Skip to main content
Log in

The Neuromuscular Junction

Muscle Fibre Type Differences, Plasticity and Adaptability to Increased and Decreased Activity

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

The neuromuscular junction (NMJ) of adult mammalian muscle is the site of the transduction of electrical stimuli, generated by the nervous system, to the underlying muscle fibres, resulting in muscle action. It has been demonstrated that, in some ways, the morphology of the NMJ is specific to muscle fibre type. It is also known that while the structure of the NMJ generally remains stable in young, healthy adults, a subtle form of remodelling continuously occurs at this synapse. The morphology and physiology of the NMJ have been shown to adapt to both increased, and decreased use. Indeed, morphological changes of the NMJ are associated with functional alterations in neuromuscular transmission. Increased activity of the myoneural synapse results in adaptations that enhance neuromuscular transmission and, thus, muscle performance. Similarly to increased usage, decreased neuromuscular activity results in structural alterations of the NMJ. However, unlike those responses observed with enhanced activity, decreased recruitment of the myoneural synapse can impair neuromuscular transmission and muscle performance. Thus, the NMJ demonstrates both anatomical and physiological adaptations following substantial changes in its pattern of activity. These NMJ adaptations can affect the functional capacity of skeletal muscle in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andonian MH, Fahim MA. Endurance exercise alters the morphology of fast- and slow-twitch rat neuromuscular junctions. International Journal of Sports Medicine 9: 218–223, 1988

    Article  PubMed  CAS  Google Scholar 

  • Balice-Gordon RJ, Lichtman JW. In vivo visualization of the growth of pre- and postsynaptic elements of neuromuscular junctions in the mouse. Journal of Neuroscience 10: 894–908, 1990

    PubMed  CAS  Google Scholar 

  • Banks F, Miriti M, Brodwick M. On the time course of surgically induced compensatory muscle hypertrophication of the rat plan-taris muscle. Comparative Biochemistry and Physiology 98: 55–60, 1991

    Article  PubMed  CAS  Google Scholar 

  • Be van S, Steinbach JH. The distribution of a-bungarotoxin binding sites on mammalian skeletal muscle developing in vivo. Journal of Physiology 267: 195–213, 1977

    Google Scholar 

  • Brenner HR, Rudin W. On the effect of muscle activity on the end-plate membrane in denervated mouse muscle. Journal of Physiology 410: 501–512, 1989

    PubMed  CAS  Google Scholar 

  • Brimijoin S. Molecular forms of acetylcholinesterase in brain, nerve, and muscle: nature, localization, and dynamics. Progress in Neurobiology 21: 291–322, 1983

    Article  PubMed  CAS  Google Scholar 

  • Brooke MH, Kaiser KK. Three ‘myosin ATPase’ systems: the nature of their pH lability and sulfhydryl dependence. Journal of Histochemistry and Cytochemistry 18: 670–672, 1970

    Article  PubMed  CAS  Google Scholar 

  • Brown GL, Burns BD. Fatigue and neuromuscular block in mammalian skeletal muscule. Proceeding of the Royal Society (Biology) 136: 182, 1949

    Article  CAS  Google Scholar 

  • Brown MC, Ironton R. Motor neuron sprouting induced by prolonged tetrodotoxin block of nerve action potentials. Nature 265: 549–561, 1977

    Google Scholar 

  • Butler IJ, Drachman DB, Goldberg AM. The effect of disuse on cholinergic enzymes. Journal of Physiology 274: 593–600, 1978.

    PubMed  CAS  Google Scholar 

  • Carter JL, Brimijoin S. Effects of acute and chronic denervation on release of acetylcholinesterase and its molecular forms in rat diaphragms. Journal of Neurochemistry 36: 1018–1025, 1981

    Article  CAS  Google Scholar 

  • Crockett JL, Edgerton VR, Max SR, Barnard RJ. The neuromuscular junction in reponse to endurance training. Experimental Neurology 51: 207–215, 1976

    Article  PubMed  CAS  Google Scholar 

  • D’Amelio F, Daunton NG. Effects of spaceflight in the adductor longus muscle of rats flown in the Soviet biosatellite COSMOS 2044: a study employing neural cell adhesion molecule (N-CAM) immunocytochemistry and conventional morphological techniques (light and electron microscopy). Journal of Neuropathology and Experimental Neurology 51: 415–431, 1992

    Article  PubMed  Google Scholar 

  • Deschenes MR, Maresh CM, Crivello JF, Armstrong LE, Kraemer WJ, et al. The effects of exercise training of different intensities on neuromuscular junction morphology. Journal of Neurocytology 22: 603–615, 1993

    Article  PubMed  CAS  Google Scholar 

  • Dorlochter M, Irintchev A, Blinkers M, Wernig A. Effects of enhanced activity of synaptic transmission in mouse extensor digi-torum longus muscle. Journal of Physiology 436: 283–292, 1991

    PubMed  CAS  Google Scholar 

  • Eccles JC, Eccles RM, Lundberg A. The action potentials of the alpha motoneurones supplying fast and slow muscles. Journal of Physiology 142: 275–281, 1958

    PubMed  CAS  Google Scholar 

  • Eldridge L, Liebold M, Steinbach JH. Alterations in cat skeletal neuromuscular junctions following prolonged inactivity. Journal of Physiology 313: 529–545, 1981

    PubMed  CAS  Google Scholar 

  • Fahim MA. Rapid neuromuscular remodelling following hindlimb immobilization. Anatomical Record 224: 102–109, 1989

    Article  PubMed  CAS  Google Scholar 

  • Fahim MA, Holley JH, Robbins N. Topographic comparison of neuromuscular junctions in mouse slow and fast twitch muscles. Neuroscience 13: 227–235, 1984

    Article  PubMed  CAS  Google Scholar 

  • Fahim MA, Robbins N. Remodelling of the neuromuscular junction after subtotal disuse. Brain Research 383: 353–356, 1986

    Article  PubMed  CAS  Google Scholar 

  • Fernandez H, Donoso A. Exercise selectively increases G4 AchE activity in fast-twitch muscle. Journal of Applied Physiology 65: 2245–2252, 1988

    PubMed  CAS  Google Scholar 

  • Fischbach G, Schuetze SM. A postnatal decrease in acetylcholine channel open time at rat endplates. Journal of Physiology 303: 125–137, 1980

    PubMed  CAS  Google Scholar 

  • Fumagalli G, Balbi S, Cangiano S, Lomo T. Regulation of turnover and number of acetylcholine receptors at neuromuscular junctions. Neuron 4: 563–569, 1990

    Article  PubMed  CAS  Google Scholar 

  • Gisiger V, Sherker S, Gardiner P. Swimming training increases the G4 acetylcholinesterase content of both fast ankle extensors and flexors. FEBS Letters 278: 271–273, 1991

    Article  PubMed  CAS  Google Scholar 

  • Groswald DE, Dettbarn WD. Nerve crush induced changes in molecular forms of acetylcholinesterase in soleus and extensor digitorum muscles. Experimental Neurology 79: 519–531, 1983

    Article  PubMed  CAS  Google Scholar 

  • Gupta RC, Misulis KE, Dettbarn WD. Changes in the cholinergic system of rat sciatic nerve and skeletal muscle following suspensioninduced disuse. Experimental Neurology 89: 622–633, 1985

    Article  PubMed  CAS  Google Scholar 

  • Hennig R, Lomo T. Firing patterns of motor units in normal rats. Nature 314: 164–166, 1985

    Article  PubMed  CAS  Google Scholar 

  • Herscovich S, Gershon D. Effects of aging and physical training on the neuromuscular junction of the mouse. Gerontology 33: 7–13, 1987

    Article  PubMed  CAS  Google Scholar 

  • Hill RR, Robbins N, Fang ZP. Plasticity of presynaptic and postsynaptic elements of neuromuscular junctions repeatedly observed in living adult mice. Journal of Neurocytology 20: 165–182, 1991

    Article  PubMed  CAS  Google Scholar 

  • Jasmin BJ, Gardiner PF, Gisiger V. Muscle acetylcholinesterase adapts to compensatory overload by a general increase in its molecular forms. Journal of Applied Physiology 70: 2485–2489, 1991

    PubMed  CAS  Google Scholar 

  • Jasmin BJ, Gisiger V. Regulation by exercise of the pool of G4 acetylcholinesterase characterizing fast muscles: opposite effect of running training in antagonistic muscles. Journal of Neuroscience 10: 1444–1454, 1990

    PubMed  CAS  Google Scholar 

  • Kelly SS, Robbins N. Progression of age changes in synaptic transmission at mouse neuromuscular junctions. Journal of Physiology 343: 375–383, 1983

    PubMed  CAS  Google Scholar 

  • Lichtman JW, Magrassi L, Purves D. Visualization of neuromuscular junctions over periods of several months in living mice. Journal of Neuroscience 7: 1215–1222, 1987

    PubMed  CAS  Google Scholar 

  • Lomo T, Massoulie J, Vigny M. Stimulation of denervated rat soleus muscle with fast and slow activity patterns induces different expression of acetylcholinesterase molecular forms. Journal of Neuroscience 5: 1180–1187, 1985

    PubMed  CAS  Google Scholar 

  • Massoulie J, Bon S. The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annual Reviews in Neuroscience 5: 57–106, 1982

    Article  CAS  Google Scholar 

  • Matthews-Bellinger JA, Salpeter MM. Fine structural distribution of acetylcholine receptors at developing mouse neuromuscular junctions. Journal of Neuroscience 3: 644–657, 1983

    PubMed  CAS  Google Scholar 

  • Michler A, Sakmann B. Receptor stability and channel conversion in the subsynaptic membrane of the developing neuromuscular junction. Developmental Biology 80: 1–17, 1980

    Article  PubMed  CAS  Google Scholar 

  • Nachlas MM, Tsou KC, DeSouza E, Cheng CS, Seligman AM. Cy-tochemical demonstration of succinic dehydrogenase by the use of new p-nitrophenyl substituted ditetrazole. Journal of Histochemistry and Cytochemistry 5: 420–436, 1957

    Article  PubMed  CAS  Google Scholar 

  • Ogata T. A histological study on the structural differences of motor endplate in the red, white, and intermediate muscle fibers of mouse limb muscle. Acta Medicine Okayama 19: 149–153, 1965

    CAS  Google Scholar 

  • Ogata T, Yamasaki Y. The three-dimensional structure of motor endplates in different fiber types of rat intercostal muscle. Cell and Tissue Research 241: 465–472, 1985

    PubMed  CAS  Google Scholar 

  • Oki S, Matsuda Y, Kitaoka K, Nagano Y, Nojima M, et al. Scanning electron microscope study of neuromuscular junctions in different muscle fiber types in the zebra finch and rat. Archives of Histology and Cytology 53: 327–332, 1990

    Article  PubMed  CAS  Google Scholar 

  • Pachter BR, Eberstein A. A rat model of the post-polio motor unit. Orthopedics 12: 1367–1373, 1991

    Google Scholar 

  • Pachter BR, Speilholz NI. Tenotomy-induced motor endplate alterations in rat soleus muscle. Anatomical Record 228:104–108, 1990

    Article  PubMed  CAS  Google Scholar 

  • Padykula HA, Gauthier GF. The ultrastructure of the neuromuscular junctions of mammalian red, white, and intermediate skeletal muscle fibers. Journal of Cell Biology 46: 27–41, 1970

    Article  PubMed  CAS  Google Scholar 

  • Peter JB, Barnard RJ, Edgerton VJ, Gillespie CA, Stempel KE. Metabolic profiles of three fiber types of skeletal muscle in guinea pigs and rabbits. Biochemistry 11: 2627–2633, 1972

    Article  PubMed  CAS  Google Scholar 

  • Plomp JJ, van Klempen GT, Molenaar PC. Adaptation of quantal content to decreased postsynaptic sensitivity at single endplates in alpha-bungarotoxon-treated rats. Journal of Physiology 458: 487–499, 1992

    PubMed  CAS  Google Scholar 

  • Ribaric S, Stefanovska A, Brzin M, Kogovsek M, Kroselj P. Biochemical, morphological, and functional changes during peripheral nerve regeneration. Molecular and Chemical Neuropathology 15: 143–157, 1991

    Article  PubMed  CAS  Google Scholar 

  • Riley DA, Ilyina-Kakueva EI, Ellis S, Bain JLW, Slocum GR, et al. Skeletal muscle fiber, nerve, and blood vessel breakdown in space-flown rats. FASEB Journal 4: 84–91, 1990

    PubMed  CAS  Google Scholar 

  • Robbins N. Plasticity of adult neuromuscular junctions. In Fernandez (Ed.) Nervetarget cell trophic communication, CRC Press, Boca Raton, 1987

    Google Scholar 

  • Robbins N, Fahim MA. Progression of age changes in mature mouse motor nerve terminals and its relation to locomotor activity. Journal of Neurocytology 14: 1019–1036, 1985

    Article  PubMed  CAS  Google Scholar 

  • Robbins N, Fischbach GD. Effect of chronic disuse of rat soleus neuromuscular junctions on presynaptic function. Journal of Neurophysiology 34: 570–578, 1971

    PubMed  CAS  Google Scholar 

  • Rosenheimer J. Effects of chronic stress and exercise on age-related changes in endplate architecture. Journal of Neurophysiology 53: 1582–1589, 1985

    PubMed  CAS  Google Scholar 

  • Rotzler S, Brenner HR. Metabolic stabilization of acetylcholine receptors in vertebrate neuromuscular junction by muscle activity. Journal of Cell Biology 111: 655–661, 1990

    Article  PubMed  CAS  Google Scholar 

  • Rotzler S, Schramek H, Brenner HR. Metabolic stabilization of en-dplate acetylcholine receptors regulated by Ca++ influx associated with muscle activity. Nature 349: 337–339, 1991

    Article  PubMed  CAS  Google Scholar 

  • Sakmann B, Brenner HR. Changes in synaptic channel gating during neuromuscular development. Nature 276: 401–402, 1978

    Article  PubMed  CAS  Google Scholar 

  • Salpeter MM, Loring RH. Nicotinic acetylcholine receptors in vertebrate skeletal muscle: properties, distribution and neural control. Progress in Neurobiology 25: 297–325, 1985

    Article  PubMed  CAS  Google Scholar 

  • Schuetze SM, Role RW. Developmental regulation of acetylcholine receptors. Annual Reviews in Neuroscience 10: 403–437, 1987

    Article  CAS  Google Scholar 

  • Snider WD, Harris GL. A physiological correlate of disuse-induced sprouting at the neuromuscular junction. Nature 281: 69–71, 1979

    Article  PubMed  CAS  Google Scholar 

  • Snyder DH, Rifenberick DH, Max SR. Effects of neuromuscular activity on choline acetyltransferase and acetylcholinesterase. Experimental Neurology 40: 36–42, 1973

    Article  PubMed  CAS  Google Scholar 

  • Stebbins CL, Schultz E, Smith RT, Smith EL. Effects of chronic exercise during aging on muscle and end-plate morphology in rats. Journal of Applied Physiology 58: 45–51, 1985

    Article  PubMed  CAS  Google Scholar 

  • Stephens JA, Taylor A. Fatigue of maintained voluntary muscle contraction in man. Journal of Physiology 220: 1–18, 1972

    PubMed  CAS  Google Scholar 

  • Tomas J, Fenoll R, Santafe M, Batlle J, Mayayo E. Motor nerve terminal morphologic plasticity induced by small changes in the locomotor activity of the adult rat. Neuroscience Letters 106: 137–140, 1989

    Article  PubMed  CAS  Google Scholar 

  • Tomas J, Santafe M, Fenoll R, Mayayo E, Batlle J, et al. Pattern of arborization of the motor nerve terminals in the fast and slow mammalian muscles. Biology of the Cell 74: 299–305, 1992

    Article  PubMed  CAS  Google Scholar 

  • Waerhaug O, Dahl HA, Kardel K. Different effects of physical training on the morphology of motor nerve terminals in the rat extensor digitorum longus and soleus muscles. Anatomy and Embryology 186: 125–128, 1992

    Article  PubMed  CAS  Google Scholar 

  • Wernig A, Anzil AP, Bieser A. Formation and regression of synaptic contacts in adult muscle. In Flohr & Precht (Eds) Lesion-induced neuronal plasticity in sensorimotor systems, Springer, Berlin, 1981

    Google Scholar 

  • Wernig A, Carmody JJ, Anzil AP, Hanser E, Marciniak M, et al. Persistence of nerve sprouting with features of synapse remodelling in soleus muscles of adult mice. Neuroscience 11: 241–253, 1984

    Article  PubMed  CAS  Google Scholar 

  • Wigston DJ. Remodelling of neuromuscular junctions in adult mouse soleus. Journal of Neuroscience 9: 639–647, 1989

    PubMed  CAS  Google Scholar 

  • Witzemann V, Brenner HR, Sakmann B. Neural factors regulate AchR subunit mRNAs at rat neuromuscular synapses. Journal of Cell Biology 114: 125–141, 1991

    Article  PubMed  CAS  Google Scholar 

  • Woolf CJ, Reynolds ML, Chong MS, Emson P, Irwin N, et al. Denervation of the motor endplate results in the rapid expression by terminal Schwann cells of the growth-associated protein GAP-43. Journal of Neuroscience 12: 3999–4010, 1992

    PubMed  CAS  Google Scholar 

  • Yaffe A, Tal M, Erlich M. Effect of occlusal bite-raising splint on electromyogram, motor unit histochemistry and myoneural dimensions in rats. Journal of Oral Rehabilitation 18: 343–351, 1991

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deschenes, M.R., Covault, J., Kraemer, W.J. et al. The Neuromuscular Junction. Sports Medicine 17, 358–372 (1994). https://doi.org/10.2165/00007256-199417060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-199417060-00003

Keywords

Navigation