 

  76. Yamada KA, Tang CM. Benzothiadiazides inhibit rapid glutamate receptor desensitization and enhance glutamatergic synaptic currents. J Neurosci 1993; 13: 3904–15

    PubMed  CAS  Google Scholar 

  77. Zorumski CF, Yamada KA, Price MT, et al. A benzodiazepine recognition site associated with the non-NMDA glutamate receptor. Neuron 1993; 10: 61–7

    Article  PubMed  CAS  Google Scholar 

  78. Arai A, Kessler M, Xiao P, et al. A centrally active drug that modulates AMPA receptor gated currents. Brain Res 1994; 638: 343–6

    Article  PubMed  CAS  Google Scholar 

  79. Desai MA, Valli MJ, Monn JA, et al. I-BCP, a memory-enhancing agent, selectively potentiates AMPA-induced [3Hlnorepinephrine release in rat hippocampal slices. Neuropharmacology 1995; 34: 141–7

    Article  PubMed  CAS  Google Scholar 

  80. Isaacson JS, Nicoll RA. Aniracetam reduces glutamate receptor desensitization and slows the decay of fast excitatory synaptic currents in the hippocampus. Proc Nail Acad Sci USA 1991; 88: 10936–40

    Article  CAS  Google Scholar 

  81. Ito I, Tanabe S, Kohda A, et al. Allosteric potentiation of quisqualate receptors by a nootropic drug aniracetam. J Physiol 1990; 424: 533–43

    PubMed  CAS  Google Scholar 

  82. Staubli U, Rogers G, Lynch G. Facilitation of glutamate receptors enhances memory. Proc Natl Acad Sci USA 1994; 91: 777–81

    Article  PubMed  CAS  Google Scholar 

  83. Zivkovic I, Thompson DM, Bertolino M, et al. 7-Chloro-3-methyl-3-4-dihydro-2H-l,2,4 benzothiadiazine S,S-dioxide (IDRA 21): a benzothiadiazine derivative that enhances cognition by attenuating DL-a-amino-2,3-dihydro-5-methyl-3-oxo-4-isoxazolepropanoic acid (AMPA) receptor desensitization. J Pharmacol Exp Ther 1995; 272: 300–9

    PubMed  CAS  Google Scholar 

  84. Palmer AJ, Lodge D. Cyclothiazide reverses AMPA receptor antagonism of the 2,3-benzodiazepine, GYKI 53655. Eur J Pharmacol 1993; 244: 193–4

    Article  PubMed  CAS  Google Scholar 

  85. Desai MA, Burnett JP, Ornstein PL, et al. Cyclothiazide acts at a site on the a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor complex that does not recognize competitive or noncompetitive AMPA receptor antagonists. J Pharmacol Exp Ther 1995; 272: 38–43

    PubMed  CAS  Google Scholar 

  86. Donevan SD, Rogawski MA. GYKI 52466, a 2,3-benzodiazepine, is a highly selective, noncompetitive antagonist of AMP Alkainate receptor responses. Neuron 1993; 10: 51–9

    Article  PubMed  CAS  Google Scholar 

  87. Partin KM, Bowie D, Mayer ML. Structural determinants of allosteric regulation in alternatively spliced AMPA receptors. Neuron 1995; 14: 833–43

    Article  PubMed  CAS  Google Scholar 

  88. Partin KM, Patneau DK, Mayer ML. Cyclothiazide differentially modulates desensitization of a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor splice variants. Mol Pharmacol 1994; 46: 129–38

    PubMed  CAS  Google Scholar 

  89. Partin KM, Patneau DK, Winters CA, et al. Selective modulation of desensitization at AMPA versus kainate receptors by cyclothiazide and concanavalin-A. Neuron 1993; 11: 1069–82

    Article  PubMed  CAS  Google Scholar 

  90. Sharp RL, May PC, Mayne NG, et al. Cyclothiazide potentiates agonist responses at human AMPA/kainate receptors expressed in oocytes. Eur J Pharmacol 1994; 266: RI–2

    Google Scholar 

  91. Anis N, Sherby S, Goodnow Jr R, et al. Structure-activity relationships of philanthotoxin analogs and polyamines on Nmethyl-D-aspartate and nicotinic acetylcholine receptors. J Pharmacol Exp Ther 1990; 254: 764–73

    PubMed  CAS  Google Scholar 

  92. Davies MS, Baganoff MP, Grishin EV, et al. Polyamine spider toxins are potent un-competitive antagonists of rat cortex excitatory amino acid receptors. Eur J Pharmacol 1992; 227: 51–6

    Article  PubMed  CAS  Google Scholar 

  93. Fedorov NB, Screbitsky VG, Reymann KG. Effects of philanthotoxin-343 on CA I pyramidal neurons of rat hippocampus in vitro. Eur J Pharmacol 1992; 228: 201–6

    PubMed  CAS  Google Scholar 

  94. Jones MG, Anis NA, Lodge D. Philanthotoxin blocks quisqualate-, AMPA- and kainate-, but not NMDA-, induced excitation of rat brainstem neurones in vivo. Br J Pharmacol 1990; 101: 968–70

    Article  PubMed  CAS  Google Scholar 

  95. Kanai H, Ishida N, Nakajima T, et al. An analogue ofJoro spider toxin selectively suppresses hippocampal epileptic discharges induced by quisqualate. Brain Res 1992; 581: 161–4

    Article  PubMed  CAS  Google Scholar 

  96. Priestley T, Woodruff GN, Kemp JA. Antagonism of responses to excitatory amino acids on rat cortical neurones by the spider toxin, argiotoxin 636. Br J Pharmacol 1989; 97: 1315–23

    Article  PubMed  CAS  Google Scholar 

  97. Ragsdale D, Gant DB, Anis NA, et al. Inhibition of rat brain glutamate receptors by philanthotoxin. J Pharmacol Exp Ther 1989; 251: 156–63

    PubMed  CAS  Google Scholar 

  98. Saito M, Sahara Y, Miwa A, et al. Effects of a spider toxin (JSTX) on hippocampal CA I neurons in vitro. Brain Res 1989; 481: 16–24

    Article  PubMed  CAS  Google Scholar 

  99. Jackson H, Parks TN. Spider toxins: recent applications in neurobiology. Annu Rev Neurosci 1989; 12: 405–14

    Article  PubMed  CAS  Google Scholar 

  100. Hunter AJ, Green AR, Cross AJ. Animal models of acute ischaemic stroke: can they predict clinically successful neuroprotective drugs? Trends Pharmacol Sci 1995; 16: 123–8

    Article  PubMed  CAS  Google Scholar 

  101. Wiebers DO, Adams Jr HP, Whisnant JP. Animal models of stroke: are they relevant to human disease? Stroke 1990: 21: 1–3

    Article  PubMed  CAS  Google Scholar 

  102. Carlsson M, Carlsson A. Interactions between glutamatergic and monaminergic systems within the basal ganglia — implications for schizophrenia and Parkinson’s disease. Trends Neurosci 1990; 13: 272–6

    Article  PubMed  CAS  Google Scholar 

  103. Starr MS. Glutamate/dopamine DI/D2 balance in the basal ganglia and its relevance to Parkinson’s disease. Synapse 1995; 19: 264–93

    Article  PubMed  CAS  Google Scholar 

  104. Klockgether T, Turski L. Toward an understanding of the role of glutamate in experimental Parkinsonism: agonist-sensitive sites in the basal ganglia. Ann Neurol 1993; 34: 585–93

    Article  PubMed  CAS  Google Scholar 

  105. Klockgether T, Turski L, Honore T, et al. The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoaminedepleted rats and MPTP-treated monkeys. Ann Neurol 1991; 30: 717–23

    Article  PubMed  CAS  Google Scholar 

  106. Engber TM, Anderson JJ, Boldry RC, et al. Excitatory amino acid receptor antagonists modify regional cerebral metabolic responses to levodopa in 6-hydroxydopamine-Iesioned rats. Neuroscience 1994; 59: 389–99

    Article  PubMed  CAS  Google Scholar 

  107. Uischmann P-A, Lange KW, Kunow M, Kunow M. Synergism of the AMPA-antagonist NBQX and the NMDA-antagonist CPt’ with L-DOPA in models of Parkinson’s disease. J Neural Transm Park Dis Dement Sect 1991; 3: 203–13

    Article  Google Scholar 

  108. Luquin MR, Obeso JA, Laguna J, et al. The AMPA receptor antagonist NBQX does not alter the motor response induced by selective dopamine agonists in MPTP-treated monkeys. Eur J Pharmacol 1993; 235: 297–300

    Article  PubMed  CAS  Google Scholar 

  109. Starr MS, Starr BS. Facilitation of dopamine DI receptor-but not dopamine Dl102 receptor-dependent locomotion by glutamate antagonists in the reserpine-treated mouse. Eur J Pharmacol 1993; 250: 239–46

    Article  PubMed  CAS  Google Scholar 

  110. Wachtel H, Kunow M, Loschmann P-A. NBQX (6-nitrosulfamoyl-benzo-quinoxaline-dione) and CPP (3-carboxypiperazin-propyl phosphonic acid) potentiate dopamine agonist induced rotations in substantia nigra lesioned rats. Neurosci Lett 1992; 142: 179–82

    Article  PubMed  CAS  Google Scholar 

  111. Richter A, Loscher W, Loschmann P-A. The AMPA receptor antagonist NBQX exerts anti dystonic effects in an animal model of idiopathic dystonia. Eur J Pharmacol 1993; 231: 287–91

    Article  PubMed  CAS  Google Scholar 

  112. Aizenman E, Boeckman FA, Rosenberg PA. Glutathione prevents 2,4,5-trihydroxyphenylalanine excitotoxicity by maintaining it in a reduced, non-active form. Neurosci Lett 1992; 144: 233–6

    Article  PubMed  CAS  Google Scholar 

  113. Cha J-HJ, Dure IV LS, Sakurai SY, et al. 2,4,5-Trihydroxyphenylalanine (6-hydroxy-DOPA) displaces [3H]AMPA binding in rat striatum. Neurosci Lett 1991; 132: 55–8

    Article  PubMed  CAS  Google Scholar 

  114. Kiinig G, Hartmann J, Niedermeyer B, et al. Excitotoxins L-~oxalyl-amino-alanine (L-BOAA) and 3,4,6-trihydroxyphenylalanine (6-0H-DOPA) inhibit [3H]a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMP A) binding in human hippocampus. Neurosci Lett 1994; 169: 219–22

    Article  Google Scholar 

  115. Newcomer TA, Rosenberg PA, Aizenman E. Iron-mediated oxidation of 3,4-dihydroxyphenylalanine to an excitotoxin. J Neurochem 1995; 64: 1742–8

    Article  PubMed  CAS  Google Scholar 

  116. Olney JW, Zorumski CF, Stewart GR, et al. Excitotoxicity of L-DOPA and 6-0H-DOPA: implications for Parkinson’s and Huntington’s disease. Exp Neurol 1990; 108: 269–72

    Article  PubMed  CAS  Google Scholar 

  117. Rosenberg PA, Loring R, Xie Y, et al. 2,4,5-Trihydroxyphenylalanine in solution forms a non-N-methyl-D-aspartate glutamatergic agonist and neurotoxin. Proc Natl Acad Sci USA 1991; 88: 4865–9

    Article  PubMed  CAS  Google Scholar 

  118. Skaper SD, Facci L, Schiavo N, et al. Characterization of 2,4,5-trihydroxyphenylalanine neurotoxicity in vitro and protective effects of ganglioside GMI — implications for Parkinson’s disease. J Pharmacol Exp Ther 1992; 263: 1440–6

    PubMed  CAS  Google Scholar 

  119. Blunt SB, Jenner P, Marsden CD. Motor function, graft survival and gliosis in rats with 6-0HDA lesions and foetal ventral m~sencephalic grafts chronically treated with L-DOPA and carbidopa. Exp Brain Res 1992; 88: 326–40

    Article  PubMed  CAS  Google Scholar 

  120. Caine DB. The free radical hypothesis in idiopathic Parkinsonism: evidence against it. Ann Neurol 1992; 32: 799–803

    Article  Google Scholar 

  121. Olanow CW. An introduction to the free radical hypothesis in Parkinson’s disease. Ann Neurol 1992; 32: S2–9

    Article  PubMed  CAS  Google Scholar 

  122. Bisaga A, Krzascik P, Jankowska E. Effect of glutamate receptor antagonists on N-methyl-D-aspartate- and (S)-a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid-induced convulsant effects in mice and rats. Eur J Pharmacol 1993; 242: 213–20

    Article  PubMed  CAS  Google Scholar 

  123. Chapman AG, Smith SE, Meldrum BS. The anticonvulsant effect of the non-NMDA antagonists NBQX and GYKI 52466 in mice. Epilepsy Res 1991; 9: 92–6

    Article  PubMed  CAS  Google Scholar 

  124. Donevan SD, Yamaguchi S-I, Rogawski MA. Non-N-methylD-aspartate receptor antagonism by 3-N-substituted 2,3-benzodiazepines: relationship to anticonvulsant activity. J Pharmacol Exp Ther 1994; 271: 25–9

    PubMed  CAS  Google Scholar 

  125. Diirmiiller N, Craggs M, Meldrum BS. The effect of the nonNMDA receptor antagonists GYKI 52466 and NBQX and the competitive NMDA receptor antagonist D-CPPene on the development of amygdala kindling and on amygdala-kindled seizures. Epilepsy Res 1994; 17: 167–74

    Article  Google Scholar 

  126. Lallement G, Pemot-Marino I, Foquin-Tarricone A, et al. Antiepileptic effects of NBQX against soman-induced seizures. Neuroreport 1994; 5: 425–8

    Article  PubMed  CAS  Google Scholar 

  127. Loscher W, Honack D. Effects of the non-NMDA antagonists NBQX and the 2,3-benzodiazepine GYKI 52466 on different seizure types in mice: comparison with diazepam and interactions with flumazenil. Br J Pharmacol 1994; 113: 1349–57

    Article  PubMed  CAS  Google Scholar 

  128. Loscher W, Honack D. Over-additive anticonvulsant effect of memantine and NBQX in kindled rats. Eur J Pharmacol 1994; 259: R3–5

    Article  PubMed  CAS  Google Scholar 

  129. Loscher W, Rundfeldt C, Honack D. Low doses of NMDA receptor antagonists synergistically increase the anticonvulsant effect of the AMPA receptor antagonist NBQX in the kindling model of epilepsy. Eur J Neurosci 1993; 5: 1545–50

    Article  PubMed  CAS  Google Scholar 

  130. Meldrum BS, Craggs MD, Dürmüller N, et al. The effects of AMPA receptor antagonists on kindled seizures and on reflex epilepsy in rodents and primates. Epilepsy Res Suppl 1992: 9; 307–11

    PubMed  CAS  Google Scholar 

  131. Namba T, Morimoto K, Sato K, et al. Antiepileptogenic and anticonvulsant effects of NBQX, a selective AMPA receptor antagonist, in the rat kindling model of epilepsy. Brain Res 1994; 638: 36–44

    Article  PubMed  CAS  Google Scholar 

  132. Smith SE, Diirmiiller N, Meldrum BS. The non-N-methyl-Daspartate receptor antagonists, GYKI 52466 and NBQX are anticonvulsant in two animal models of reflex epilepsy. Eur J Pharmacol 1991; 201: 179–83

    Article  PubMed  CAS  Google Scholar 

  133. Steppuhn KG, Turski L. Modulation of the seizure threshold for excitatory amino acids in mice by anti epileptic drugs and chemoconvulsants. J Pharmacol Exp Ther 1993; 265: 1063–70

    PubMed  CAS  Google Scholar 

  134. Taylor CP, Vartanian MG. Probenecid pretreatment enhances anticonvulsant action of NBQX in mice. Eur J Pharmacol 1992; 213: 151–3

    Article  PubMed  CAS  Google Scholar 

  135. Turski L, Jacobsen P, Honore T, et al. Relief of experimental spasticity and anxiolytic/anticonvulsant actions of the alphaamino-3-hydroxy-5-methyl-4-isoxazolepropionate antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (F) quinoxaline. J Pharmacol Exp Ther 1992; 260: 742–7

    PubMed  CAS  Google Scholar 

  136. Yamaguchi S-I, Donevan SD, Rogawski MA. Anticonvulsant activity of AMPAlkainate antagonists: comparison of GYKI 52466 and NBQX in maximal electroshock and chemoconvulsant seizure models. Epilepsy Res 1993; 15: 179–84

    Article  PubMed  CAS  Google Scholar 

  137. Young D, Dragunow M. Non-NMDA glutamate receptors are involved in the maintenance of status epilepticus. Neuroreport 1993; 5: 81–3

    Article  PubMed  CAS  Google Scholar 

  138. Young D, Dragunow M. MK-801 and NBQX prevent electrically induced status epilepticus. Neuroreport 1994; 5: 1481–4

    Article  PubMed  CAS  Google Scholar 

  139. Zamowski T, Kleinrok Z, Turski WA, et al. 2,3-Dihydroxy-6- nitro-7 -sulfamoylbenzo(f)quinoxaline enhances the protective activity of common antiepileptic drugs against maximal electroshock-induced seizures in mice. Neuropharmacology 1993; 32: 895–900

    Article  Google Scholar 

  140. Fink-Jensen A, Judge ME, Hansen JB, et al. Inhibition of cisplatin-induced emesis in ferrets by the non-NMDA receptor antagonists NBQX and CNQX. Neurosci Lett 1992; 137: 173–7

    Article  PubMed  CAS  Google Scholar 

  141. Markham A, Sorkin EM. Ondansetron: an update of its therapeutic use in chemotherapy-induced and postoperative nausea and vomiting. Drugs 1993; 45: 931–52

    Article  PubMed  CAS  Google Scholar 

  142. Cumberbatch MJ, Chizh BA, Headley PM. AMPA receptors have an equal role in spinal nociceptive and non-nociceptive transmission. Neuroreport 1994; 5: 877–80

    Article  PubMed  CAS  Google Scholar 

  143. Hunter JC, Singh L. Role of excitatory amino acid receptors in the mediation of the nociceptive response to formalin in the rat. Neurosci Lett 1994; 174: 217–21

    Article  PubMed  CAS  Google Scholar 

  144. Fujisawa H, Dawson D, Browne SE, et al. Pharmacological modification of glutamate neurotoxicity in vivo. Brain Res 1993; 629: 73–8

    Article  PubMed  CAS  Google Scholar 

  145. Lees GJ, Leong W. The non-NMDA glutamate antagonist NBQX blocks the local hippocampal toxicity of kainic acid, but not the diffuse extrahippocampal damage. Neurosci Lett 1992; 143: 39–42

    Article  PubMed  CAS  Google Scholar 

  146. Lees GJ, Leong W. Differential effects of NBQX on the distal and local toxicity of glutamate agonists administered intrahippocampally. Brain Res 1993; 628: 1–7

    Article  PubMed  CAS  Google Scholar 

  147. Lees GJ, Leong W. Synergy between diazepam and NBQX in preventing neuronal death caused by non-NMDA agonists. Neuroreport 1994; 5: 2149–52

    Article  PubMed  CAS  Google Scholar 

  148. Lees GJ, Leong W. NBQX prevents contralateral but not ipsilateral seizure-induced cytotoxicity ofkainate but not AMPAreversal at high doses ofNBQX. Neuroreport 1994; 5: 2153–6

    Article  PubMed  CAS  Google Scholar 

  149. Massieu L, Tapia R. 2,3-Dihydroxy-6-nitro-7-sulfamoyl-benzo (f)quinoxaline protects against both AMPA and kainate-induced lesions in rat striatum in vivo. Neuroscience 1994; 59: 931–8

    Article  PubMed  CAS  Google Scholar 

  150. Moncada C, Arvin B, Le Peillet E, et al. Non-NMDA antagonists protect against kainate more than AMPA toxicity in the rat hippocampus. Neurosci Lett 1991; 133: 287–90

    Article  PubMed  CAS  Google Scholar 

  151. Willis CL, Meldrum BS, Nunn PB, et al. Neuronal damage induced by I3-N-oxalylamino-L-alanine, in the rat hippocampus, can be prevented by a non-NMDA antagonist, 2,3-dihydroxy- 6-nitro-7-sulfamoyl-benzo(F)quinoxaline. Brain Res 1993; 55-62

  152. May PC, Robison PM. GYKI 52466 protects against nonNMDA receptor-mediated excitotoxicity in primary rat hippocampal cultures. Neurosci Lett 1993; 152: 169–72

    Article  PubMed  CAS  Google Scholar 

  153. Pai KS, Shankar SK, Ravindranath V. Billionfold difference in the toxic potencies of two excitatory plant amino acids, LBOAA and L-BMAA: biochemical and morphological studies using mouse brain slices. Neurosci Res 1993; 17: 241–8

    Article  PubMed  CAS  Google Scholar 

  154. Gill R, Nordholm L, Lodge D. The neuroprotective actions of 2,3-dihydroxy -6-nitro-7 -sulfamoy l-benzo(F)quinoxaline (NBQX) in a rat focal ischaemia model. Brain Res 1992; 580: 35–43

    Article  PubMed  CAS  Google Scholar 

  155. Xue D, Huang ZG, Barnes K, et al. Delayed treatment with AMPA, but not NMDA, antagonists reduces neocortical infarction. J Cereb Blood Flow Metab 1994; 14: 251–61

    Article  PubMed  CAS  Google Scholar 

  156. Degraba TJ, Ostrow P, Hanson S, et al. Motor performance, histologic damage, and calcium influx in rats treated with NBQX after focal ischemia. J Cereb Blood Flow Metab 1994; 14: 262–8

    Article  PubMed  CAS  Google Scholar 

  157. Smith SE, Meldrum BS. Cerebroprotective effect of a non-Nmethyl- D-aspartate antagonist, GYKI 52466, after focal ischemia in the rat. Stroke 1992; 23: 861–4

    Article  PubMed  CAS  Google Scholar 

  158. Gill R, Lodge D. The neuroprotective effects of the decahydroisoquinoline, LY 215490; a novel AMPA antagonist in focal ischaemia. Neuropharmacology 1994; 33: 1529–36

    Article  PubMed  CAS  Google Scholar 

  159. Bullock R, Graham DI, Swanson S, et al. Neuroprotective effect of the AMPA receptor antagonist LY-293558 in focal cerebral ischemia in the cat. J Cereb Blood Flow Metab 1994; 14: 466–71

    Article  PubMed  CAS  Google Scholar 

  160. Sheardown MJ, Suzdak PD, Nordholm L. AMPA, but not NMDA, receptor antagonism is neuroprotective in gerbil global ischaemia, even when delayed 24 h. Eur J Pharmacol 1993; 236: 347–53

    Article  PubMed  CAS  Google Scholar 

  161. Judge ME, Sheardown MJ, Jacobsen P, Jacobsen P. Protection against post-ischemic behavioral pathology by the a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonist 2,3-dihydroxy-6-nitro-7-sulfamoyl-benzo (f) quinoxaline (NBQX) in the gerbil. Neurosci Lett 1991; 133: 291–4

    Article  PubMed  CAS  Google Scholar 

  162. Gaspary HL, Simon RP, Graham SH. BW1003C87 and NBQX but not CGS 19755 reduce glutamate release and cerebral ischemic necrosis. Eur J Pharmacol 1994; 262: 197–203

    Article  PubMed  CAS  Google Scholar 

  163. Buchan AM, Lesiuk H, Barnes KA, et al. AMPA antagonists: do they hold more promise for clinical stroke trials than NMDA antagonists? Stroke 1993; 24 Suppl. 1: 1-148–152

    Google Scholar 

  164. Li H, Buchan AM. Treatment with an AMP A antagonist 12 hours following severe normothermic forebrain ischemia prevents CAl neuronal injury. J Cereb Blood Flow Metab 1993; 13: 933–9

    Article  PubMed  CAS  Google Scholar 

  165. Buchan AM, Li H, Cho S, et al. Blockade of the AMPAreceptor prevents CAl hippocampal injury following severe but transient forebrain ischemia in adult rats. Neurosci Lett 1991; 132: 255–8

    Article  PubMed  CAS  Google Scholar 

  166. Le Peillet E, Arvin B, Moncada C, et al. The non-NMDA antagonists, NBQX and GYKI 52466, protect against cortical and striatal cell loss following transient global ischaemia in the rat. Brain Res 1992; 571: 115–20

    Article  PubMed  Google Scholar 

  167. Frank L, Bruhn T, Diemer NH. The effect of an AMPA antagonist (NBQX) on postischemic neuron loss and protein synthesis in the rat brain. Exp Brain Res 1993; 95: 70–6

    Article  PubMed  CAS  Google Scholar 

  168. Diemer NH, Jprgensen MB, Johansen FF, et al. Protection against ischemic hippocampal CAl damage in the rat with a new non-NMDA antagonist, NBQX. Acta Neurol Scand 1992; 86: 45–9

    Article  PubMed  CAS  Google Scholar 

  169. Ross DT, Brasko J, Patrikios P. The AMPA antagonist NBQX protects thalamic reticular neurons from degeneration following cardiac arrest in rats. Brain Res 1995; 683: 117–28

    Article  PubMed  CAS  Google Scholar 

  170. Balchen T, Diemer NH. The AMPAantagonist, NBQX, protects against ischemia-induced loss of cerebellar Purkinje cells. Neuroreport 1992; 3: 785–8

    Article  PubMed  CAS  Google Scholar 

  171. Diemer NH, Johansen FF, Jprgensen MB. N-methyl-D-aspartate and non-N-methyl-D-aspartate antagonists in global cerebral ischemia. Stroke 1990; 21 Suppl.111: III-39–42

    Google Scholar 

  172. von Euler M, Seiger A, Holmberg L, et al. NBQX, a competitive non-NMDA receptor antagonist, reduces degeneration due to focal spinal cord ischemia. Exp Neurol 1994; 129: 163–8

    Article  Google Scholar 

  173. Nellgiird B, Wieloch T. Postischemic blockade of AMPA but not NMDA receptors mitigates neuronal damage in the rat brain following transient cerebral ischemia. J Cereb Blood Flow Metab 1992; 12: 2–11

    Article  Google Scholar 

  174. Gill R. The pharmacology of a-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)lkainate antagonists and their role in cerebral ischaemia. Cerebrovasc Brain Metab Rev 1994; 6: 225–56

    PubMed  CAS  Google Scholar 

  175. Kwak S, Aizawa H, Ishida M, et al. Acromelic acid, a novel kainate analogue, induces long-lasting paraparesis with selective degeneration of interneurons in the rat spinal cord. Exp NeuroI 1992; 116: 145–55

    Article  Google Scholar 

  176. Garthwaite G, Garthwaite J. Mechanisms of AMPA neurotoxicity in rat brain slices. Eur J Neurosci 1991; 3: 729–36

    Article  PubMed  Google Scholar 

  177. Garthwaite G, Garthwaite J. Quisqualate neurotoxicity: a delayed, CNQX-sensitive process triggered by a CNQX-insensitive mechanism in young rat hippocampal slices. Neurosci Lett 1989; 99: 113–8

    Article  PubMed  CAS  Google Scholar 

  178. Zinkand WC, DeFeo PA, DeFeo PA, DeFeo PA, et al. Quisqualate neurotoxicity in rat cortical cultures: pharmacology and mechanisms. Eur J Pharmacol 1992; 212: 129–36

    Article  PubMed  CAS  Google Scholar 

  179. Lees GJ. The possible contribution of microglia and macrophages to delayed neuronal death after ischemia. J Neurol Sci 1993; 114: 119–22

    Article  PubMed  CAS  Google Scholar 

  180. Arvin B, Moncada C, Le Peillet E, et al. GYKI 52466 blocks the increase in extracellular glutamate induced by ischaemia. Neuro Report 1992; 3: 235–8

    CAS  Google Scholar 

  181. Hatfield RH, Gill R, Brazell C. The dose-response relationship and therapeutic window for dizocilpine (MK -801) in a rat focal ischaemia model. Eur J PharmacoI 1992; 216: 1–7

    Article  CAS  Google Scholar 

  182. Gill R, Foster AC, Foster AC. MK-801 is neuroprotective in gerbils when administered during the post-ischaemic period. Neuroscience 1988; 25: 847–55

    Article  PubMed  CAS  Google Scholar 

  183. Foutz AS, Pierrefiche O, Denavit-Saubie M. Combined blockade of NMDA and non-NMDA receptors produces respiratory arrest in the adult cat. Neuroreport 1994; 5: 481–4

    Article  PubMed  CAS  Google Scholar 

  184. McManigle JE, Taveira DaSilva AM, Dretchen KL, et al. Potentiation of MK-801-induced breathing impairment by 2,3- dihydroxy-6-nitro-7 -sulfamoyl-benzo(F)quinoxaline. Eur J Pharmacol 1994; 252: 11–7

    Article  PubMed  CAS  Google Scholar 

  185. Frandsen A, Drejer J, Schousboe A. Direct evidence that excitotoxicity in cultured neurons is mediated via N-methyl-Daspartate (NMDA) as well as non-NMDA receptors. J Neurochem 1989; 53: 297–9

    Article  PubMed  CAS  Google Scholar 

  186. Kaku DA, Goldberg MP, Choi ow. Antagonism ofnon-NMDA receptors augments the neuroprotective effect of NMDA receptor blockade in cortical cultures subjected to prolonged deprivation of oxygen and glucose. Brain Res 1991; 554: 344–7

    Article  PubMed  CAS  Google Scholar 

  187. Lippert K, Welsch M, Krieglstein J. Over-additive protective effect of dizocilpine and NBQX against neuronal damage. Eur J Pharmacol 1994; 253: 207–13

    Article  PubMed  CAS  Google Scholar 

  188. Virgili M, Contestabile A, Bamabei O. Simultaneous blockade of non-NMDA ionotropic receptors and NMDA receptorassociated ionophore partially protects hippocampal slices from protein synthesis impairment due to simulated ischemia. Hippocampus 1995; 5: 91–7

    Article  PubMed  CAS  Google Scholar 

  189. Mosinger JL, Price MT, Price MT, Price MT, et al. Blockade of both NMDA and non-NMDA receptors is required for optimal protection against ischemic neuronal degeneration in the in vivo adult mammalian retina. Exp Neurol 1991; 113: 10–7

    Article  PubMed  CAS  Google Scholar 

  190. Nellgard B, Wieloch T. Cerebral protection by AMPA- and NMDA-receptor antagonists administered after severe insulininduced hypoglycemia. Exp Brain Res 1992; 92: 259–66

    Article  PubMed  CAS  Google Scholar 

  191. Wrathall JR, Teng YO, Choiniere O, et al. Evidence that local non-NMDA receptors contribute to functional deficits in contusive spinal cord injury. Brain Res 1992; 586: 140–3

    Article  PubMed  CAS  Google Scholar 

  192. Wrathall JR, Choiniere O, Teng YD. Dose-dependent reduction of tissue loss and functional impairment after spinal cord trauma with the AMPA/kainate antagonist NBQX. J Neurosci 1994; 14: 6598–607

    PubMed  CAS  Google Scholar 

  193. Du F, Whetsell WO, Aboukhalil B, et al. Preferential neuronal loss in layer-III of the entorhinal cortex in patients with temporallobe epilepsy. Epilepsy Res 1993; 16: 223–33

    Article  PubMed  CAS  Google Scholar 

  194. Hudson LP, Munoz DG, Miller L, et al. Amygdaloid sclerosis in temporal lobe epilepsy. Ann Neurol 1993; 33: 622–31

    Article  PubMed  CAS  Google Scholar 

  195. Armstrong DO. The neuropathology of temporal lobe epilepsy. J Neuropathol Exp Neurol 1993; 52: 433–43

    Article  PubMed  CAS  Google Scholar 

  196. Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 1985; 14: 375–403

    Article  PubMed  CAS  Google Scholar 

  197. Wasterlain CG, Fujikawa DG, Penix L, et al. Pathophysiological mechanisms of brain damage from status epilepticus. Epilepsia 1993; 34: S37–53

    Article  PubMed  Google Scholar 

  198. Holmes GL. Do seizures cause brain damage? Epilepsia 1991; 32 Suppl. 1: S14–28

    PubMed  Google Scholar 

  199. Saukkonen A, Kälviäinen R, Partanen K, et al. Do seizures cause neuronal damage? AMRI study in newly diagnosed and chronic epilepsy. Neuroreport 1994; 6: 219–23

    Article  PubMed  CAS  Google Scholar 

  200. Berg M, Bruhn T, Johansen FF, et al. Kainic acid-induced seizures and brain damage in the rat: different effects of NMDA and AMPA receptor antagonists. Pharmacol Toxicol 1993; 73: 262–8

    Article  PubMed  CAS  Google Scholar 

  201. Honore T, Sheardown MJ, Nielsen EB, et al. Non-N-methyl-Daspartate receptor antagonists as potential drug candidates. In: Meldrum BS, Moroni F, Simon RP, et aI., editors. Excitatory amino acids. New York: Raven Press, 1991: 451–60

    Google Scholar 

  202. Fariello RG, Golden GT, Smith GG, et al. Potentiation ofkainic acid epileptogenicity and sparing from neuronal damage by an NMDA receptor antagonist. Epilepsy Res 1989; 3: 206–13

    Article  PubMed  CAS  Google Scholar 

  203. Lason W, Simpson IN, McGinty JE. Effects of D-(-)-aminophosphonovalerate on behavioural and histological changes induced by systemic kainic acid. Neurosci Lett 1988; 87: 23–8

    Article  PubMed  CAS  Google Scholar 

  204. Lees GJ. Effects of anaesthetics, anticonvulsants and glutamate antagonists on kainic acid-induced local and distal neuronal loss. J Neurol Sci 1992; 108: 221–8

    Article  PubMed  CAS  Google Scholar 

  205. Lerner-Natoli M, Rondouin G, Belaidi M, et al. N-[I-(2- Thienyl)cyclohexyll-piperidine (TCP) does not block kainic acid-induced status epilepticus but reduces secondary hippocampal damage. Neurosci Lett 1991; 122: 174–8

    Article  PubMed  CAS  Google Scholar 

  206. Rogers BC, Tilson HA. Kainate-induced functional deficits are not blocked by MK-801. Neurosci Lett 1990; 109: 335–40

    Article  PubMed  CAS  Google Scholar 

  207. Virgili M, Migani P, Contestabile A, et al. Protection from kainic acid neuropathological syndrome by NMDA receptor antagonists: effect of MK -80 I and CGP 39551 on neurotransmitter and glial markers. Neuropharmacology 1992; 31: 469–74

    Article  PubMed  CAS  Google Scholar 

  208. Penix LP, Wasterlain CG. Selective protection of neuropeptide containing dentate hilar interneurons by non-NMDA receptor blockade in an animal model of status epilepticus. Brain Res 1994; 644: 19–24

    Article  PubMed  CAS  Google Scholar 

  209. Lallement G, Delamanche IS, Pernot-Marino I, et al. Neuroprotective activity of glutamate receptor antagonists against soman-induced hippocampal damage: quantification with an OJ3 site ligand. Brain Res 1993; 618: 227–37

    Article  PubMed  CAS  Google Scholar 

  210. Robbins RJ, Brines ML, Kim JH, et al. A selective loss of somatostatin in the hippocampus of patients with temporal lobe epilepsy. Ann Neurol 1991; 29: 325–32

    Article  PubMed  CAS  Google Scholar 

  211. Appel SH. Excitotoxic neuronal cell death in amyotrophic lateral sclerosis. Trends Neurosci 1993; 16: 3–5

    Article  PubMed  CAS  Google Scholar 

  212. Shaw PJ. Excitotoxicity and motor neurone disease: a review of the evidence. J Neurol Sci 1994; 124 Suppl.: 6–13

    Article  PubMed  Google Scholar 

  213. Smith RG, Appel SH. Molecular approaches to amyotrophic lateral sclerosis. Annu Rev Med 1995; 46: 113–45

    Article  Google Scholar 

  214. Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med 1992; 326: 1464–8

    Article  PubMed  CAS  Google Scholar 

  215. Rothstein JD, Van Kammen M, Levey AI, et al. Selective loss of glial glutamate transporter GLT-I in amyotrophic lateral sclerosis. Ann Neurol 1995; 38: 73–84

    Article  PubMed  CAS  Google Scholar 

  216. Eisen A, Stewart H, Schulzer M, et al. Anti-glutamate therapy in amyotrophic lateral sclerosis — a trial using lamotrigine. Can J Neurol Sci 1993; 20: 297–301

    PubMed  CAS  Google Scholar 

  217. Chase RA, Pearson S, Nunn PB, et al. Comparative toxicities of u- and j3-N-oxalyl-L-u,j3-diaminopropionic acids to rat spinal cord. Neurosci Lett 1985; 55: 89–94

    Article  PubMed  CAS  Google Scholar 

  218. Nakamura R, Kamakura K, Kwak S. Late-onset selective neuronal damage in the rat spinal cord induced by continuous intrathecal administration of AMPA. Brain Res 1994; 654: 279–85

    Article  PubMed  CAS  Google Scholar 

  219. Shinozaki H, Ishida M, Gotoh Y, et al. Specific lesions of rat spinal interneurons induced by systemic administration of acromelic acid, a new potent kainate analogue. Brain Res 1989; 503: 330–3

    Article  PubMed  CAS  Google Scholar 

  220. Urca G, Urca R. Neurotoxic effects of excitatory amino acids in the mouse spinal cord: quisqualate and kainate but not N-methyl-D-aspartate induce permanent neural damage. Brain Res 1990; 529: 7–15

    Article  PubMed  CAS  Google Scholar 

  221. Carriedo SG, Yin H-Z, Lamberta R, et al. In vitro kainate injury to large, SMI-32(+) spinal neurons is Ca2+dependent. Neuroreport 1995; 6: 945–8

    Article  PubMed  CAS  Google Scholar 

  222. Couratier P, Hugon J, Sindou P, et al. Cell culture evidence for neuronal degeneration in amyotrophic lateral sclerosis being linked to glutamate AMPA/kainate receptors. Lancet 1993; 341: 265–8

    Article  PubMed  CAS  Google Scholar 

  223. Shaw PJ, Chinnery RM, Ince PG. Non-NMDAreceptors in motor neuron disease (MND): a quantitative autoradiographic study in spinal cord and motor cortex using [3H]CNQX and [3H]kainate. Brain Res 1994; 655: 186–94

    Article  PubMed  CAS  Google Scholar 

  224. Swash M, Meininger V, editors. Third international symposium on ALSIMND. J Neurol Sci 1994 Jul; Suppl.: 1–109

    Google Scholar 

  225. Rowland LP. Amyotrophic lateral sclerosis: human challenge for neuroscience. Proc Natl Acad Sci USA 1995; 92: 1251–3

    Article  PubMed  CAS  Google Scholar 

  226. Rowland LP, Gehrig E, Gehrig L. Amyotrophic lateral sclerosis: theories and therapies. Ann Neurol 1994; 35: 129–30

    Article  PubMed  CAS  Google Scholar 

  227. Dodd PR, Scott HL, Westphalen RI. Excitotoxic mechanisms in the pathogenesis of dementia. Neurochem Int 1994; 25: 203–19

    Article  PubMed  CAS  Google Scholar 

  228. Greenamyre JT, Maragos WF, Albin RL, et al. Glutamate transmission and toxicity in Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 1988; 12: 421–30

    Article  PubMed  CAS  Google Scholar 

  229. Greenamyre JT, Young AB. Excitatory amino acids and Alzheimer’s disease. Neurobiol Aging 1989; 10: 593–602

    Article  PubMed  CAS  Google Scholar 

  230. Palmer AM, Gershon S. Is the neuronal basis of Alzheimer’s disease cholinergic or glutamatergic? FASEB J 1990; 4: 2745–52

    PubMed  CAS  Google Scholar 

  231. Koh J-Y, Yang LL, Cotman CW. ~-Amyloid protein increases the vulnerability of cultured cortical neurons to excitotoxic damage. Brain Res 1990; 533: 315–20

    Article  PubMed  CAS  Google Scholar 

  232. Mattson MP. Antigenic changes similar to those seen in neurofibrillary tangles are elicited by glutamate and Ca2+ influx in cultured hippocampal neurons. Neuron 1990; 4: 105–17

    Article  PubMed  CAS  Google Scholar 

  233. Mattson MP, Cheng B, Davis D, et al. ~-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 1992; 12: 376–89

    PubMed  CAS  Google Scholar 

  234. Dewar D, Chalmers DT, Shand A, et al. Selective reduction of quisqualate (AMPA) receptors in Alzheimer cerebellum. Ann Neurol 1990; 28: 805–10

    Article  PubMed  CAS  Google Scholar 

  235. Geddes JW, Ulas J, Brunner LC, et al. Hippocampal excitatory amino acid receptors in elderly, normal individuals and those with Alzheimer’s disease — non-N-methyl-D-aspartate receptors. Neuroscience 1992; 50: 23–34

    Article  PubMed  CAS  Google Scholar 

  236. Hyman BT, Penney Jr JB, Blackstone CD, et al. Localization of non-N-methyl-D-aspartate glutamate receptors in normal and Alzheimer hippocampal formation. Ann Neurol 1994; 35: 31–7

    Article  PubMed  CAS  Google Scholar 

  237. Ulas J, Weihmuller FB, Brunner LC, et al. Selective increase of NMDA-sensitive glutamate binding in the striatum of Parkinson’s disease, Alzheimer’s disease, and mixed Parkinson’s disease/Alzheimer’s disease patients: an autoradiographic study. J Neurosci 1994; 14: 6317–24

    PubMed  CAS  Google Scholar 

  238. Yasuda RP, Ikonomovic MD, Sheffield R, et al. Reduction of AMPA-selective glutamate receptor subunits in the entorhinal cortex of patients with Alzheimer’s disease pathology: a biochemical study. Brain Res 1995; 678: 161–7

    Article  PubMed  CAS  Google Scholar 

  239. Palmer AM, Burns MA. Preservation ofredox, polyamine and glycine modulatory domains of the N-methyl-D-aspartate receptor in Alzheimer’s disease. J Neurochem 1994; 62: 187–96

    Article  PubMed  CAS  Google Scholar 

  240. Pellegrini-Giampietro DE, Bennett MVL, Zukin RS. AMPA/kainate receptor gene expression in normal and Alzheimer’s disease hippocampus. Neuroscience 1994; 61: 41–9

    Article  PubMed  CAS  Google Scholar 

  241. Porter RHP, Cowburn RF, Alasuzoff I, et al. Heterogeneity of NMDA receptors labelled with [3H]3-((±))2-carboxypiperazin-4-yl)propyl-I-phosphonic acid ([3H]CPP): receptor status in Alzheimer’s disease brains. Eur J Pharmacol 1992; 225: 195–201

    Article  PubMed  CAS  Google Scholar 

  242. Cendes F, Andermann F, Carpenter S, et al. Temporal lobe epilepsy caused by domoic acid intoxication: evidence for glutamate receptor-mediated excitotoxicity in humans. Ann Neurol 1995; 37: 123–6

    Article  PubMed  CAS  Google Scholar 

  243. Peng YO, Taylor TB, Finch RE, et al. Neuroexcitatory and neurotoxic actions of the amnesic shellfish poison, domoic acid. Neuroreport 1994; 5: 981–5

    Article  PubMed  CAS  Google Scholar 

  244. Scallet AC, Binienda Z, Caputo FA, et al. Domoic acid-treated cynomolgus monkeys (M, fascicularis): effects of dose on hippocampal neuronal and terminal degeneration. Brain Res 1993; 627: 307–13

    Article  PubMed  CAS  Google Scholar 

  245. Schwob JE, Fuller T, Price JL, et al. Widespread patterns of neuronal damage following systemic or intracerebral injections of kainic acid: a histological study. Neuroscience 1980; 5: 991–1014

    Article  PubMed  CAS  Google Scholar 

  246. Stewart OR, Zorumski CF, Price MT, et al. Domoic acid: a dementia-inducing excitotoxic food poison with kainic acid receptor specificity. Exp Neurol 1990; 110: 127–38

    Article  PubMed  CAS  Google Scholar 

  247. Strain SM, Tasker RAR. Hippocampal damage produced by systemic injections of domoic acid in mice. Neuroscience 1991; 44: 343–52

    Article  PubMed  CAS  Google Scholar 

  248. Novelli A, Kispert J, Fernandez-Sanchez MT, et al. Domoic acid-containing toxic mussels produce neurotoxicity in neuronal cultures through a synergism between excitatory amino acids. Brain Res 1992; 577: 41–8

    Article  PubMed  CAS  Google Scholar 

  249. Buchan A, Pulsinelli WA. Hypothermia but not the N-methylD- aspartate antagonist, MK -80 I, attenuates neuronal damage in gerbils subjected to transient global ischemia. J Neurosci 1990; 10: 311–6

    PubMed  CAS  Google Scholar 

  250. Busto R, Dietrich WD, Globus MYT, et al. Small differences in intraischemic brain temperature critically determine the extent of ischemic neuronal injury. J Cereb Blood Flow Metab 1987; 7: 729–38

    Article  PubMed  CAS  Google Scholar 

  251. Minamisawa H, Smith M-L, Siesjo BK. The effect of mild hyperthermia and hypothermia on brain damage following 5, 10, and 15 minutes of forebrain ischemia. Ann Neurol 1990; 28: 26–33

    Article  PubMed  CAS  Google Scholar 

  252. Yamashita K, Eguchi Y, Kajiwara K, et al. Mild hypothermia ameliorates ubiquitin synthesis and prevents delayed neuronal death in the gerbil hippocampus. Stroke 1991; 22: 1574–81

    Article  PubMed  CAS  Google Scholar 

  253. Hollander D, Pradas J, Kaplan R, et al. High-dose dextromethorphan in amyotrophic lateral sclerosis: phase I safety and pharmacokinetic studies. Ann Neurol 1994; 36: 920–4

    Article  PubMed  CAS  Google Scholar 

  254. Gouliaev AH, Senning A. Piracetam and other structurally related nootropics. Brain Res Rev 1994; 19: 180–222

    Article  PubMed  CAS  Google Scholar 

  255. Lee CR, Benfield P. Aniracetam: an overview of its pharmacodynamic and pharmacokinetic properties, and a review of its therapeutic potential in senile cognitive disorders. Drugs Aging 1994; 4: 257–73

    Article  PubMed  CAS  Google Scholar 

  256. Pittaluga A, Pattarini R, Raiteri M. Putative cognition enhancers reverse kynurenic acid antagonism at hippocampal NMDA receptors. Eur J Pharmacol 1995; 272: 2–3

    Article  Google Scholar 

  257. Pizzi M, Fallacara C, Arrighi V, et al. Attenuation of excitatory amino acid toxicity by metabotropic glutamate receptor agonists and aniracetam in primary cultures of cerebellar granule cells. J Neurochem 1993; 61: 683–9

    Article  PubMed  CAS  Google Scholar 

  258. Granger R, Staubli U, Davis M, et al. A drug that facilitates glutamatergic transmission reduces exploratory activity and improves performance in a learning-dependent task. Synapse 1993; 15: 326–9

    Article  PubMed  CAS  Google Scholar 

  259. Chen K, Hernandez YM, Dretchen KL, et al. Intravenous NBQX inhibits spontaneously occurring sympathetic nerve activity and reduces blood pressure in cats. Eur J Pharmacol 1994; 252: 155–60

    Article  PubMed  CAS  Google Scholar 

  260. Wagner EJ, Moore KE, Lookingland KJ. Neurochemical evidence that AMPA receptor-mediated tonic inhibition of hypothalamic dopaminergic neurons occurs via activation of inhibitory interneurons. Brain Res 1994; 660: 319–22

    Article  PubMed  CAS  Google Scholar 

  261. Wagner EJ, Moore KE, Lookingland KJ. Non-NMDA receptormediated regulation of hypothalamic dopaminergic neurons in the rat. Eur J Pharmacol 1994; 254: 105–12

    Article  PubMed  CAS  Google Scholar 

  262. Auer RN, Coulter KC. The nature and time course of neuronal vacuolation induced by the N-methyl-D-aspartate antagonist MK-801. Acta Neuropathol (Berl) 1994; 87: 1–7

    Article  CAS  Google Scholar 

  263. Fix AS, Hom JW, Truex LL, et al. Neuronal vacuole formation in the rat posterior cingulate retrosplenial cortex after treatment with the N-methyl-D-aspartate (NMDA) antagonist MK-801 (dizocilpine maleate). Acta Neuropathol (Berl) 1994; 88: 511–9

    Article  CAS  Google Scholar 

  264. Fix AS, Hom JW, Wightman KA, et al. Neuronal vacuolization and necrosis induced by the noncompetitive N-methyl-Daspartate (NMDA) antagonist MK(+)801 (dizocilpine maleate) — a light and electron microscopic evaluation of the rat retrosplenial cortex. Exp Neurol 1993; 123: 204–15

    Article  PubMed  CAS  Google Scholar 

  265. Hargreaves RJ, Rigby M, Smith D, et al. Competitive as well as uncompetitive N-methyl-D-aspartate receptor antagonists affect cortical neuronal pathology and cerebral glucose metabolism. Neurochem Res 1993; 18: 1263–9

    Article  PubMed  CAS  Google Scholar 

  266. Olney JW, Labruyere J, Price MT. Pathological changes induced in cerebrocortical neurons by phencyclidine and related drugs. Science 1989; 244: 1360–2

    Article  PubMed  CAS  Google Scholar 

  267. Olney JW, Labruyere J, Wang G, et al. NMDA antagonist neurotoxicity: mechanism and prevention. Science 1991; 254: 1515–8

    Article  PubMed  CAS  Google Scholar 

  268. Ellison G. Competitive and non-competitive NMDA antagonists induce similar limbic degeneration. Neuroreport 1994; 5: 2688–92

    Article  PubMed  CAS  Google Scholar 

  269. Browne SE, McCulloch J. AMPA receptor antagonists and local cerebral glucose utilization in the rat. Brain Res 1994; 641: 10–20

    Article  PubMed  CAS  Google Scholar 

  270. Suzdak PD, Sheardown MJ. Effect of the non-NMDA receptor antagonist, 2,3-dihydro-6-nitro-7 -sulfamoylbenzo(f)quinoxaline, on local cerebral glucose uptake in the limbic forebrain. J Neurochem 1993; 61: 1577–80

    Article  PubMed  CAS  Google Scholar 

  271. Patel TR, McCulloch J. AMPA receptor antagonism attenuates MK-801-induced hypermetabolism in the posterior cingulate cortex. Brain Res 1995; 686: 254–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lees, G.J. Therapeutic Potential of AMPA Receptor Ligands in Neurological Disorders. CNS Drugs 5, 51–74 (1996). https://doi.org/10.2165/00023210-199605010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199605010-00005

Keywords

Navigation