Skip to main content

Advertisement

Log in

Group III Metabotropic Glutamate Receptors: Pharmacology, Physiology and Therapeutic Potential

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Glutamate, the primary excitatory neurotransmitter in the central nervous system (CNS), exerts neuromodulatory actions via the activation of metabotropic glutamate (mGlu) receptors. There are eight known mGlu receptor subtypes (mGlu1-8), which are widely expressed throughout the brain, and are divided into three groups (I–III), based on signalling pathways and pharmacological profiles. Group III mGlu receptors (mGlu4/6/7/8) are primarily, although not exclusively, localised on presynaptic terminals, where they act as both auto- and hetero-receptors, inhibiting the release of neurotransmitter. Until recently, our understanding of the role of individual group III mGlu receptor subtypes was hindered by a lack of subtype-selective pharmacological tools. Recent advances in the development of both orthosteric and allosteric group III-targeting compounds, however, have prompted detailed investigations into the possible functional role of these receptors within the CNS, and revealed their involvement in a number of pathological conditions, such as epilepsy, anxiety and Parkinson’s disease. The heterogeneous expression of group III mGlu receptor subtypes throughout the brain, as well as their distinct distribution at glutamatergic and GABAergic synapses, makes them ideal targets for therapeutic intervention. This review summarises the advances in subtype-selective pharmacology, and discusses the individual roles of group III mGlu receptors in physiology, and their potential involvement in disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Niswender CM, Conn PJ (2010) Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol 50:295–322. doi:10.1146/annurev.pharmtox.011008.145533

    PubMed  CAS  PubMed Central  Google Scholar 

  2. Nicoletti F, Bockaert J, Collingridge GL et al (2011) Metabotropic glutamate receptors: from the workbench to the bedside. Neuropharmacology 60:1017–1041. doi:10.1016/j.neuropharm.2010.10.022

    PubMed  CAS  PubMed Central  Google Scholar 

  3. Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors. Annu Rev Pharmacol Toxicol 37:205–237. doi:10.1146/annurev.pharmtox.37.1.205

    PubMed  CAS  Google Scholar 

  4. Schoepp DD, Jane DE, Monn JA (1999) Pharmacological agents acting at subtypes of metabotropic glutamate receptors. Neuropharmacology 38:1431–1476

    PubMed  CAS  Google Scholar 

  5. Kim CH, Lee J, Lee J, Roche KW (2008) Metabotropic glutamate receptors: phosphorylation and receptor signaling. J Neurosci Res 86:1–10. doi:10.1002/jnr

    PubMed  CAS  Google Scholar 

  6. Shigemoto R, Kinoshita A, Wada E et al (1997) Differential presynaptic localization of metabotropic glutamate receptor subtypes in the rat hippocampus. J Neurosci 17:7503–7522

    PubMed  CAS  Google Scholar 

  7. Cartmell J, Schoepp DD (2000) Regulation of neurotransmitter release by metabotropic glutamate receptors. J Neurochem 75:889–907

    PubMed  CAS  Google Scholar 

  8. Schoepp DD (2001) Unveiling the functions of presynaptic metabotropic glutamate receptors in the central nervous system. J Pharmacol Exp Ther 299:12–20

    PubMed  CAS  Google Scholar 

  9. Lavreysen H, Dautzenberg FM (2008) Therapeutic potential of group III metabotropic glutamate receptors. Curr Med Chem 15:671–684

    PubMed  CAS  Google Scholar 

  10. Pin J-P, Galvez T, Prézeau L (2003) Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol Ther 98:325–354. doi:10.1016/S0163-7258(03)00038-X

    PubMed  CAS  Google Scholar 

  11. Kniazeff J, Bessis A-S, Maurel D et al (2004) Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol 11:706–713. doi:10.1038/nsmb794

    PubMed  CAS  Google Scholar 

  12. Doumazane E, Scholler P, Zwier JM et al (2011) A new approach to analyze cell surface protein complexes reveals specific heterodimeric metabotropic glutamate receptors. FASEB J 25:66–77. doi:10.1096/fj.10-163147

    PubMed  CAS  Google Scholar 

  13. Kammermeier PJ (2012) Functional and pharmacological characteristics of metabotropic glutamate receptors 2/4 heterodimers. Mol Pharmacol 82:438–447. doi:10.1124/mol.112.078501

    PubMed  CAS  PubMed Central  Google Scholar 

  14. González-Maeso J, Ang RL, Yuen T et al (2008) Identification of a serotonin/glutamate receptor complex implicated in psychosis. Nature 452:93–97. doi:10.1038/nature06612

    PubMed  PubMed Central  Google Scholar 

  15. Yin S, Noetzel MJ, Johnson KA et al (2014) Selective actions of novel allosteric modulators reveal functional heteromers of metabotropic glutamate receptors in the CNS. J Neurosci 34:79–94

    PubMed  CAS  PubMed Central  Google Scholar 

  16. Sibille P, Lopez S, Brabet I et al (2007) Synthesis and biological evaluation of 1-amino-2-phosphonomethylcyclopropanecarboxylic acids, new group III metabotropic glutamate receptor agonists. J Med Chem 50:3585–3595. doi:10.1021/jm070262c

    PubMed  CAS  Google Scholar 

  17. Acher FC, Tellier FJ, Azerad R et al (1997) Synthesis and pharmacological characterization of aminocyclopentanetricarboxylic acids: new tools to discriminate between metabotropic glutamate receptor subtypes. J Med Chem 40:3119–3129. doi:10.1021/jm970207b

    PubMed  CAS  Google Scholar 

  18. Gasparini F, Bruno V, Battaglia G et al (1999) (R, S)-4-phosphonophenylglycine, a potent and selective group III metabotropic glutamate receptor agonist, is anticonvulsive and neuroprotective in vivo. J Pharmacol Exp Ther 290:1678–1687

    Google Scholar 

  19. Frauli M, Hubert N, Schann S et al (2007) Amino-pyrrolidine tricarboxylic acids give new insight into group III metabotropic glutamate receptor activation mechanism. Mol Pharmacol 71:704–712. doi:10.1124/mol.106.030254.posed

    PubMed  CAS  Google Scholar 

  20. De Colle C, Bessis AS, Bockaert J et al (2000) Pharmacological characterization of the rat metabotropic glutamate receptor type 8a revealed strong similarities and slight differences with the type 4a receptor. Eur J Pharmacol 394:17–26

    PubMed  Google Scholar 

  21. Johansen PA, Chase LA, Sinor AD et al (1995) Type 4a metabotropic glutamate receptor: identification of new potent agonists and differentiation from the L-(+)-2-amino-4-phosphonobutanoic acid-sensitive receptor in the lateral perforant pathway in rats. Mol Pharmacol 48:140–149

    PubMed  CAS  Google Scholar 

  22. Ayala JE, Niswender CM, Luo Q et al (2008) Group III mGluR regulation of synaptic transmission at the SC-CA1 synapse is developmentally regulated. Neuropharmacology 54:804–814. doi:10.1016/j.neuropharm.2007.12.009

    PubMed  CAS  PubMed Central  Google Scholar 

  23. Beurrier C, Lopez S, Révy D et al (2009) Electrophysiological and behavioral evidence that modulation of metabotropic glutamate receptor 4 with a new agonist reverses experimental parkinsonism. FASEB J 23:3619–3628. doi:10.1096/fj.09-131789

    PubMed  CAS  Google Scholar 

  24. Fazio F, Lionetto L, Molinaro G et al (2012) Cinnabarinic acid, an endogenous metabolite of the kynurenine pathway, activates type 4 metabotropic glutamate receptors. Mol Pharmacol 81:643–656. doi:10.1124/mol.111.074765

    PubMed  CAS  Google Scholar 

  25. Thomas NK, Wright RA, Howson PA et al (2001) (S)-3,4-DCPG, a potent and selective mGlu8a receptor agonist, activates metabotropic glutamate receptors on primary afferent terminals in the neonatal rat spinal cord. Neuropharmacology 40:311–318

    PubMed  CAS  Google Scholar 

  26. Mercier MS, Lodge D, Fang G et al (2013) Characterisation of an mGlu8 receptor-selective agonist and antagonist in the lateral and medial perforant path inputs to the dentate gyrus. Neuropharmacology 67:294–303. doi:10.1016/j.neuropharm.2012.11.020

    PubMed  CAS  Google Scholar 

  27. Kew JNC, Kemp JA (2005) Ionotropic and metabotropic glutamate receptor structure and pharmacology. Psychopharmacology 179:4–29. doi:10.1007/s00213-005-2200-z

    PubMed  CAS  Google Scholar 

  28. Selvam C, Oueslati N, Lemasson IA et al (2010) A virtual screening hit reveals new possibilities for developing group III metabotropic glutamate receptor agonists. J Med Chem 53:2797–2813. doi:10.1021/jm901523t

    PubMed  CAS  Google Scholar 

  29. Flor PJ, Acher FC (2012) Orthosteric versus allosteric GPCR activation: the great challenge of group-III mGluRs. Biochem Pharmacol 84:414–424. doi:10.1016/j.bcp.2012.04.013

    PubMed  CAS  Google Scholar 

  30. Goudet C, Vilar B, Courtiol T et al (2012) A novel selective metabotropic glutamate receptor 4 agonist reveals new possibilities for developing subtype selective ligands with therapeutic potential. FASEB J 26:1682–1693. doi:10.1096/fj.11-195941

    PubMed  CAS  Google Scholar 

  31. Ahmadian H, Nielsen B, Bräuner-Osborne H et al (1997) (S)-homo-AMPA, a specific agonist at the mGlu6 subtype of metabotropic glutamic acid receptors. J Med Chem 40:3700–3705. doi:10.1021/jm9703597

    PubMed  CAS  Google Scholar 

  32. Niswender CM, Johnson KA, Luo Q et al (2008) A novel assay of G i/o -Linked G protein-coupled receptor coupling to potassium channels provides new insights into the pharmacology of the group III metabotropic glutamate receptors. Mol Pharmacol 73:1213–1224. doi:10.1124/mol.107.041053.Pin

    PubMed  CAS  Google Scholar 

  33. Jane DE, Thomas NK, Tse HW, Watkins JC (1996) Potent antagonists at the L-AP4- and (1S,3S)-ACPD-sensitive presynaptic metabotropic glutamate receptors in the neonatal rat spinal cord. Neuropharmacology 35:1029–1035

    PubMed  CAS  Google Scholar 

  34. Jane DE, Jones PLSJ, Pook PC-K et al (1994) Actions of two new antagonists showing selectivity for different sub-types of metabotropic glutamate receptor in the neonatal rat spinal cord. Br J Pharmacol 112:809–816

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Miller JC, Howson PA, Conway SJ et al (2003) Phenylglycine derivatives as antagonists of group III metabotropic glutamate receptors expressed on neonatal rat primary afferent terminals. Br J Pharmacol 139:1523–1531. doi:10.1038/sj.bjp.0705377

    PubMed  CAS  PubMed Central  Google Scholar 

  36. Toms NJ, Jane DE, Kemp MC et al (1996) The effects of (RS)-alpha-cyclopropyl-4-phosphonophenylglycine ((RS)-CPPG), a potent and selective metabotropic glutamate receptor antagonist. Br J Pharmacol 119:851–854

    PubMed  CAS  PubMed Central  Google Scholar 

  37. Kingston AE, Ornstein PL, Wright RA et al (1998) LY341495 is a nanomolar potent and selective antagonist of group II metabotropic glutamate receptors. Neuropharmacology 37:1–12

    PubMed  CAS  Google Scholar 

  38. Brabet I, Parmentier ML, De Colle C et al (1998) Comparative effect of L-CCG-I, DCG-IV and gamma-carboxy-L-glutamate on all cloned metabotropic glutamate receptor subtypes. Neuropharmacology 37:1043–1051

    PubMed  CAS  Google Scholar 

  39. Gee CE, Peterlik D, Neuhäuser C et al (2014) Blocking metabotropic glutamate receptor subtype 7 (mGlu7) via the venus flytrap domain (VFTD) inhibits amygdala plasticity, stress and anxiety-related behavior. J Biol Chem 289:10975–10987. doi:10.1074/jbc.M113.542654

    PubMed  CAS  Google Scholar 

  40. Hopkins CR, Lindsley CW, Niswender CM (2009) mGluR4-positive allosteric modulation as potential treatment for Parkinson’s disease. Future Med Chem 1:501–513. doi:10.4155/fmc.09.38.mGluR4-positive

    PubMed  CAS  PubMed Central  Google Scholar 

  41. Maj M (2003) (−)-PHCCC, a positive allosteric modulator of mGluR4: characterization, mechanism of action, and neuroprotection. Neuropharmacology 45:895–906. doi:10.1016/S0028-3908(03)00271-5

    PubMed  CAS  Google Scholar 

  42. Marino MJ, Williams DL, O’Brien JA et al (2003) Allosteric modulation of group III metabotropic glutamate receptor 4: a potential approach to Parkinson’s disease treatment. Proc Natl Acad Sci USA 100:13668–13673. doi:10.1073/pnas.1835724100

    PubMed  CAS  PubMed Central  Google Scholar 

  43. Niswender CM, Johnson KA, Weaver CD et al (2008) Discovery, characterization, and antiparkinsonian effect of novel positive allosteric modulators of metabotropic glutamate receptor 4. Mol Pharmacol 74:1345–1358. doi:10.1124/mol.108.049551

    PubMed  CAS  PubMed Central  Google Scholar 

  44. Jones CK, Bubser M, Thompson AD et al (2012) The metabotropic glutamate receptor 4-positive allosteric modulator VU0364770 produces efficacy alone and in combination with L-DOPA or an adenosine 2A antagonist in preclinical rodent models of Parkinson’s disease. J Pharmacol Exp Ther 340:404–421. doi:10.1124/jpet.111.187443

    PubMed  CAS  PubMed Central  Google Scholar 

  45. Le Poul E, Bole C, Girard F et al (2012) A potent and selective metabotropic glutamate receptor 4 positive allosteric modulator improves movement in rodent models of Parkinson’s disease. J Pharmacol Exp Ther 343:167–177

    PubMed  Google Scholar 

  46. Mitsukawa K, Yamamoto R, Ofner S et al (2005) A selective metabotropic glutamate receptor 7 agonist: activation of receptor signaling via an allosteric site modulates stress parameters in vivo. Proc Natl Acad Sci USA 102:18712–18717. doi:10.1073/pnas.0508063102

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Suzuki G, Tsukamoto N, Fushiki H et al (2007) In vitro pharmacological characterization of novel isoxazolopyridone derivatives as allosteric metabotropic glutamate receptor 7 antagonists. J Pharmacol Exp Ther 323:147–156. doi:10.1124/jpet.107.124701

    PubMed  CAS  Google Scholar 

  48. Kalinichev M, Rouillier M, Girard F et al (2013) ADX71743, a potent and selective negative allosteric modulator of metabotropic glutamate receptor 7: in vitro and in vivo characterization. J Pharmacol Exp Ther 344:624–636. doi:10.1124/jpet.112.200915

    PubMed  CAS  Google Scholar 

  49. Pelkey KA, Yuan X, Lavezzari G et al (2007) mGluR7 undergoes rapid internalization in response to activation by the allosteric agonist AMN082. Neuropharmacology 52:108–117. doi:10.1016/j.neuropharm.2006.07.020

    PubMed  CAS  Google Scholar 

  50. Sukoff Rizzo SJ, Leonard SK, Gilbert A et al (2011) The metabotropic glutamate receptor 7 allosteric modulator AMN082: a monoaminergic agent in disguise ? J Pharmacol Exp Ther 338:345–352. doi:10.1124/jpet.110.177378.regions

    PubMed  Google Scholar 

  51. Duvoisin RM, Pfankuch T, Wilson JM et al (2010) Acute pharmacological modulation of mGluR8 reduces measures of anxiety. Behav Brain Res 212:168–173. doi:10.1016/j.bbr.2010.04.006

    PubMed  CAS  PubMed Central  Google Scholar 

  52. Davis MJ, Duvoisin RM, Raber J (2013) Related functions of mGlu4 and mGlu8. Pharmacol Biochem Behav 111:11–16. doi:10.1016/j.pbb.2013.07.022

    PubMed  CAS  Google Scholar 

  53. Duvoisin RM, Villasana L, Davis MJ et al (2011) Opposing roles of mGluR8 in measures of anxiety involving non-social and social challenges. Behav Brain Res 221:50–54. doi:10.1016/j.bbr.2011.02.049

    PubMed  CAS  PubMed Central  Google Scholar 

  54. Corti C, Aldegheri L, Somogyi P, Ferraguti F (2002) Distribution and synaptic localisation of the metabotropic glutamate receptor 4 (mGluR4) in the rodent CNS. Neuroscience 110:403–420

    PubMed  CAS  Google Scholar 

  55. Kinoshita A, Ohishi H, Nomura S et al (1996) Presynaptic localization of a metabotropic glutamate receptor, mGluR4a, in the cerebellar cortex: a light and electron microscope study in the rat. Neurosci Lett 207:199–202

    PubMed  CAS  Google Scholar 

  56. Bradley SR, Levey AI, Hersch SM, Conn PJ (1996) Immunocytochemical localization of group III metabotropic glutamate receptors in the hippocampus with subtype-specific antibodies. J Neurosci 16:2044–2056

    PubMed  CAS  Google Scholar 

  57. Tanabe Y, Nomura A, Masu M et al (1993) Signal transduction, pharmacological properties, and expression patterns of two rat metabotropic glutamate receptors, mGluR3 and mGluR4. J Neurosci 13:1372–1378

    PubMed  CAS  Google Scholar 

  58. Ohishi H, Akazawa C, Shigemoto R et al (1995) Distributions of the mRNAs for metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J Comp Neurol 360:555–570

    PubMed  CAS  Google Scholar 

  59. Bradley SR, Standaert DG, Rhodes KJ et al (1999) Immunohistochemical localization of subtype 4a metabotropic glutamate receptors in the rat and mouse basal ganglia. J Comp Neurol 407:33–46

    PubMed  CAS  Google Scholar 

  60. Uehara S, Muroyama A, Echigo N et al (2004) Metabotropic glutamate receptor type 4 is involved in autoinhibitory cascade for glucagon secretion by alpha-cells of islet of Langerhans. Diabetes 53:998–1006

    PubMed  CAS  Google Scholar 

  61. Brice NL, Varadi A, Ashcroft SJH, Molnar E (2002) Metabotropic glutamate and GABA(B) receptors contribute to the modulation of glucose-stimulated insulin secretion in pancreatic beta cells. Diabetologia 45:242–252. doi:10.1007/s00125-001-0750-0

    PubMed  CAS  Google Scholar 

  62. Akiba Y, Watanabe C, Mizumori M, Kaunitz JD (2009) Luminal L -glutamate enhances duodenal mucosal defense mechanisms via multiple glutamate receptors in rats. Am J Gastrointest Liver Physiol 297:781–791. doi:10.1152/ajpgi.90605.2008

    Google Scholar 

  63. Chang HJ, Yoo BC, Lim S-B et al (2005) Metabotropic glutamate receptor 4 expression in colorectal carcinoma and its prognostic significance. Clin Cancer Res 11:3288–3295. doi:10.1158/1078-0432.CCR-04-1912

    PubMed  CAS  Google Scholar 

  64. Nakamura E, Hasumura M, Gabriel AS et al (2010) New frontiers in gut nutrient sensor research: luminal glutamate-sensing cells in rat gastric mucosa. J Pharmacol Sci 112:13–18. doi:10.1254/jphs.09R16FM

    PubMed  CAS  Google Scholar 

  65. Sarría R, Díez J, Losada J et al (2006) Immunocytochemical localization of metabotropic (mGluR2/3 and mGluR4a) and ionotropic (GluR2/3) glutamate receptors in adrenal medullary ganglion cells. Histol Histopathol 21:141–147

    PubMed  Google Scholar 

  66. Julio-pieper M, Flor PJ, Dinan TG, Cryan JF (2011) Exciting times beyond the brain: metabotropic glutamate receptors in peripheral and non-neural tissues. Pharmacol Rev 63:35–58. doi:10.1124/pr.110.004036.35

    PubMed  CAS  Google Scholar 

  67. Thomsen C, Pekhletski R, Haldeman B et al (1997) Cloning and characterization of a metabotropic glutamate receptor, mGluR4b. Neuropharmacology 36:21–30

    PubMed  CAS  Google Scholar 

  68. Chaudhari N, Landin AM, Roper SD (2000) A metabotropic glutamate receptor variant functions as a taste receptor. Nat Neurosci 3:113–119. doi:10.1038/72053

    PubMed  CAS  Google Scholar 

  69. Nakajima Y, Iwakabe H, Akazawa C et al (1993) Molecular characterization of a novel retinal metabotropic glutamate receptor mGluR6 with a high agonist selectivity for L-2-amino-4-phosphonobutyrate. J Biol Chem 268:11868–11873

    PubMed  CAS  Google Scholar 

  70. Valerio A, Ferraboli S, Paterlini M et al (2001) Identification of novel alternatively-spliced mRNA isoforms of metabotropic glutamate receptor 6 gene in rat and human retina. Gene 262:99–106

    PubMed  CAS  Google Scholar 

  71. Nomura A, Shigemoto R, Nakamura Y et al (1994) Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell 77:361–369

    PubMed  CAS  Google Scholar 

  72. Corti C, Restituito S, Rimland JM et al (1998) Cloning and characterization of alternative mRNA forms for the rat metabotropic glutamate receptors mGluR7 and mGluR8. Eur J Neurosci 10:3629–3641

    PubMed  CAS  Google Scholar 

  73. Kinzie JM, Saugstad JA, Westbrook GL, Segerson TP (1995) Distribution of metabotropic glutamate receptor 7 messenger RNA in the developing and adult rat brain. Neuroscience 69:167–176

    PubMed  CAS  Google Scholar 

  74. Wada E, Shigemoto R, Kinoshita A et al (1998) Metabotropic glutamate receptor subtypes in axon terminals of projection fibers from the main and accessory olfactory bulbs: a light and electron microscopic immunohistochemical study in the rat. J Comp Neurol 393:493–504

    PubMed  CAS  Google Scholar 

  75. Shigemoto R, Kulik A, Roberts JDB et al (1996) Target-cell-specific concentration of metabotropic glutamate receptor in the presynaptic active zone. Nature 381:523–525

    PubMed  CAS  Google Scholar 

  76. Dalezios Y, Luján R, Shigemoto R et al (2002) Enrichment of mGluR7a in the presynaptic active zones of GABAergic and non-GABAergic terminals on interneurons in the rat somatosensory cortex. Cereb Cortex 12:961–974

    PubMed  Google Scholar 

  77. Kinoshita A, Shigemoto R, Ohishi H et al (1998) Immunohistochemical localization of metabotropic glutamate receptors, mGluR7a and mGluR7b, in the central nervous system of the adult rat and mouse: a light and electron microscopic study. J Comp Neurol 393:332–352

    PubMed  CAS  Google Scholar 

  78. Flor PJ, Van Der Putten H, Rüegg D et al (1997) A novel splice variant of a metabotropic glutamate receptor, human mGluR7b. Neuropharmacology 36:153–159

    PubMed  CAS  Google Scholar 

  79. Schulz HL, Stohr H, Weber BHF (2002) Characterization of three novel isoforms of the metabotrobic glutamate receptor 7 (GRM7). Neurosci Lett 326:37–40

    PubMed  CAS  Google Scholar 

  80. Julio-Pieper M, Hyland NP, Bravo JA et al (2010) A novel role for the metabotropic glutamate receptor-7: modulation of faecal water content and colonic electrolyte transport in the mouse. Br J Pharmacol 160:367–375. doi:10.1111/j.1476-5381.2010.00713.x

    PubMed  CAS  PubMed Central  Google Scholar 

  81. Scaccianoce S, Matrisciano F, Del Bianco P et al (2003) Endogenous activation of group-II metabotropic glutamate receptors inhibits the hypothalamic–pituitary–adrenocortical axis. Neuropharmacology 44:555–561. doi:10.1016/S0028-3908(03)00027-3

    PubMed  CAS  Google Scholar 

  82. Friedman RA, Van Laer L, Huentelman MJ et al (2009) GRM7 variants confer susceptibility to age-related hearing impairment. Hum Mol Genet 18:785–796. doi:10.1093/hmg/ddn402

    PubMed  CAS  PubMed Central  Google Scholar 

  83. Duvoisin M, Zhang C, Ramonell K (1995) A novel metabotropic glutamate receptor expressed in the retina and olfactory bulb. J Neurosci 15:3075–3083

    PubMed  CAS  Google Scholar 

  84. Saugstad JA, Kinzie JM, Shinohara MM et al (1997) Cloning and expression of rat metabotropic glutamate receptor 8 reveals a distinct pharmacological profile. Mol Pharmacol 51:119–125

    PubMed  CAS  Google Scholar 

  85. Malherbe P, Kratzeisen C, Lundstrom K et al (1999) Cloning and functional expression of alternative spliced variants of the human metabotropic glutamate receptor 8. Mol Brain Res 67:201–210

    PubMed  CAS  Google Scholar 

  86. Ferraguti F, Klausberger T, Cobden P et al (2005) Metabotropic glutamate receptor 8-expressing nerve terminals target subsets of GABAergic neurons in the hippocampus. J Neurosci 25:10520–10536. doi:10.1523/JNEUROSCI.2547-05.2005

    PubMed  CAS  Google Scholar 

  87. Kinoshita A, Ohishi H, Neki A et al (1996) Presynaptic localization of a metabotropic glutamate receptor, mGluR8, in the rhinencephalic areas: a light and electron microscope study in the rat. Neurosci Lett 207:61–64

    PubMed  CAS  Google Scholar 

  88. Koulen P, Brandstätter JH (2002) Pre- and postsynaptic sites of action of mGluR8a in the mammalian retina. Invest Ophthalmol Vis Sci 43:1933–1940

    PubMed  Google Scholar 

  89. Pamidimukkala J, Hoang CJ, Hay M (2002) Expression of metabotropic glutamate receptor 8 in autonomic cell groups of the medulla oblongata of the rat. Brain Res 957:162–173

    PubMed  CAS  Google Scholar 

  90. Tong Q, Kirchgessner AL (2003) Localization and function of metabotropic glutamate receptor 8 in the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 285:G992–G1003. doi:10.1152/ajpgi.00118.2003

    PubMed  CAS  Google Scholar 

  91. Takarada T, Hinoi E, Balcar VJ et al (2004) Possible expression of functional glutamate transporters in the rat testis. J Endocrinol 181:233–244

    PubMed  CAS  Google Scholar 

  92. Ferraguti F, Shigemoto R (2006) Metabotropic glutamate receptors. Cell Tissue Res 326:483–504. doi:10.1007/s00441-006-0266-5

    PubMed  CAS  Google Scholar 

  93. Kogo N, Dalezois Y, Capogna M et al (2004) Depression of GABAergic input to identified hippocampal neurons by group III metabotropic glutamate receptors. Eur J Neurosci 19:2727–2740

    PubMed  Google Scholar 

  94. Somogyi P, Dalezios Y, Lujan R et al (2003) High level of mGluR7 in the presynaptic active zones of select populations of GABAergic terminals innervating interneurons in the rat hippocampus. Eur J Neurosci 17:2503–2520. doi:10.1046/j.1460-9568.2003.02697.x

    PubMed  Google Scholar 

  95. White WF, Nadler JV, Cotman CW (1979) The effect of acidic amino acid antagonists on synaptic transmission in the hippocampal formation in vitro. Brain Res 164:177–194

    PubMed  CAS  Google Scholar 

  96. Koerner JF, Cotman CW (1981) Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res 216:192–198

    PubMed  CAS  Google Scholar 

  97. Harris EW, Cotman CW (1983) Effects of acidic amino acid antagonists on paired-pulse potentiation at the lateral perforant path. Exp Brain Res 52:455–460

    PubMed  CAS  Google Scholar 

  98. Bushell TJ, Jane DE, Tse HW et al (1996) Pharmacological antagonism of the actions of group II and III mGluR agonists in the lateral perforant path of rat hippocampal slices. Br J Pharmacol 117:1457–1462

    PubMed  CAS  PubMed Central  Google Scholar 

  99. Dietrich D, Beck H, Kral T et al (1997) Metabotropic glutamate receptors modulate synaptic transmission in the perforant path: pharmacology and localization of two distinct receptors. Brain Res 767:220–227

    PubMed  CAS  Google Scholar 

  100. Macek TA, Winder DG, Gereau RW et al (1996) Differential involvement of group II and group III mGluRs as autoreceptors at lateral and medial perforant path synapses. J Neurophysiol 76:3798–3806

    PubMed  CAS  Google Scholar 

  101. Zhai J, Tian MT, Wang Y et al (2002) Modulation of lateral perforant path excitatory responses by metabotropic glutamate 8 (mGlu8) receptors. Neuropharmacology 43:223–230

    PubMed  CAS  Google Scholar 

  102. Baskys A, Malenka RC (1991) Agonists at metabotropic glutamate receptors presynaptically inhibit EPSCs in neonatal rat hippocampus. J Physiol 444:687–701

    PubMed  CAS  PubMed Central  Google Scholar 

  103. Capogna M (2004) Distinct properties of presynaptic group II and III metabotropic glutamate receptor-mediated inhibition of perforant pathway-CA1 EPSCs. Eur J Neurosci 19:2847–2858. doi:10.1111/j.1460-9568.2004.03378.x

    PubMed  Google Scholar 

  104. Rainnie DG, Shinnick-Gallagher P (1992) Trans-ACPD and l-APB presynaptically inhibit excitatory glutamatergic transmission in the basolateral amygdala (BLA). Neurosci Lett 139:87–91

    PubMed  CAS  Google Scholar 

  105. Neugebauer V, Keele NB, Shinnick-Gallagher P (1997) Epileptogenesis in vivo enhances the sensitivity of inhibitory presynaptic metabotropic glutamate receptors in basolateral amygdala neurons in vitro. J Neurosci 17:983–995

    PubMed  CAS  Google Scholar 

  106. Trombley Q, Westbrook L (1992) L-AP4 inhibits calcium currents and synaptic glutamate receptor transmission via a G-protein-coupled glutamate receptor. J Neurosci 12:2043–2050

    PubMed  CAS  Google Scholar 

  107. Anson J, Collins GG (1987) Possible presynaptic actions of 2-amino-4-phosphonobutyrate in rat olfactory cortex. Br J Pharmacol 91:753–761

    PubMed  CAS  PubMed Central  Google Scholar 

  108. Jones PJ, Xiang Z, Conn PJ (2008) Metabotropic glutamate receptors mGluR4 and mGluR8 regulate transmission in the lateral olfactory tract-piriform cortex synapse. Neuropharmacology 55:440–446. doi:10.1016/j.neuropharm.2008.06.043

    PubMed  CAS  PubMed Central  Google Scholar 

  109. Pisani A, Calabresi P, Centonze D, Bernardi G (1997) Activation of group III metabotropic glutamate receptors depresses glutamatergic transmission at corticostriatal synapse. Neuropharmacology 36:845–851

    PubMed  CAS  Google Scholar 

  110. Cuomo D, Martella G, Barabino E et al (2009) Metabotropic glutamate receptor subtype 4 selectively modulates both glutamate and GABA transmission in the striatum: implications for Parkinson’s disease treatment. J Neurochem 109:1096–1105. doi:10.1111/j.1471-4159.2009.06036.x

    PubMed  CAS  Google Scholar 

  111. Matsui T, Kita H (2003) Activation of group III metabotropic glutamate receptors presynaptically reduces both GABAergic and glutamatergic transmission in the rat globus pallidus. Neuroscience 122:727–737. doi:10.1016/j.neuroscience.2003.08.032

    PubMed  CAS  Google Scholar 

  112. Turner J, Salt T (1999) Group III metabotropic glutamate receptors control corticothalamic synaptic transmission in the rat thalamus in vitro. J Physiol 519:481–491

    PubMed  CAS  PubMed Central  Google Scholar 

  113. Kyuyoung CL, Huguenard JR (2014) Modulation of short-term plasticity in the corticothalamic circuit by group III metabotropic glutamate receptors. J Neurosci 34:675–687. doi:10.1523/JNEUROSCI.1477-13.2014

    PubMed  CAS  PubMed Central  Google Scholar 

  114. Oliet SH, Piet R, Poulain DA (2001) Control of glutamate clearance and synaptic efficacy by glial coverage of neurons. Science 292:923–926. doi:10.1126/science.1059162

    PubMed  CAS  Google Scholar 

  115. Panatier A, Poulain DA, Oliet SHR (2004) Regulation of transmitter release by high-affinity group III mGluRs in the supraoptic nucleus of the rat hypothalamus. Neuropharmacology 47:333–341. doi:10.1016/j.neuropharm.2004.05.003

    PubMed  CAS  Google Scholar 

  116. Lorez M, Humbel U, Pflimlin M-C, Kew JNC (2003) Group III metabotropic glutamate receptors as autoreceptors in the cerebellar cortex. Br J Pharmacol 138:614–625. doi:10.1038/sj.bjp.0705099

    PubMed  CAS  PubMed Central  Google Scholar 

  117. Manzoni O, Michel JM, Bockaert J (1997) Metabotropic glutamate receptors in the rat nucleus accumbens. Eur J Neurosci 9:1514–1523

    PubMed  CAS  Google Scholar 

  118. Xi Z-X, Shen H, Baker DA, Kalivas PW (2003) Inhibition of non-vesicular glutamate release by group III metabotropic glutamate receptors in the nucleus accumbens. J Neurochem 87:1204–1212. doi:10.1046/j.1471-4159.2003.02093.x

    PubMed  CAS  Google Scholar 

  119. Renden R, Taschenberger H, Puente N et al (2005) Glutamate transporter studies reveal the pruning of metabotropic glutamate receptors and absence of AMPA receptor desensitization at mature calyx of held synapses. J Neurosci 25:8482–8497. doi:10.1523/JNEUROSCI.1848-05.2005

    PubMed  CAS  PubMed Central  Google Scholar 

  120. Lacey CJ, Pothecary CA, Salt TE (2005) Modulation of retino-collicular transmission by Group III metabotropic glutamate receptors at different ages during development. Neuropharmacology 49:26–34. doi:10.1016/j.neuropharm.2005.06.003

    PubMed  CAS  Google Scholar 

  121. Pothecary CA, Jane DE, Salt TE (2002) Reduction of excitatory transmission in the retino-collicular pathway via selective activation of mGlu8 receptors by DCPG. Neuropharmacology 43:231–234

    PubMed  CAS  Google Scholar 

  122. Bonci A, Grillner P, Siniscalchi A et al (1997) Glutamate metabotropic receptor agonists depress excitatory and inhibitory transmission on rat mesencephalic principal neurons. Eur J Neurosci 9:2359–2369

    PubMed  CAS  Google Scholar 

  123. Wigmore MA, Lacey MG (1998) Metabotropic glutamate receptors depress glutamate-mediated synaptic input to rat midbrain dopamine neurones in vitro. Br J Pharmacol 123:667–674. doi:10.1038/sj.bjp.0701662

    PubMed  CAS  PubMed Central  Google Scholar 

  124. Wittmann M, Marino MJ, Bradley SR, Conn PJ (2001) Activation of group III mGluRs inhibits GABAergic and glutamatergic transmission in the substantia nigra pars reticulata. J Neurophysiol 85:1960–1968

    PubMed  CAS  Google Scholar 

  125. Schrader LA, Tasker JG (1997) Presynaptic modulation by metabotropic glutamate receptors of excitatory and inhibitory synaptic inputs to hypothalamic magnocellular neurons. J Neurophysiol 77:527–536

    PubMed  CAS  Google Scholar 

  126. Schoppa NE, Westbrook GL (1997) Modulation of mEPSCs in olfactory bulb mitral cells by metabotropic glutamate receptors. J Neurophysiol 78:1468–1475

    PubMed  CAS  Google Scholar 

  127. Gereau RW, Conn PJ (1995) Multiple presynaptic metabotropic glutamate receptors modulate excitatory and inhibitory synaptic transmission in hippocampal area CA1. J Neurosci 15:6879–6889

    PubMed  CAS  Google Scholar 

  128. Martin R, Torres M, Sánchez-Prieto J (2007) mGluR7 inhibits glutamate release through a PKC-independent decrease in the activity of P/Q-type Ca2 + channels and by diminishing cAMP in hippocampal nerve terminals. Eur J Neurosci 26:312–322

    PubMed  Google Scholar 

  129. East S, Hill M, Brotchie J (1995) Metabotropic glutamate receptor agonists inhibit endogenous glutamate release from rat striatal synaptosomes. Eur J Pharmacol 277:117–121

    PubMed  CAS  Google Scholar 

  130. Vázquez E, Sánchez-Prieto J (1997) Presynaptic modulation of glutamate release targets different calcium channels in rat cerebrocortical nerve terminals. Eur J Neurosci 9:2009–2018

    PubMed  Google Scholar 

  131. Semyanov A, Kullmann DM (2000) Modulation of GABAergic signaling among interneurons by metabotropic glutamate receptors. Neuron 25:663–672

    PubMed  CAS  Google Scholar 

  132. Rusakov DA, Wuerz A, Kullmann DM (2004) Heterogeneity and specificity of presynaptic Ca2+ current modulation by mGluRs at individual hippocampal synapses. Cereb Cortex 14:748–758. doi:10.1093/cercor/bhh035

    PubMed  PubMed Central  Google Scholar 

  133. Giustizieri M, Bernardi G, Mercuri NB, Berretta N (2005) Distinct mechanisms of presynaptic inhibition at GABAergic synapses of the rat substantia nigra pars compacta. J Neurophysiol 94:1992–2003. doi:10.1152/jn.00171.2005

    PubMed  CAS  Google Scholar 

  134. Valenti O, Marino MJ, Wittmann M et al (2003) Group III metabotropic glutamate receptor-mediated modulation of the striatopallidal synapse. J Neurosci 23:7218–7226

    PubMed  CAS  Google Scholar 

  135. MacInnes N, Duty S (2008) Group III metabotropic glutamate receptors act as hetero-receptors modulating evoked GABA release in the globus pallidus in vivo. Eur J Pharmacol 580:95–99. doi:10.1016/j.ejphar.2007.10.030

    PubMed  CAS  Google Scholar 

  136. Salt TE, Eaton SA (1995) Distinct presynaptic metabotropic receptors for L-AP4 and CCG1 on GABAergic terminals: pharmacological evidence using novel a-methyl derivative mGluR antagonists, MAP4 and MCCG, in the rat thalamus in vivo. Neuroscience 65:5–13

    PubMed  CAS  Google Scholar 

  137. Turner JP, Salt TE (2003) Group II and III metabotropic glutamate receptors and the control of the nucleus reticularis thalami input to rat thalamocortical neurones in vitro. Neuroscience 122:459–469. doi:10.1016/j.neuroscience.2003.08.014

    PubMed  CAS  Google Scholar 

  138. Chu Z, Moenter SM (2005) Endogenous activation of metabotropic glutamate receptors modulates GABAergic transmission to gonadotropin-releasing hormone neurons and alters their firing rate: a possible local feedback circuit. J Neurosci 25:5740–5749. doi:10.1523/JNEUROSCI.0913-05.2005

    PubMed  CAS  PubMed Central  Google Scholar 

  139. Scanziani M, Gähwiler BH, Charpak S (1998) Target cell-specific modulation of transmitter release at terminals from a single axon. Proc Natl Acad Sci USA 95:12004–12009

    PubMed  CAS  PubMed Central  Google Scholar 

  140. Pekhletski R, Gerlai R, Overstreet LS et al (1996) Impaired cerebellar synaptic plasticity and motor performance in mice lacking the mGluR4 subtype of metabotropic glutamate receptor. J Neurosci 16:6364–6373

    PubMed  CAS  Google Scholar 

  141. Abitbol K, Acher F, Daniel H (2008) Depression of excitatory transmission at PF-PC synapse by group III metabotropic glutamate receptors is provided exclusively by mGluR4 in the rodent cerebellar cortex. J Neurochem 105:2069–2079. doi:10.1111/j.1471-4159.2008.05290.x

    PubMed  CAS  Google Scholar 

  142. Valenti O, Mannaioni G, Seabrook GR et al (2005) Group III metabotropic glutamate-receptor-mediated modulation of excitatory transmission in rodent substantia nigra pars compacta dopamine neurons. Pharmacology 313:1296–1304. doi:10.1124/jpet.104.080481.1992

    CAS  Google Scholar 

  143. Marabese I, de Novellis V, Palazzo E et al (2005) Differential roles of mGlu8 receptors in the regulation of glutamate and gamma-aminobutyric acid release at periaqueductal grey level. Neuropharmacology 49:157–166. doi:10.1016/j.neuropharm.2005.02.006

    PubMed  CAS  Google Scholar 

  144. Ren W, Palazzo E, Maione S, Neugebauer V (2011) Differential effects of mGluR7 and mGluR8 activation on pain-related synaptic activity in the amygdala. Neuropharmacology 61:1334–1344. doi:10.1016/j.neuropharm.2011.08.006

    PubMed  CAS  PubMed Central  Google Scholar 

  145. Palazzo E, Marabese I, Soukupova M et al (2011) Metabotropic glutamate receptor subtype 8 in the amygdala modulates thermal threshold, neurotransmitter release, and rostral ventromedial medulla cell activity in inflammatory pain. J Neurosci 31:4687–4697. doi:10.1523/JNEUROSCI.2938-10.2011

    PubMed  CAS  Google Scholar 

  146. Gosnell HB, Silberman Y, Grueter BA et al (2011) mGluR8 modulates excitatory transmission in the bed nucleus of the stria terminalis in a stress-dependent manner. Neuropsychopharmacology 36:1599–1607. doi:10.1038/npp.2011.40

    PubMed  CAS  PubMed Central  Google Scholar 

  147. Schmid S, Fendt M (2006) Effects of the mGluR8 agonist (S)-3,4-DCPG in the lateral amygdala on acquisition/expression of fear-potentiated startle, synaptic transmission, and plasticity. Neuropharmacology 50:154–164. doi:10.1016/j.neuropharm.2005.08.002

    PubMed  CAS  Google Scholar 

  148. Laezza F, Doherty JJ, Dingledine R (1999) Long-term depression in hippocampal interneurons: joint requirement for pre- and postsynaptic events. Science 285:1411–1414. doi:10.1126/science.285.5432.1411

    PubMed  CAS  Google Scholar 

  149. Pelkey KA, Lavezzari G, Racca C et al (2005) mGluR7 is a metaplastic switch controlling bidirectional plasticity of feedforward inhibition. Neuron 46:89–102. doi:10.1016/j.neuron.2005.02.011

    PubMed  CAS  Google Scholar 

  150. Li X, Gardner EL, Xi Z-X (2008) The metabotropic glutamate receptor 7 (mGluR7) allosteric agonist AMN082 modulates nucleus accumbens GABA and glutamate, but not dopamine, in rats. Neuropharmacology 54:542–551. doi:10.1016/j.neuropharm.2007.11.005

    PubMed  CAS  PubMed Central  Google Scholar 

  151. Marabese I, Rossi F, Palazzo E et al (2007) Periaqueductal gray metabotropic glutamate receptor subtype 7 and 8 mediate opposite effects on amino acid release, rostral ventromedial medulla cell activities, and thermal nociception. J Neurophysiol 98:43–53. doi:10.1152/jn.00356.2007

    PubMed  CAS  Google Scholar 

  152. Ugolini A, Large CH, Corsi M (2008) AMN082, an allosteric mGluR7 agonist that inhibits afferent glutamatergic transmission in rat basolateral amygdala. Neuropharmacology 55:532–536. doi:10.1016/j.neuropharm.2008.04.020

    PubMed  CAS  Google Scholar 

  153. Evans DI, Jones RSG, Woodhall G et al (2000) Activation of presynaptic group III metabotropic receptors enhances glutamate release in rat entorhinal cortex activation of presynaptic group III metabotropic receptors enhances glutamate release in rat entorhinal cortex. J Neurophysiol 83:2519–2525

    PubMed  CAS  Google Scholar 

  154. Woodhall GL, Ayman G, Jones RSG (2007) Differential control of two forms of glutamate release by group III metabotropic glutamate receptors at rat entorhinal synapses. Neuroscience 148:7–21. doi:10.1016/j.neuroscience.2007.06.002

    PubMed  CAS  PubMed Central  Google Scholar 

  155. Neugebauer V, Keele NB, Shinnick-Gallagher P (1997) Loss of long-lasting potentiation mediated by group III mGluRs in amygdala neurons in kindling-induced epileptogenesis. J Neurophysiol 78:3475–3478

    PubMed  CAS  Google Scholar 

  156. Martín R, Durroux T, Ciruela F et al (2010) The metabotropic glutamate receptor mGlu7 activates phospholipase C, translocates munc-13-1 protein, and potentiates glutamate release at cerebrocortical nerve terminals. J Biol Chem 285:17907–17917. doi:10.1074/jbc.M109.080838

    PubMed  PubMed Central  Google Scholar 

  157. Anwyl R (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 29:83–120

    PubMed  CAS  Google Scholar 

  158. Herrero I, Vazquez E, Miras-Portugal MT, Sanchez-Prieto J (1996) Decrease in [Ca2+]c but not in cAMP Mediates L-AP4 inhibition of glutamate release: PKC-mediated suppression of this inhibitory pathway. Eur J Neurosci 8:700–709

    PubMed  CAS  Google Scholar 

  159. Stefani A, Spadoni F, Bernardi G (1998) Group III metabotropic glutamate receptor agonists modulate high voltage-activated Ca2+ currents in pyramidal neurons of the adult rat. Exp Brain Res 119:237–244

    PubMed  CAS  Google Scholar 

  160. Sahara Y, Westbrook GL (1993) Modulation of calcium currents by a metabotropic glutamate receptor involves fast and slow kinetic components in cultured hippocampal neurons. J Neurosci 13:3041–3050

    PubMed  CAS  Google Scholar 

  161. Daniel H, Crepel F (2001) Control of Ca(2+) influx by cannabinoid and metabotropic glutamate receptors in rat cerebellar cortex requires K(+) channels. J Physiol 537:793–800

    PubMed  CAS  PubMed Central  Google Scholar 

  162. Cain SM, Meadows HJ, Dunlop J, Bushell TJ (2008) mGlu4 potentiation of K(2P)2.1 is dependant on C-terminal dephosphorylation. Mol Cell Neurosci 37:32–39. doi:10.1016/j.mcn.2007.08.009

    PubMed  CAS  Google Scholar 

  163. Saugstad JA, Segerson TP, Westbrook GL (1996) Metabotropic glutamate receptors activate G-protein-coupled inwardly rectifying potassium channels in Xenopus oocytes. J Neurosci 16:5979–5985

    PubMed  CAS  Google Scholar 

  164. Takahashi T, Forsythe ID, Tsujimoto T et al (1996) Presynaptic calcium current modulation by a metabotropic glutamate receptor. Science 274:594–597

    PubMed  CAS  Google Scholar 

  165. Cochilla J, Alford S (1998) Metabotropic glutamate receptor-mediated control of neurotransmitter release. Neuron 20:1007–1016

    PubMed  CAS  Google Scholar 

  166. Pelkey KA, Topolnik L, Lacaille J-C, McBain CJ (2006) Compartmentalized Ca(2+) channel regulation at divergent mossy-fiber release sites underlies target cell-dependent plasticity. Neuron 52:497–510. doi:10.1016/j.neuron.2006.08.032

    PubMed  CAS  Google Scholar 

  167. Perroy J, Prezeau L, De Waard M et al (2000) Selective blockade of P/Q-type calcium channels by the metabotropic glutamate receptor type 7 involves a phospholipase C pathway in neurons. J Neurosci 20:7896–7904

    PubMed  CAS  Google Scholar 

  168. Millán C, Luján R, Shigemoto R, Sánchez-Prieto J (2002) Subtype-specific expression of group III metabotropic glutamate receptors and Ca2+ channels in single nerve terminals. J Biol Chem 277:47796–47803. doi:10.1074/jbc.M207531200

    PubMed  Google Scholar 

  169. Millán C, Castro E, Torres M et al (2003) Co-expression of metabotropic glutamate receptor 7 and N-type Ca(2+) channels in single cerebrocortical nerve terminals of adult rats. J Biol Chem 278:23955–23962. doi:10.1074/jbc.M211471200

    PubMed  Google Scholar 

  170. Chavis P, Mollard P, Manzoni O (1998) Visualization of cyclic AMP: regulated presynaptic activity at cerebellar granule cells. Neuron 20:773–781

    PubMed  CAS  Google Scholar 

  171. Erdmann E, Rupprecht V, Matthews E et al (2012) Depression of release by mGluR8 alters Ca2+ dependence of release machinery. Cereb Cortex 22:1498–1509. doi:10.1093/cercor/bhr217

    PubMed  Google Scholar 

  172. Guo J, Ikeda S (2005) Coupling of metabotropic glutamate receptor 8 to N-type Ca2+ channels in rat sympathetic neurons. Mol Pharmacol 67:1840–1851. doi:10.1124/mol.105.010975.back

    PubMed  CAS  Google Scholar 

  173. Koulen P, Liu J, Nixon E, Madry C (2005) Interaction between mGluR8 and calcium channels in photoreceptors is sensitive to pertussis toxin and occurs via G protein betagamma subunit signaling. Invest Ophthalmol Vis Sci 46:287–291. doi:10.1167/iovs.04-0963

    PubMed  Google Scholar 

  174. Morgans CW, Brown RL, Duvoisin RM (2010) TRPM1: the endpoint of the mGluR6 signal transduction cascade in retinal ON-bipolar cells. BioEssays 32:609–614. doi:10.1002/bies.200900198

    PubMed  CAS  Google Scholar 

  175. Koike C, Obara T, Uriu Y et al (2010) TRPM1 is a component of the retinal ON bipolar cell transduction channel in the mGluR6 cascade. Proc Natl Acad Sci USA 107:332–337. doi:10.1073/pnas.0912730107

    PubMed  CAS  PubMed Central  Google Scholar 

  176. Shen Y, Rampino MAF, Carroll RC, Nawy S (2012) G-protein-mediated inhibition of the Trp channel TRPM1 requires the Gβγ dimer. Proc Natl Acad Sci USA 109:8752–8757. doi:10.1073/pnas.1117433109

    PubMed  CAS  PubMed Central  Google Scholar 

  177. Pinheiro PS, Mulle C (2008) Presynaptic glutamate receptors: physiological functions and mechanisms of action. Nat Rev Neurosci 9:423–436. doi:10.1038/nrn2379

    PubMed  CAS  Google Scholar 

  178. Altinbilek B, Manahan-Vaughan D (2007) Antagonism of group III metabotropic glutamate receptors results in impairment of LTD but not LTP in the hippocampal CA1 region, and prevents long-term spatial memory. Eur J Neurosci 26:1166–1172. doi:10.1111/j.1460-9568.2007.05742.x

    PubMed  Google Scholar 

  179. Acuna-Goycolea C, Li Y, Van Den Pol AN (2004) Group III metabotropic glutamate receptors maintain tonic inhibition of excitatory synaptic input to hypocretin/orexin neurons. J Neurosci 24:3013–3022. doi:10.1523/JNEUROSCI.5416-03.2004

    PubMed  CAS  Google Scholar 

  180. Li W, Neugebauer V (2006) Differential changes of group II and group III mGluR function in central amygdala neurons in a model of arthritic pain. J Neurophysiol 96:1803–1815. doi:10.1152/jn.00495.2006

    PubMed  CAS  Google Scholar 

  181. Losonczy A, Somogyi P, Nusser Z (2003) Reduction of excitatory postsynaptic responses by persistently active metabotropic glutamate receptors in the hippocampus. J Neurophysiol 89:1910–1919. doi:10.1152/jn.00842.2002

    PubMed  CAS  Google Scholar 

  182. Cao CQ, Tse HW, Jane DE et al (1997) Antagonism of mGlu receptors and potentiation of EPSCs at rat spinal motoneurones in vitro. Neuropharmacology 36:313–318

    PubMed  CAS  Google Scholar 

  183. Cao CQ, Tse HW, Jane DE et al (1997) Metabotropic glutamate receptor antagonists, like GABA(B) antagonists, potentiate dorsal root-evoked excitatory synaptic transmission at neonatal rat spinal motoneurons in vitro. Neuroscience 78:243–250

    PubMed  CAS  Google Scholar 

  184. Chen C, Ling E, Horowitz JM, Bonham AC (2002) Synaptic transmission in nucleus tractus solitarius is depressed by Group II and III but not Group I presynaptic metabotropic glutamate receptors in rats. J Physiol 538:773–786. doi:10.1013/jphysiol.2001.012948

    PubMed  CAS  PubMed Central  Google Scholar 

  185. Von Gersdorff H, Schneggenburger R, Weis S, Neher E (1997) Presynaptic depression at a calyx synapse: the small contribution of metabotropic glutamate receptors. J Neurosci 17:8137–8146

    Google Scholar 

  186. Cosgrove KE, Meriney SD, Barrionuevo G (2011) High affinity group III mGluRs regulate mossy fiber input to CA3 interneurons. Hippocampus 21:1302–1317. doi:10.1002/hipo.20842

    PubMed  CAS  PubMed Central  Google Scholar 

  187. Billups B, Graham BP, Wong AYC, Forsythe ID (2005) Unmasking group III metabotropic glutamate auto receptor function at excitatory synapses in the rat CNS. J Physiol 565:885–896. doi:10.1113/jphysiol.2005.086736

    PubMed  CAS  PubMed Central  Google Scholar 

  188. Mitchell SJ, Silver RA (2000) Glutamate spillover suppresses inhibition by activating presynaptic mGluRs. Nature 404:498–502. doi:10.1038/35006649

    PubMed  CAS  Google Scholar 

  189. Piet R, Vargová L, Syková E et al (2004) Physiological contribution of the astrocytic environment of neurons to intersynaptic crosstalk. Proc Natl Acad Sci USA 101:2151–2155. doi:10.1073/pnas.0308408100

    PubMed  CAS  PubMed Central  Google Scholar 

  190. Vera G, Tapia R (2012) Activation of group III metabotropic glutamate receptors by endogenous glutamate protects against glutamate-mediated excitotoxicity in the hippocampus in vivo. J Neurosci Res 90:1055–1066. doi:10.1002/jnr.23006

    PubMed  CAS  Google Scholar 

  191. Liu Q, Xu Q, Kang J, Nedergaard M (2004) Astrocyte activation of presynaptic metabotropic glutamate receptors modulates hippocampal inhibitory synaptic transmission. Neuron Glia Biol 1:307–316

    PubMed  CAS  PubMed Central  Google Scholar 

  192. Zilberter Y (2000) Dendritic release of glutamate suppresses synaptic inhibition of pyramidal neurons in rat neocortex. J Physiol 528:489–496

    PubMed  CAS  PubMed Central  Google Scholar 

  193. Bradley SR, Rees HD, Yi H et al (1998) Distribution and developmental regulation of metabotropic glutamate receptor 7a in rat brain. J Neurochem 71:636–645

    PubMed  CAS  Google Scholar 

  194. Elezgarai I, Benítez R, Mateos JM et al (1999) Developmental expression of the group III metabotropic glutamate receptor mGluR4a in the medial nucleus of the trapezoid body of the rat. J Comp Neurol 411:431–440

    PubMed  CAS  Google Scholar 

  195. Simonyi A, Miller LA, Sun GY (2000) Region-specific decline in the expression of metabotropic glutamate receptor 7 mRNA in rat brain during aging. Mol Brain Res 82:101–106

    PubMed  CAS  Google Scholar 

  196. Manahan-Vaughan D, Reymann KG (1995) Regional and developmental profile of modulation of hippocampal synaptic transmission and LTP by AP4-sensitive mGluRs in vivo. Neuropharmacology 34:991–1001

    PubMed  CAS  Google Scholar 

  197. Cai Z, Saugstad JA, Sorensen SD et al (2001) Cyclic AMP-dependent protein kinase phosphorylates group III metabotropic glutamate receptors and inhibits their function as presynaptic receptors. J Neurochem 78:756–766

    PubMed  CAS  PubMed Central  Google Scholar 

  198. Sansig G, Bushell TJ, Clarke VR et al (2001) Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J Neurosci 21:8734–8745

    PubMed  CAS  Google Scholar 

  199. Mukherjee S, Manahan-Vaughan D (2013) Role of metabotropic glutamate receptors in persistent forms of hippocampal plasticity and learning. Neuropharmacology 66:65–81. doi:10.1016/j.neuropharm.2012.06.005

    PubMed  CAS  Google Scholar 

  200. Bellone C, Lüscher C, Mameli M (2008) Mechanisms of synaptic depression triggered by metabotropic glutamate receptors. Cell Mol Life Sci 65:2913–2923. doi:10.1007/s00018-008-8263-3

    PubMed  CAS  Google Scholar 

  201. Bushell TJ, Sansig G, Collett VJ et al (2002) Altered short-term synaptic plasticity in mice lacking the metabotropic glutamate receptor mGlu7. ScientificWorldJournal 2:730–737. doi:10.1100/tsw.2002.146

    PubMed  CAS  Google Scholar 

  202. Tolchard S, Clarke G, Collingridge GL, Fitzjohn SM (2000) Modulation of synaptic transmission in the rat ventral septal area by the pharmacological activation of metabotropic glutamate receptors. Eur J Neurosci 12:1843–1847

    PubMed  CAS  Google Scholar 

  203. Grover L, Yan C (1999) Evidence for involvement of group II/III metabotropic glutamate receptors in NMDA receptor–independent long-term potentiation in area CA1 of rat hippocampus. J Neurophysiol 82:2956–2969

    PubMed  CAS  Google Scholar 

  204. Klausnitzer J, Kulla A, Manahan-Vaughan D (2004) Role of the group III metabotropic glutamate receptor in LTP, depotentiation and LTD in the dentate gyrus of freely moving rats. Neuropharmacology 46:160–170. doi:10.1016/j.neuropharm.2003.09.019

    PubMed  CAS  Google Scholar 

  205. Naie K, Gundimi S, Siegmund H et al (2006) Group III metabotropic glutamate receptor-mediated, chemically induced long-term depression differentially affects cell viability in the hippocampus. Eur J Pharmacol 535:104–113. doi:10.1016/j.ejphar.2006.01.030

    PubMed  CAS  Google Scholar 

  206. Naie K, Manahan-Vaughan D (2005) Investigations of the protein synthesis dependency of mGluR-induced long-term depression in the dentate gyrus of freely moving rats. Neuropharmacology 49:35–44. doi:10.1016/j.neuropharm.2005.06.001

    PubMed  CAS  Google Scholar 

  207. Lodge D, Tidball P, Mercier MS et al (2013) Antagonists reversibly reverse chemical LTD induced by group I, group II and group III metabotropic glutamate receptors. Neuropharmacology 74:135–146. doi:10.1016/j.neuropharm.2013.03.011

    PubMed  CAS  Google Scholar 

  208. Gerlai R, Roder JC, Hampson DR (1998) Altered spatial learning and memory in mice lacking the mGluR4 subtype of metabotropic glutamate receptor. Behav Neurosci 112:525–532

    PubMed  CAS  Google Scholar 

  209. Gerlai R, Adams B, Fitch T et al (2002) Performance deficits of mGluR8 knockout mice in learning tasks: the effects of null mutation and the background genotype. Neuropharmacology 43:235–249

    PubMed  CAS  Google Scholar 

  210. Hölscher C, Schmid S, Pilz PKD et al (2005) Lack of the metabotropic glutamate receptor subtype 7 selectively modulates Theta rhythm and working memory. Learn Mem 12:450–455. doi:10.1101/lm.98305

    PubMed  Google Scholar 

  211. Hölscher C, Schmid S, Pilz PKD et al (2004) Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behav Brain Res 154:473–481. doi:10.1016/j.bbr.2004.03.015

    PubMed  Google Scholar 

  212. Iscru E, Goddyn H, Ahmed T et al (2013) Improved spatial learning is associated with increased hippocampal but not prefrontal long-term potentiation in mGluR4 knockout mice. Genes Brain Behav 12:615–625. doi:10.1111/gbb.12052

    PubMed  CAS  Google Scholar 

  213. Fendt M, Imobersteg S, Peterlik D et al (2013) Differential roles of mGlu7 and mGlu8 in amygdala-dependent behavior and physiology. Neuropharmacology 72:215–223. doi:10.1016/j.neuropharm.2013.04.052

    PubMed  CAS  Google Scholar 

  214. Suzuki K, Mori N, Kittaka H et al (1996) Anticonvulsant action of metaboptropic glutamate receptor agonists in kindled amygdala of rats. Neurosci Lett 204:41–44

    PubMed  CAS  Google Scholar 

  215. Tang E, Yip PK, Chapman AG et al (1997) Prolonged anticonvulsant action of glutamate metabotropic receptor agonists in inferior colliculus of genetically epilepsy-prone rats. Eur J Pharmacol 327:109–115

    PubMed  CAS  Google Scholar 

  216. Chapman AG, Nanan K, Yip P, Meldrum BS (1999) Anticonvulsant activity of a metabotropic glutamate receptor 8 preferential agonist, (R, S)-4-phosphonophenylglycine. Eur J Pharmacol 383:23–27

    PubMed  CAS  Google Scholar 

  217. Tizzano JP, Griffey KI, Schoepp DD (1995) Induction or protection of limbic seizures in mice by mGluR subtype selective agonists. Neuropharmacology 34:1063–1067

    PubMed  CAS  Google Scholar 

  218. Folbergrová J, Haugvicová R, Mareš P (2003) Seizures induced by homocysteic acid in immature rats are prevented by group III metabotropic glutamate receptoragonist (R, S)-4-phosphonophenylglycine. Exp Neurol 180:46–54. doi:10.1016/S0014-4886(02)00047-X

    PubMed  Google Scholar 

  219. Moldrich RX, Chapman AG, De Sarro G, Meldrum BS (2003) Glutamate metabotropic receptors as targets for drug therapy in epilepsy. Eur J Pharmacol 476:3–16. doi:10.1016/S0014-2999(03)02149-6

    PubMed  CAS  Google Scholar 

  220. Folbergrová J, Druga R, Haugvicová R et al (2008) Anticonvulsant and neuroprotective effect of (S)-3,4-dicarboxyphenylglycine against seizures induced in immature rats by homocysteic acid. Neuropharmacology 54:665–675. doi:10.1016/j.neuropharm.2007.11.015

    PubMed  Google Scholar 

  221. Moldrich RX, Beart PM, Jane DE et al (2001) Anticonvulsant activity of 3,4-dicarboxyphenylglycines in DBA/2 mice. Neuropharmacology 40:732–735

    PubMed  CAS  Google Scholar 

  222. Robbins MJ, Starr KR, Honey A et al (2007) Evaluation of the mGlu8 receptor as a putative therapeutic target in schizophrenia. Brain Res 1152:215–227. doi:10.1016/j.brainres.2007.03.028

    PubMed  CAS  Google Scholar 

  223. Snead OC, Banerjee PK, Burnham M, Hampson D (2000) Modulation of absence seizures by the GABAA receptor: a critical role for metabotropic glutamate receptor 4 (mGluR4). J Neurosci 20:6218–6224

    PubMed  CAS  Google Scholar 

  224. Ngomba RT, Ferraguti F, Badura A et al (2008) Positive allosteric modulation of metabotropic glutamate 4 (mGlu4) receptors enhances spontaneous and evoked absence seizures. Neuropharmacology 54:344–354. doi:10.1016/j.neuropharm.2007.10.004

    PubMed  CAS  Google Scholar 

  225. Wang X, Ai J, Hampson DR, Snead OC (2005) Altered glutamate and GABA release within thalamocortical circuitry in metabotropic glutamate receptor 4 knockout mice. Neuroscience 134:1195–1203. doi:10.1016/j.neuroscience.2005.05.033

    PubMed  CAS  Google Scholar 

  226. Bruno V, Copani A, Bonanno L et al (1996) Activation of group III metabotropic glutamate receptors is neuroprotective in cortical cultures. Eur J Pharmacol 310:61–66

    PubMed  CAS  Google Scholar 

  227. Iacovelli L, Bruno V, Salvatore L et al (2002) Native group-III metabotropic glutamate receptors are coupled to the mitogen-activated protein kinase/phosphatidylinositol-3-kinase pathways. J Neurochem 82:216–223

    PubMed  CAS  Google Scholar 

  228. Zhou F, Hongmin B, Xiang Z, Enyu L (2003) Changes of mGluR4 and the effects of its specific agonist L-AP4 in a rodent model of diffuse brain injury. J Clin Neurosci 10:684–688. doi:10.1016/j.jocn.2003.04.001

    PubMed  Google Scholar 

  229. Battaglia G, Busceti CL, Molinaro G et al (2006) Pharmacological activation of mGlu4 metabotropic glutamate receptors reduces nigrostriatal degeneration in mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurosci 26:7222–7229. doi:10.1523/JNEUROSCI.1595-06.2006

    PubMed  CAS  Google Scholar 

  230. Austin PJ, Betts MJ, Broadstock M et al (2010) Symptomatic and neuroprotective effects following activation of nigral group III metabotropic glutamate receptors in rodent models of Parkinson’s disease. Br J Pharmacol 160:1741–1753. doi:10.1111/j.1476-5381.2010.00820.x

    PubMed  CAS  PubMed Central  Google Scholar 

  231. Betts MJ, O’Neill MJ, Duty S (2012) Allosteric modulation of the group III mGlu(4) receptor provides functional neuroprotection in the 6-hydroxydopamine rat model of Parkinson’s disease. Br J Pharmacol 166:2317–2330. doi:10.1111/j.1476-5381.2012.01943.x

    PubMed  CAS  PubMed Central  Google Scholar 

  232. Domin H, Gołembiowska K, Jantas D, et al. (2014) Group III mGlu receptor agonist, ACPT-I, exerts potential neuroprotective effects in vitro and in vivo. Neurotox Res. doi: 10.1007/s12640-013-9455-7

  233. Bruno V, Battaglia G, Ksiazek I et al (2000) Selective activation of mGlu4 metabotropic glutamate receptors is protective against excitotoxic neuronal death. J Neurosci 20:6413–6420

    PubMed  CAS  Google Scholar 

  234. Lafon-Cazal M, Viennois G, Kuhn R et al (1999) mGluR7-like receptor and GABAB receptor activation enhance neurotoxic effects of N-methyl-D-aspartate in cultured mouse striatal GABAergic neurones. Neuropharmacology 38:1631–1640

    PubMed  CAS  Google Scholar 

  235. Goudet C, Magnaghi V, Landry M et al (2009) Metabotropic receptors for glutamate and GABA in pain. Brain Res Rev 60:43–56. doi:10.1016/j.brainresrev.2008.12.007

    PubMed  CAS  Google Scholar 

  236. Goudet C, Chapuy E, Alloui A et al (2008) Group III metabotropic glutamate receptors inhibit hyperalgesia in animal models of inflammation and neuropathic pain. Pain 137:112–124. doi:10.1016/j.pain.2007.08.020

    PubMed  CAS  Google Scholar 

  237. Palazzo E, de Novellis V, Rossi F, Maione S (2014) Supraspinal metabotropic glutamate receptor subtype 8: a switch to turn off pain. Amino Acids 46:1441–1448. doi:10.1007/s00726-014-1703-5

    PubMed  CAS  Google Scholar 

  238. Palazzo E, Fu Y, Ji G et al (2008) Group III mGluR7 and mGluR8 in the amygdala differentially modulate nocifensive and affective pain behaviors. Neuropharmacology 55:537–545. doi:10.1016/j.neuropharm.2008.05.007

    PubMed  CAS  PubMed Central  Google Scholar 

  239. Marabese I, de Novellis V, Palazzo E et al (2007) Effects of (S)-3,4-DCPG, an mGlu8 receptor agonist, on inflammatory and neuropathic pain in mice. Neuropharmacology 52:253–262. doi:10.1016/j.neuropharm.2006.04.006

    PubMed  CAS  Google Scholar 

  240. Palazzo E, Marabese I, Luongo L et al (2013) Effects of a metabotropic glutamate receptor subtype 7 negative allosteric modulator in the periaqueductal grey on pain responses and rostral ventromedial medulla cell activity in rat. Mol Pain 9:44. doi:10.1186/1744-8069-9-44

    PubMed  PubMed Central  Google Scholar 

  241. Han JS, Bird GC, Neugebauer V (2004) Enhanced group III mGluR-mediated inhibition of pain-related synaptic plasticity in the amygdala. Neuropharmacology 46:918–926. doi:10.1016/j.neuropharm.2004.01.006

    PubMed  CAS  Google Scholar 

  242. Palucha A (2004) Group III mGlu receptor agonists produce anxiolytic- and antidepressant-like effects after central administration in rats. Neuropharmacology 46:151–159. doi:10.1016/j.neuropharm.2003.09.006

    PubMed  CAS  Google Scholar 

  243. Tatarczyńska E, Kłodzińska A, Kroczka B et al (2001) The antianxiety-like effects of antagonists of group I and agonists of group II and III metabotropic glutamate receptors after intrahippocampal administration. Psychopharmacology 158:94–99. doi:10.1007/s002130100798

    PubMed  Google Scholar 

  244. Stachowicz K, Kłodzińska A, Palucha-Poniewiera A et al (2009) The group III mGlu receptor agonist ACPT-I exerts anxiolytic-like but not antidepressant-like effects, mediated by the serotonergic and GABA-ergic systems. Neuropharmacology 57:227–234. doi:10.1016/j.neuropharm.2009.06.005

    PubMed  CAS  Google Scholar 

  245. Linden A-M, Johnson BG, Peters SC et al (2002) Increased anxiety-related behavior in mice deficient for metabotropic glutamate 8 (mGlu8) receptor. Neuropharmacology 43:251–259

    PubMed  CAS  Google Scholar 

  246. Duvoisin RM, Zhang C, Pfankuch TF et al (2005) Increased measures of anxiety and weight gain in mice lacking the group III metabotropic glutamate receptor mGluR8. Eur J Neurosci 22:425–436. doi:10.1111/j.1460-9568.2005.04210.x

    PubMed  Google Scholar 

  247. Stachowicz K, Kłak K, Pilc A, Chojnacka-Wójcik E (2005) Lack of the antianxiety-like effect of (S)-3,4-DCPG, an mGlu8 receptor agonist, after central administration in rats. Pharmacol Reports 57:856–860

    CAS  Google Scholar 

  248. Linden A-M, Baez M, Bergeron M, Schoepp D (2003) Increased c-Fos expression in the centromedial nucleus of the thalamus in metabotropic glutamate 8 receptor knockout mice following the elevated plus maze test. Neuroscience 121:167–178. doi:10.1016/S0306-4522(03)00393-2

    PubMed  CAS  Google Scholar 

  249. Linden A-M, Bergeron M, Baez M, Schoepp DD (2003) Systemic administration of the potent mGlu8 receptor agonist (S)-3,4-DCPG induces c-Fos in stress-related brain regions in wild-type, but not mGlu8 receptor knockout mice. Neuropharmacology 45:473–483. doi:10.1016/S0028-3908(03)00200-4

    PubMed  CAS  Google Scholar 

  250. Fendt M, Bürki H, Imobersteg S et al (2010) The effect of mGlu8 deficiency in animal models of psychiatric diseases. Genes Brain Behav 9:33–44. doi:10.1111/j.1601-183X.2009.00532.x

    PubMed  CAS  Google Scholar 

  251. Stachowicz K, Chojnacka-wójcik E, Kak K, Pilc A (2006) Anxiolytic-like effects of group III mGlu receptor ligands in the hippocampus involve GABAA signaling. Pharmacol Reports 58:820–826

    CAS  Google Scholar 

  252. Wierońska JM, Stachowicz K, Pałucha-Poniewiera A et al (2010) Metabotropic glutamate receptor 4 novel agonist LSP1-2111 with anxiolytic, but not antidepressant-like activity, mediated by serotonergic and GABAergic systems. Neuropharmacology 59:627–634. doi:10.1016/j.neuropharm.2010.08.008

    PubMed  Google Scholar 

  253. Stachowicz K, Brañski P, Kłak K et al (2008) Selective activation of metabotropic G-protein-coupled glutamate 7 receptor elicits anxiolytic-like effects in mice by modulating GABAergic neurotransmission. Behav Pharmacol 19:597–603. doi:10.1097/FBP.0b013e32830cd839

    PubMed  CAS  Google Scholar 

  254. Cryan JF, Kelly PH, Neijt HC et al (2003) Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur J Neurosci 17:2409–2417. doi:10.1046/j.1460-9568.2003.02667.x

    PubMed  Google Scholar 

  255. MacInnes N, Messenger MJ, Duty S (2004) Activation of group III metabotropic glutamate receptors in selected regions of the basal ganglia alleviates akinesia in the reserpine-treated rat. Br J Pharmacol 141:15–22. doi:10.1038/sj.bjp.0705566

    PubMed  CAS  PubMed Central  Google Scholar 

  256. Konieczny J, Wardas J, Kuter K et al (2007) The influence of group III metabotropic glutamate receptor stimulation by (1S,3R,4S)-1-aminocyclo-pentane-1,3,4-tricarboxylic acid on the parkinsonian-like akinesia and striatal proenkephalin and prodynorphin mRNA expression in rats. Neuroscience 145:611–620. doi:10.1016/j.neuroscience.2006.12.006

    PubMed  CAS  Google Scholar 

  257. Lopez S, Turle-Lorenzo N, Acher F et al (2007) Targeting group III metabotropic glutamate receptors produces complex behavioral effects in rodent models of Parkinson’s disease. J Neurosci 27:6701–6711. doi:10.1523/JNEUROSCI.0299-07.2007

    PubMed  CAS  Google Scholar 

  258. Lopez S, Jouve L, Turle-Lorenzo N et al (2012) Antiparkinsonian action of a selective group III mGlu receptor agonist is associated with reversal of subthalamonigral overactivity. Neurobiol Dis 46:69–77. doi:10.1016/j.nbd.2011.12.045

    PubMed  CAS  Google Scholar 

  259. Bennouar K-E, Uberti MA, Melon C et al (2013) Synergy between L-DOPA and a novel positive allosteric modulator of metabotropic glutamate receptor 4: implications for Parkinson’s disease treatment and dyskinesia. Neuropharmacology 66:158–169. doi:10.1016/j.neuropharm.2012.03.022

    PubMed  CAS  Google Scholar 

  260. Amalric M, Lopez S, Goudet C et al (2013) Group III and subtype 4 metabotropic glutamate receptor agonists: discovery and pathophysiological applications in Parkinson’s disease. Neuropharmacology 66:53–64. doi:10.1016/j.neuropharm.2012.05.026

    PubMed  CAS  Google Scholar 

  261. Klak K, Palucha A, Branski P et al (2007) Combined administration of PHCCC, a positive allosteric modulator of mGlu4 receptors and ACPT-I, mGlu III receptor agonist evokes antidepressant-like effects in rats. Amino Acids 32:169–172

    PubMed  CAS  Google Scholar 

  262. Mao L, Guo M, Jin D et al (2013) Group III metabotropic glutamate receptors and drug addiction. Front Med 7:445–451. doi:10.1007/s11684-013-0291-1

    PubMed  Google Scholar 

  263. Mao L, Wang JQ (2000) Distinct inhibition of acute cocaine-stimulated motor activity following microinjection of a group III metabotropic glutamate receptor agonist into the dorsal striatum of rats. Pharmacol Biochem Behav 67:93–101

    PubMed  CAS  Google Scholar 

  264. David H, Abraini J (2003) Blockade of the locomotor stimulant effects of amphetamine by group I, group II, and group III metabotropic glutamate receptor ligands in the rat nucleus accumbens: possible interactions with dopamine receptors. Neuropharmacology 44:717–727. doi:10.1016/S0028-3908(03)00052-2

    PubMed  CAS  Google Scholar 

  265. Mao L, Lau YS, Wang JQ (2000) Activation of group III metabotropic glutamate receptors inhibits basal and amphetamine-stimulated dopamine release in rat dorsal striatum: an in vivo microdialysis study. Eur J Pharmacol 404:289–297

    PubMed  CAS  Google Scholar 

  266. Neugebauer V, Zinebi F, Russell R et al (2000) Cocaine and kindling alter the sensitivity of group II and III metabotropic glutamate receptors in the central amygdala. J Neurophysiol 84:759–770

    PubMed  CAS  Google Scholar 

  267. Zhang G-C, Vu K, Parelkar NK et al (2009) Acute administration of cocaine reduces metabotropic glutamate receptor 8 protein expression in the rat striatum in vivo. Neurosci Lett 449:224–227. doi:10.1016/j.neulet.2008.11.008

    PubMed  CAS  PubMed Central  Google Scholar 

  268. Parelkar NK, Wang JQ (2008) Upregulation of metabotropic glutamate receptor 8 mRNA expression in the rat forebrain after repeated amphetamine administration. Neurosci Lett 433:250–254. doi:10.1016/j.neulet.2008.01.015

    PubMed  CAS  PubMed Central  Google Scholar 

  269. Li X, Li J, Peng X-Q et al (2009) Metabotropic glutamate receptor 7 modulates the rewarding effects of cocaine in rats: involvement of a ventral pallidal GABAergic mechanism. Neuropsychopharmacology 34:1783–1796. doi:10.1038/npp.2008.236

    PubMed  CAS  PubMed Central  Google Scholar 

  270. Li X, Li J, Gardner EL, Xi Z-X (2010) Activation of mGluR7 s inhibits cocaine-induced reinstatement of drug-seeking behavior by a nucleus accumbens glutamate-mGluR2/3 mechanism in rats. J Neurochem 114:1368–1380. doi:10.1111/j.1471-4159.2010.06851.x

    PubMed  CAS  PubMed Central  Google Scholar 

  271. Bahi A, Fizia K, Dietz M et al (2012) Pharmacological modulation of mGluR7 with AMN082 and MMPIP exerts specific influences on alcohol consumption and preference in rats. Addict Biol 17:235–247. doi:10.1111/j.1369-1600.2010.00310.x

    PubMed  CAS  Google Scholar 

  272. Bahi A (2013) Viral-mediated knockdown of mGluR7 in the nucleus accumbens mediates excessive alcohol drinking and increased ethanol-elicited conditioned place preference in rats. Neuropsychopharmacology 38:2109–2119. doi:10.1038/npp.2012.122

    PubMed  CAS  Google Scholar 

  273. Vadasz C, Saito M, Gyetvai BM et al (2007) Glutamate receptor metabotropic 7 is cis-regulated in the mouse brain and modulates alcohol drinking. Genomics 90:690–702. doi:10.1016/j.ygeno.2007.08.006

    PubMed  CAS  Google Scholar 

  274. Bäckström P, Hyytiä P (2005) Suppression of alcohol self-administration and cue-induced reinstatement of alcohol seeking by the mGlu2/3 receptor agonist LY379268 and the mGlu8 receptor agonist (S)-3,4-DCPG. Eur J Pharmacol 528:110–118. doi:10.1016/j.ejphar.2005.10.051

    PubMed  Google Scholar 

  275. Zeitz C, Forster ÃU, Neidhardt J et al (2007) Night blindness: associated mutations in the domains of the metabotropic glutamate receptor 6 abolish protein trafficking. Hum Mutat 28:771–780. doi:10.1002/humu

    PubMed  CAS  Google Scholar 

  276. Dryja TP, McGee TL, Berson EL et al (2005) Night blindness and abnormal cone electroretinogram ON responses in patients with mutations in the GRM6 gene encoding mGluR6. Proc Natl Acad Sci USA 102:4884–4889. doi:10.1073/pnas.0501233102

    PubMed  CAS  PubMed Central  Google Scholar 

  277. Beqollari D, Betzenhauser MJ, Kammermeier PJ (2009) Altered G-protein coupling in an mGluR6 point mutant associated with congenital stationary night blindness. Mol Pharmacol 76:992–997. doi:10.1124/mol.109.058628

    PubMed  CAS  Google Scholar 

  278. Frisby CL, Mattsson JP, Jensen JM et al (2005) Inhibition of transient lower esophageal sphincter relaxation and gastroesophageal reflux by metabotropic glutamate receptor ligands. Gastroenterology 129:995–1004. doi:10.1053/j.gastro.2005.06.069

    PubMed  CAS  Google Scholar 

  279. Fallarino F, Volpi C, Fazio F et al (2010) Metabotropic glutamate receptor-4 modulates adaptive immunity and restrains neuroinflammation. Nat Med 16:897–902. doi:10.1038/nm.2183

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Centre for Cognitive Neuroscience (Eli Lilly) for their support, and Professor Graham Collingridge for the helpful feedback and encouragement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marion S. Mercier.

Additional information

Special Issue: In Honor of Krogsgaard-Larsen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mercier, M.S., Lodge, D. Group III Metabotropic Glutamate Receptors: Pharmacology, Physiology and Therapeutic Potential. Neurochem Res 39, 1876–1894 (2014). https://doi.org/10.1007/s11064-014-1415-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1415-y

Keywords

Navigation