Skip to main content
Log in

Potassium and Breathing in Exercise

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

The increase in ventilation caused by exercise is controlled by a combination of neural and chemical events, although the precise contribution and relative importance of these signals is still debated. It is generally agreed that the genesis of exercise hyperpnoea lies within the central nervous system and that peripheral reflexes, both chemical and neural, modulate central drive. Recently, attention has once again focused on the idea that circulating factors, in particular potassium, may play an important role in this modulation by stimulating known areas of peripheral chemoreception. Arterial chemoreceptors, muscle chemoreflex and slowly adapting pulmonary stretch receptors are all excited by hyperkalaemia. When potassium is raised to mimic exercise concentrations it increases ventilation in anaesthetised animals. This response is abolished by surgical denervation of the arterial chemoreceptors and is markedly reduced by chemical denervation with hyperoxia. Hypoxia enhances the ventilatory response to hyperkalaemia, and the stimulatory effects of potassium are further increased when combined with lactic acid or raised concentrations of noradrenaline. Hyperkalaemia can also increase the hypoxic sensitivity of the arterial chemoreflex in exercise. There is a close temporal relationship between potassium and ventilation during exercise, but changes in potassium are not proportionally related to changes in ventilation. When all data are taken together, there is good evidence that potassium has a supporting role in the control of exercise hyperpnoea, predominantly through modulation of the arterial chemoreflex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan LG, Forster HV, Wurster RD, et al. Effect of multiple denervations on the exercise hyperpnea in awake ponies. J Appl Physiol 1995; 79: 302–11

    PubMed  CAS  Google Scholar 

  2. Wasserman K, Whipp BJ, Koyal SN, et al. Effect of carotid body resection on ventilatory and acid-base control during exercise. J Appl Physiol 1975; 39: 354–8

    PubMed  CAS  Google Scholar 

  3. Shea SA, Andres LP, Shannon DC, et al. Ventilatory responses to exercise in humans lacking ventilatory chemosensitivity. J Physiol Lond 1993; 468: 623–40

    PubMed  CAS  Google Scholar 

  4. Geppert J, Zuntz N. Concerning the regulation of respiration [in German]. Arch Ges Physiol 1888; 42: 189–244

    Article  Google Scholar 

  5. Asmussen E, Nielsen M. Studies on the regulation of respiration in heavy work. Acta Physiol Scand 1946; 12: 171–88

    Article  Google Scholar 

  6. Cunningham DJC, Lloyd BB, Spurr D. Doubts about the anaerobic work substance as a stimulus to breathing in exercise. J Physiol Lond 1966; 186: 110–1P

    Google Scholar 

  7. Linton RAF, Band DM. Potassium and breathing. News Physiol Sci 1990; 5: 104–7

    Google Scholar 

  8. Paterson DJ. Potassium and ventilation in exercise. J Appl Physiol 1992; 72: 811–20

    PubMed  CAS  Google Scholar 

  9. Fenn WO, Cobb DM. Electrolyte changes in muscle during activity. Am J Physiol 1936; 115: 345–56

    CAS  Google Scholar 

  10. Conway J, Paterson DJ, Petersen ES, et al. Changes in arterial potassium and ventilation in response to exercise in humans [abstract]. J Physiol Lond 1988; 399: 43P

    Google Scholar 

  11. Medbo JL, Sejersted OM. Plasma potassium changes with high intensity exercise. J Physiol Lond 1990; 421: 105–22

    PubMed  CAS  Google Scholar 

  12. Hodgkin AL, Horowicz P. Movements of Na and K in single muscle fibres. J Physiol Lond 1959; 145: 405–32

    PubMed  CAS  Google Scholar 

  13. Clausen T, Nielsen OB. The Na-K pump and muscle contractility. Acta Physiol Scand 1994; 152: 365–73

    Article  PubMed  CAS  Google Scholar 

  14. Paterson DJ, Vejlstrup N, Willford D, et al. Effect of a sulphonylurea on dog skeletal muscle performance during fatiguing work. Acta Physiol Scand 1992; 144: 399–400

    Article  PubMed  CAS  Google Scholar 

  15. D’silva JL. The action of adrenaline on serum potassium. J Physiol Lond 1936; 86: 219–28

    PubMed  Google Scholar 

  16. Lim M, Linton RAF, Band DM. Continuous intravascular monitoring of epinephrine-induced changes in plasma potassium. Anaesthesiology 1982; 57: 272–8

    Article  CAS  Google Scholar 

  17. Williams ME, Gervino EV, Rosa RM, et al. Catecholamine modulation of rapid potassium shifts during exercise. N Engl J Med 1985; 312: 823–7

    Article  PubMed  CAS  Google Scholar 

  18. Brown MJ, Brown DC, Murphy MB. Hypokalemia from β2-receptor stimulation by circulating epinephrine. N Engl J Med 1983; 309: 1414–9

    Article  PubMed  CAS  Google Scholar 

  19. Clausen T. Regulation of active Na-K transport in skeletal muscle. Physiol Rev 1986; 66: 542–80

    PubMed  CAS  Google Scholar 

  20. Porte Jr D, Graber AL, Kuzuya T, et al. The effect of epinephrine on immunoreactive insulin levels in man. J Clin Invest 1966; 45: 228–36

    Article  PubMed  CAS  Google Scholar 

  21. Gennari FJ, Cohen JJ. Role of the kidney in potassium homeostasis: lessons from acid-base disturbances. Kidney Int 1975; 8: 1–5

    Article  PubMed  CAS  Google Scholar 

  22. Paterson DJ, Friedland JS, Bascom DA, et al. Changes in arterial potassium and ventilation during exercise in normal subjects and subjects with McArdle’s syndrome. J Physiol Lond 1990; 429: 339–48

    PubMed  CAS  Google Scholar 

  23. Fenn WO. The role of potassium in physiological processes. Physiol Rev 1940; 20: 377–415

    CAS  Google Scholar 

  24. Paterson DJ. Role of potassium in the regulation of systemic physiological function during exercise. Acta Physiol Scand 1996; 156: 287–94

    Article  PubMed  CAS  Google Scholar 

  25. Comroe JH, Schmidt CF. Reflexes from the limbs as a factor in the hyperpnea of muscular exercise. Am J Physiol 1943; 138: 536–47

    Google Scholar 

  26. Wildenthal K, Mierzniak DS, Skinner NS, et al. Potassium-induced cardiovascular and ventilatory reflexes from the dog hindlimb. Am J Physiol 1968; 215: 542–8

    PubMed  CAS  Google Scholar 

  27. Leite de Barros Neto T, Russo AK, Da Silva AC, et al. Potassium-induced ventilatory reflexes originating from the dog hindlimb during rest and passive exercise. Braz J Med Biol Res 1981; 14:285–90

    PubMed  CAS  Google Scholar 

  28. Rybicki KJ, Waldrop TG, Kaufman MP. Increasing gracilis muscle interstitial potassium concentrations stimulate group III and IV afferents. J Appl Physiol 1985; 58: 936–41

    Article  PubMed  CAS  Google Scholar 

  29. Rowell LB, O’Leary DS. Reflex control of the circulation during exercise: chemoreflexes and mechanoreflexes. J Appl Physiol 1990; 69: 407–18

    PubMed  CAS  Google Scholar 

  30. Waldrop TG, Stremel RW. Muscular contraction stimulates posterior hypothalamic neurons. Am J Physiol 1989; 256: R348–R56

    PubMed  CAS  Google Scholar 

  31. Eldridge FL, Milhorn DE, Kiley JP, et al. Stimulation by central command of locomotion, respiration and circulation during exercise. Respir Physiol 1985; 59: 313–37

    Article  PubMed  CAS  Google Scholar 

  32. Coote JH, Hilton SM, Perez-Gonzalez JF. The reflex nature of the pressure responses to hypoxia and hyperoxia to muscular exercise. J Physiol Lond 1971; 215: 789–804

    PubMed  CAS  Google Scholar 

  33. Fernandes A, Galbo H, Kjaer M, et al. Cardiovascular and ventilatory responses to dynamic exercise during epidural anaesthesia in man. J Physiol Lond 1990; 420: 281–93

    PubMed  CAS  Google Scholar 

  34. Rowell LB, Freund PR, Hobbs SF. Cardiovascular responses to muscle ischemia in humans. Circ Res 1981; 48:137–147

    Google Scholar 

  35. Alam M, Smirk FM. Observations in man upon a blood pressure raising reflex arising from voluntary muscles. J Physiol Lond 1937; 47: 112–36

    Google Scholar 

  36. Rowell LB. What signals govern the cardiovascular responses to exercise? Med Sci Sports Exerc 1980; 12: 307–15

    PubMed  CAS  Google Scholar 

  37. Miserocchi G, Sant’ Ambrogio G. Distribution of pulmonary stretch receptors in the intrapulmonary airways of the dog. Respir Physiol 1974; 21: 71–5

    Article  PubMed  CAS  Google Scholar 

  38. Coleridge HM, Coleridge JC, Banzett II RB. Effect of CO2 on afferent vagal endings in the canine lung. Respir Physiol 1978; 34: 135–51

    Article  PubMed  CAS  Google Scholar 

  39. Nye PCG, Paterson DJ. The effect of hyperkalaemia on the activity of pulmonary stretch receptors in the cat [abstract]. J Physiol Lond 1987; 391: 64P

    Google Scholar 

  40. Banner N, Guz A, Heaton R, et al. Ventilatory and circulatory responses at the onset of exercise in man following heart or heart-lung transplantation. J Physiol Lond 1988; 399: 437–49

    PubMed  CAS  Google Scholar 

  41. Forster HV, Pan LG. Contribution of acid-base changes to control of breathing during exercise. Can J Appl Physiol 1995; 20: 380–94

    Article  PubMed  CAS  Google Scholar 

  42. Jarisch A, Landgren S, Neil E, et al. Impulse activity in the carotid sinus nerve folloowing intra-carotid injection of potassium cholride, veratrine, sodium citrate, adenosine-triphosphate and alpha dinitrophenol. Acta Physiol Scand 1952; 25: 195–211

    Article  PubMed  CAS  Google Scholar 

  43. Linton RAF, Band DM. The effect of potassium on carotid chemoreceptor activity and ventilation in the cat. Respir Physiol 1985; 59: 65–70

    Article  PubMed  CAS  Google Scholar 

  44. Band DM, Linton RAF, Kent R, et al. The effect of peripheral chemodenervation on the ventilatory responses to potassium. Respir Physiol 1985; 60: 217–25

    Article  PubMed  CAS  Google Scholar 

  45. Band DM, Linton RAF. The effect of potassium on carotid body chemoreceptor discharge in the anaesthetized cat. J Physiol Lond 1986; 381: 39–47

    PubMed  CAS  Google Scholar 

  46. Paterson DJ, Nye PCG. The effect of beta adrenergic blockade on carotid body chemoreceptors during hyperkalaemia in the cat. Respir Physiol 1988; 74: 229–38

    Article  PubMed  CAS  Google Scholar 

  47. Pepper DR, Landauer RC, Kumar P. Extracellular potassium and chemosensitivity in the rat carotid body, in-vitro. J Physiol Lond 1996; 493: 833–44

    PubMed  CAS  Google Scholar 

  48. Band DM, Linton RA. The effect of potassium and venous CO2 loading on chemoreceptor firing in anaesthetized cats. Respir Physiol 1989; 76: 173–8

    Article  PubMed  CAS  Google Scholar 

  49. Burger RE, Estavillo JA, Kumar P, et al. Effects of oxygen, carbon dioxide and potassium on steady-state discharge of cat carotid body chemoreceptors. J Physiol Lond 1988; 401: 519–31

    PubMed  CAS  Google Scholar 

  50. Paterson DJ, Nye PCG. Effect of oxygen on potassium-excited ventilation in the decerebrate cat. Respir Physiol 1991; 84: 223–30

    Article  PubMed  CAS  Google Scholar 

  51. Paterson DJ, Dorrington KL, Bergel DH, et al. Effect of potassium on ventilation in the rhesus monkey. Exp Physiol 1992; 77: 217–20

    PubMed  CAS  Google Scholar 

  52. Sneyd JR, Linton RA, Band DM. Ventilatory effects of potassium during hyperoxia, normoxia and hypoxia in anaesthetized cats. Respir Physiol 1988; 72: 59–64

    Article  PubMed  CAS  Google Scholar 

  53. Cunningham DJC, Hey EN, Patrick JM, et al. The effect of noradrenaline infusion on the relation between pulmonary ventilation and the alveolar PO2 and PCO2 in man. Ann NY Acad Sci 1963; 109:756–70

    Article  PubMed  CAS  Google Scholar 

  54. McLoughlin P, Linton RA, Band DM. The effect of intravenous infusion of lactic acid on carotid chemoreceptor discharge in anaesthetized cats ventilated with room air or 100% O2. Adv Exp Med Biol 1994; 360: 249–52

    Article  PubMed  CAS  Google Scholar 

  55. McLoughlin P, Linton RA, Band DM. Effects of intravenous infusions of KC1 and lactic acid on chemoreceptor discharge in anaesthetized cats. Adv Exp Med Biol 1994; 360: 245–7

    Article  PubMed  CAS  Google Scholar 

  56. Nye PCG, Paterson DJ, Bisgard GE, et al. Excitation of arterial chemoreceptors of the anaesthetized cat by potassium and noradrenaline in euoxia [abstract]. J Physiol Lond 1994; 480: 53P

    Google Scholar 

  57. McLoughlin P, Linton RA, Band DM. Effects of potassium and lactic acid on chemoreceptor discharge in anaesthetized cats. Respir Physiol 1995; 99: 303–12

    Article  PubMed  CAS  Google Scholar 

  58. Silva Carvalho L, Dawid Milner MS, Goldsmith GE, et al. Hypothalamic modulation of the arterial chemoreceptor reflex in the anaesthetized cat: role of the nucleus tractus solitarii. J Physiol Lond 1995; 487: 751–60

    PubMed  CAS  Google Scholar 

  59. Conway J, Paterson DJ, Petersen ES, et al. Changes in arterial potassium and ventilation in response to exercise in humans. J Physiol Lond 1988; 399: 43P–43P

    Google Scholar 

  60. Paterson DJ, Robbins PA, Conway J. Changes in arterial potassium and ventilation in response to exercise in man. Resp Physiol 1989; 78: 323–30

    Article  CAS  Google Scholar 

  61. Busse M, Maassen N, Konrad H, et al. Interrelationship between pH, plasma potassium concentration and ventilation during intense continuous exercise in man. Eur J Appl Physiol 1989; 59: 256–61

    Article  CAS  Google Scholar 

  62. Yoshida T, Chida M, Ichioka M, et al. Relationship between ventilation and arterial potassium concentration during incremental exercise and recovery. Eur J Appl Physiol 1990; 61: 193–6

    Article  CAS  Google Scholar 

  63. Newstead CG, Donaldson GC, Sneyd JR. Potassium as a respiratory signal in humans. J Appl Physiol 1990; 69: 1799–803

    PubMed  CAS  Google Scholar 

  64. Casaburi R, Stringer WW, Singer E. Comparison of arterial potassium and ventilatory dynamics during sinusoidal work rate variation in man. J Physiol Lond 1995; 485: 571–80

    PubMed  CAS  Google Scholar 

  65. McLoughlin P, Popham P, Linton RA, et al. Exercise-induced changes in plasma potassium and the ventilatory threshold in man. J Physiol Lond 1994; 479: 139–47

    PubMed  Google Scholar 

  66. Busse M, Maassen N, Konrad H. Relation between plasma K and ventilaton during incremental exercise after glycogen depletion and repletion in man. J Physiol Lond 1991; 443: 469–76

    PubMed  CAS  Google Scholar 

  67. Weil JV, Byrne Quinn E, Sodal IE, et al. Augmentation of chemosensitivity during mild exercise in normal man. J Appl Physiol 1972; 33: 813–9

    PubMed  CAS  Google Scholar 

  68. Griffiths TL, Henson LC, Whipp BJ. Influence of inspired oxygen concentration on the dynamics of the exercise hyper-pnoea in man. J Physiol Lond 1986; 380: 387–403

    PubMed  CAS  Google Scholar 

  69. Petersen ES, Whipp BJ, Davis JA, et al. Effects of beta-adrenergic blockade on ventilation and gas exchange during exercise in humans. J Appl Physiol 1983; 54: 1306–13

    PubMed  CAS  Google Scholar 

  70. Folgering H, Ponte J, Sadig T. Adrenergic mechanisms and chemoreception in the carotid body of the cat and rabbit. J Physiol Lond 1982; 325: 1–22

    PubMed  CAS  Google Scholar 

  71. Qayyum M, Barlow CW, Davey PP, et al. Increased ventilatory sensitivity to hypoxia with raised arterial potassium concentration at rest and during exercise in man. J Physiol Lond 1994; 476: 365–72

    PubMed  CAS  Google Scholar 

  72. Whipp BJ. Peripheral chemoreceptor control of exercise hyperpnea in humans. Med Sci Sports Exerc 1994; 26: 337–47

    PubMed  CAS  Google Scholar 

  73. Jeyaranjan R, Goode R, Beamish S, et al. The contribution of peripheral chemoreceptors to ventilation during heavy exercise. Respir Physiol 1987; 68: 203–13

    Article  PubMed  CAS  Google Scholar 

  74. Mateika JH, Duffin J. Ventilatory responses to exercise performed below and above the first ventilatory threshold. Eur J Appl Physiol 1994; 68: 327–35

    Article  CAS  Google Scholar 

  75. Walsh ML, Banister EW. Acute ventilatory response to ramp exercise while breathing hypoxic, normoxic or hyperoxic air. In: Semple SJG, Adams L, Whipp BJ, editors. Modeling and control of ventilation. New York: Plenum, 1995: 143–6

    Chapter  Google Scholar 

  76. Pandit JJ, Bergstrom E, Frankel HL, et al. Increased hypoxic ventilatory sensitivity during exercise in man: are neural afferents necessary? J Physiol Lond 1994; 477: 169–75

    PubMed  Google Scholar 

  77. Dempsey JA, Smith CA. Do carotid chemoreceptors inhibit the hyperventilatory response to heavy exercise? Can J Appl Physiol 1994; 19: 350–9

    Article  PubMed  CAS  Google Scholar 

  78. Garfinkel SK, Kesten S, Chapman KR, et al. Physiologic and nonphysiologic determinants of aerobic fitness in mild to moderate asthma [published erratum appears in Am Rev Respir Dis 1992 Jul; 146 (1): 269. See comments]. Am Rev Respir Dis 1992; 145:741–5

    PubMed  CAS  Google Scholar 

  79. Sue DY, Van Meter LR, Hansen JE, et al. Exercise gas exchange in asthmatics after beta-adrenergic blockade. J Appl Physiol 1983; 55: 529–33

    PubMed  CAS  Google Scholar 

  80. Paterson DJ. Some factors affecting respiration in man and the cat [DPhil thesis]. Oxford: University of Oxford, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David J. Paterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paterson, D.J. Potassium and Breathing in Exercise. Sports Med. 23, 149–163 (1997). https://doi.org/10.2165/00007256-199723030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199723030-00002

Keywords

Navigation