Skip to main content
Log in

Blood Lactate

Implications for Training and Sports Performance

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

The blood lactate response to exercise has interested physiologists for over fifty years, but has more recently become as routine a variable to measure in many exercise laboratories as is heart rate. This rising popularity is probably due to: a) the ease of sampling and improved accuracy afforded by recently developed micro-assay methods and/or automated lactate analysers; and b) the predictive and evaluative power associated with the lactate response to exercise. Several studies suggest that the strong relationship between exercise performance and lactate-related variables can be attributed to a reflection by lactate during exercise of not only the functional capacity of the central circulatory apparati to transport oxygen to exercising muscles, but also the peripheral capacity of the musculature to utilise this oxygen. For example, several studies contrast the relationship between V̇O2 max and endurance running performance with that between a lactate variable and the same running performance. In every study, the lactate variable is more highly correlated with performance. Similarly, prescribing training intensity as a function of the lactate concentration elicited by the training may prove to be a means of obtaining a more homogeneous adaptation to training in a group of athletes or subjects than is obtained by setting intensity as a function of maximal heart rate or % V̇O2 max. A review of the recent literature shows that the lactate response to supramaximal exercise is a sensitive indicator of adaptation to ‘sprint training’ and is correlated with supramaximal exercise performance. This review also describes the possible applications of lactate measurements to enhance the rate of recovery from high intensity exercise. Although the lactate response to exercise is reproducible under standardised conditions it can be influenced by the site of blood sampling, ambient temperature, changes in the bodys’s acid-base balance prior to exercise, prior exercise, dietary manipulations, or pharmacological interpretation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlborg B, Linroth K, Nordgren B, Schéle R. Ett halso- och kapacitetsundersokningssystem for personalselecktion. Forsvars-medicin 9: 36–52, 1973

    Google Scholar 

  • Allen WK, Seals DR, Hurley B, Ehsani AA, Hagberg JM. Lactate threshold and distance running performance in young and older endurance athletes. Journal of Applied Physiology 58: 1281–1284, 1985

    PubMed  CAS  Google Scholar 

  • Astrom H, Holmgren A, Karlsson J, Orinius E. Rated effort angina, perceived leg fatigue and blood lactate during graded exercise. In Knuttgen H, Vogel JA, Poortmans J (Eds) Biochemistry of exercise. Human Kinetics Publishers, Champaign, 1983

    Google Scholar 

  • Bang O. The lactate content of the blood during and after muscular exercise in man. Skandinavisk Archiv für Physiologie (Suppl.) 10: 51–82, 1936

    Google Scholar 

  • Belcastro A, Bonen A. Lactic acid removal rates during controlled and uncontrolled recovery exercise. Journal of Applied Physiology 39: 932–937, 1975

    PubMed  CAS  Google Scholar 

  • Bergh U, Ekblom B. Physical performance and peak aerobic power at different body temperatures. Journal of Applied Physiology 46: 885–889, 1979

    PubMed  CAS  Google Scholar 

  • Bergh U, Thorstensson A, Sjödin B, Hultén B, Piehl K, et al. Maximal oxygen uptake and muscle fiber types in trained and untrained humans. Medicine and Science in Sports and Exercise 10: 151–154, 1978

    CAS  Google Scholar 

  • Blomstrand E, Bergh U, Essén-Gustavsson B, Ekblom B. Influence of low muscle temperature on muscle metabolism during intense dynamic exercise. Acta Physiologica Scandinavia 120: 229–236, 1984

    CAS  Google Scholar 

  • Bonen A, Belcastro A. Comparison of self-selected methods on lactic acid removal rates. Medicine and Science in Sports and Exercise 8: 176–178, 1976

    CAS  Google Scholar 

  • Böning D, Gönen Y, Maassen N. Relationship between work load, pedal frequency and physical fitness. International Journal of Sports Medicine 5: 92–97, 1984

    PubMed  Google Scholar 

  • Brooks GA, Fahey TD. Exercise Physiology, John Wiley and Sons, New York, 1984

    Google Scholar 

  • Cooke NT, Wilson SH, Freedman S. Blood lactate and respiratory muscle fatigue in patients with chronic airways obstruction. Thorax 38: 184–187, 1983

    PubMed  CAS  Google Scholar 

  • Coyle EF, Martin WH, Ehsani AA, Hagberg JM, Bloomfield SA, et al. Blood lactate threshold in some well-trained ischemie heart disease patients. Journal of Applied Physiology 54: 18–23, 1983

    PubMed  CAS  Google Scholar 

  • Cumming GR, Hastman L, McCort J, McCullough S. High serum lactates do occur in young children after maximal work. International Journal of Sports Medicine 1: 66–69, 1980

    Google Scholar 

  • Daniels JT, Yarbrough RA, Foster C. Changes in VO2 max and running performance with training European Journal of Applied Physiology 39: 249–254, 1978

    CAS  Google Scholar 

  • Davies CTM, Knibbs AV, Musgrove J. The rate of lactic acid removal in relation to different baselines of recovery exercise. Internationale Zeitschrift für angewandte Physiologie einsch-liesslich Arbeitsphysiologie 28: 155–161, 1970

    CAS  Google Scholar 

  • Davis HA, Bassett J, Hughes P, Gass GC. Anaerobic threshold and lactate turnpoint. European Journal of Applied Physiology 50: 383–392, 1983

    CAS  Google Scholar 

  • Davis HA, Gass GC. The anaerobic threshold as determined before and during lactic acidosis. European Journal of Applied Phsyiology 47: 141–149, 1981

    CAS  Google Scholar 

  • Denis C, Dormis D, Lacour JR. Endurance training VO2 max, and OBLA: A longitudinal study of two different age groups. International Journal of Sports Medicine 5: 167–173, 1984

    PubMed  CAS  Google Scholar 

  • Denis C, Fouquet R, Poty R, Geyssant A, Lacour JR. Effect of 40 weeks of endurance training on the anaerobic threshold. International Journal of Sports Medicine 3: 208–214, 1982

    PubMed  CAS  Google Scholar 

  • Donovan CM, Brooks GA. Endurance training affects lactate clearance, not lactate production. American Journal of Physiology 244: E83–E92, 1983

    PubMed  CAS  Google Scholar 

  • Edwards RHT, Jones DA. Disease of skeletal muscle. In Peachey et al. (Eds) Skeletal muscle, Waverly Press, Baltimore, 1983

    Google Scholar 

  • Ekblom B, Astrand P.-O, Saltin B, Stenberg J, Wallström B. Effect of training on circulatory response to exercise. Journal of Applied Physiology 24: 518–528, 1968

    PubMed  CAS  Google Scholar 

  • Eriksson BO, Gollnick PD, Saltin B. The effect of physical training on muscle enzyme activities and fiber composition in 11-year-old boys. Acta Paediatrica Belgica 28: 245–252, 1974

    PubMed  CAS  Google Scholar 

  • Eriksson BO, Saltin B. Muscle metabolism during exercise in boys aged 11 to 16 years compared to adults. Acta Paediatrica Belgica 28: 257–265, 1974

    PubMed  CAS  Google Scholar 

  • Farrell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL. Plasma lactate accumulation and distance running performance. Medicine and Science in Sports and Exercise 11: 338–344, 1979

    CAS  Google Scholar 

  • Fink WJ, Costill DL, Van Handel PJ. Leg muscle metabolism during exercise in the heat and cold. European Journal of Applied Physiology 34: 183–190, 1975

    CAS  Google Scholar 

  • Föhrenbach R, Mader A, Hollman W. Umfang and Intensität im Dauerlauftraining von Mittelstreckenlaüferinnen des DLV und Massnahmen zur individuellen Trainings- und Wettkampfoptimierung. Leistungssport 11: 458–472, 1981

    Google Scholar 

  • Fujitsuka N, Yamamoto T, Ohkuwa T, Saito M, Miyamura M. Peak blood lactate after short periods of maximal treadmill running., European Journal of Applied Physiology 48: 289–296, 1982

    CAS  Google Scholar 

  • Gisolfi C, Robinson S, Turrell SS. Effects of aerobic work performed during recovery from exhausting work. Journal of Applied Physiology 21: 1767–1772, 1966

    PubMed  CAS  Google Scholar 

  • Gledhill N. Bicarbonate ingestion and anaerobic performance. Sports Medicine 1(3): 177–180, 1984

    PubMed  CAS  Google Scholar 

  • Graham TE. The measurement and interpretation of lactate. In Lollgen H, Mellerowicz H (Eds) Progress in ergometry: quality control and test criteria, Springer Verlag, Berlin, 1984

    Google Scholar 

  • Hagberg JM, Coyle EF. Physiological determinants of endurance performance as studied in competitive racewalkers. Medicine and Science in Sports and Exercise 15: 287–289, 1983

    PubMed  CAS  Google Scholar 

  • Heck H, Hollmann W, Liesen H, Rost R. Sport: Leistung und Gesundheit, Deutscher Arzte-Verlag, Cologne, 1983

    Google Scholar 

  • Hermansen L. Lactate production during exercise. In Pernow & Saltin (Eds) Muscle metabolism during exercise, Plenum Press, New York, 1971

    Google Scholar 

  • Hermansen L, Saltin B. Oxygen uptake during maximal treadmill and bicycle exercise. Journal of Applied Physiology 26: 31–37, 1969

    PubMed  CAS  Google Scholar 

  • Hermansen L, Stensvold I. Production and removal of lactate during exercise in man. Acta Physiologica Scandinavia 86: 191–201, 1972

    CAS  Google Scholar 

  • Hess G, Heck H, Liesen H, Olbrecht J, Hollmann W. Die Ausdauerleistungsfahigkeit von Spitsensportlern verschiedener Disziplinen (Gemessen an der aerob-anaeroben Schwelle entsprechend 4 mmol/L Blutlaktat). In Heck et al. (Eds) Sport: Leastung und Gesundheit, Deutscher Arzte-Verlag, Cologne, 1983

    Google Scholar 

  • Hogan MC, Welch HG. Effect of varied lactate levels of bicycle erogmeter performance. Journal of Applied Physiology 57: 507–513, 1984

    PubMed  CAS  Google Scholar 

  • Hollmann W, Liesen H, Mader A, Heck H, Rost R, et al. Zur Höchst- und Dauerleistungsfahigkeit der deutschen Fussball-Spitzenpieler. Deutsche Zeitschrift für Sportmedizin 32: 113–120, 1981

    Google Scholar 

  • Hollmann W, Rost R, Liesen H, Dufaux B, Heck H, et al. Assessment of different forms of physical activity with respect to preventive and rehabilitative cardiology. International Journal of Sports Medicine 2: 67–80, 1981

    PubMed  CAS  Google Scholar 

  • Hultman E, Sahlin K. Acid-base balance during exercise. In Hutton & Miller (Eds) Exercise and sport sciences review, Vol. 8, Franklin Institute Press, Philadelphia, 1981

    Google Scholar 

  • Hultman E, Sjöholm H. Energy metabolism and contraction force of human skeletal muscle in situ during electrical stimulation. Journal of Physiology 345: 525–532, 1983

    PubMed  CAS  Google Scholar 

  • Hurley BF, Hagberg JM, Allen WK, Seals DR, Young JC, et al. Effect of training on blood lactate levels during submaximal exercise. Journal of Applied Physiology 56: 1260–1264, 1984

    PubMed  CAS  Google Scholar 

  • Inbar O, Kaiser P, Tesch P. Relationships between leg muscle fiber type distribution and leg exercise performance. International Journal of Sports Medicine 2: 154–159, 1981

    PubMed  CAS  Google Scholar 

  • Ivy JL, Costill DL, Van Handel PJ, Essig P, Lower RW. Alteration in the lactate threshold with changes in substrate availability. International Journal of Sports Medicine 2: 139–142, 1981

    PubMed  CAS  Google Scholar 

  • Ivy JL, Withers RT, Van Handel PJ, Elger DH, Costill DL. Muscle respiratory capacity and fiber type as determinants of the lactate threshold. Journal of Applied Physiology 48: 523–527, 1980

    PubMed  CAS  Google Scholar 

  • Jacobs I. The effects of thermal dehydration on performance of the Wingate Anaerobic Test. International Journal of Sports Medicine 1: 21–24, 1980

    Google Scholar 

  • Jacobs I. Lactate concentrations after short maximal exercise at various glycogen levels. Acta Physiologica Scandinavica 111: 465–467, 1981

    PubMed  CAS  Google Scholar 

  • Jacobs I, Bar-Or O, Karlsson J, Dotan R, Tesch P, et al. Changes in muscle metabolites in females with 30-s exhaustive exercise. Medicine and Science in Sports and Exercise 14: 457–460, 1982

    PubMed  CAS  Google Scholar 

  • Jacobs I, Kaiser P. Lactate in blood, mixed skeletal muscle, and FT or ST fibres during cycle exercise in man. Acta Physiologica Scandinavica 114: 461–466, 1982

    PubMed  CAS  Google Scholar 

  • Jacobs I, Lithell H, Sjödin B, Wallensten R. Some features of the ultra-marathoner: a case study. International Journal of Sports Medicine 1: 139–141, 1980

    Google Scholar 

  • Jacobs I, Romet T, Kerrigan-Brown D. Muscle glycogen depletion during exercise at 9°C and 21°C. European Journal of Applied Physiology 54: 35–39, 1985a

    CAS  Google Scholar 

  • Jacobs I, Schéle R, Sjödin B. A single blood lactate determination as an indicator of cycle erogmeter endurance capacity. European Journal of Applied Physiology 50: 355–364, 1983a

    CAS  Google Scholar 

  • Jacobs I, Schéle R, Sjödin B. Blood lactate vs exhaustive exercise to evaluate aerobic fitness. European Journal of Applied Physiology 54: 151–155, 1985b

    CAS  Google Scholar 

  • Jacobs I, Sjödin B. Relationship of ergometer-specific VO2 max and muscle enzymes to blood lactate during submaximal exercise. British Journal of Sports Medicine 19: 77–80, 1985

    PubMed  CAS  Google Scholar 

  • Jacobs I, Sjödin B, Kaiser P, Karlsson J. Onset of blood lactate accumulation after prolonged exercise. Acta Physiologica Scandinavica 112: 215–217, 1981

    PubMed  CAS  Google Scholar 

  • Jacobs I, Tesch PA, Bar-Or O, Karlsson J, Dotan R. Lactate in human skeletal muscle after 10s and 30s of supramaximal exercise. Journal of Applied Physiology 55: 365–368, 1983b

    PubMed  CAS  Google Scholar 

  • Jansson E. Diet and muscle metabolism in man. Acta Physiologica Scandinavica (Suppl.) 487, 1980

  • Jervell O. Investigation of the concentration of lactic acid in blood and urine. Acta Medica Scandinavica (Suppl.) 24, 1929

  • Jooste PL, Van Der Linde A, Shapiro CH, Strydom NB. Metabolism of ultra-long-distance running. In Poortmans & Niset (Eds) Biochemistry of exercise IV-A, University Park Press, Baltimore, 1981

    Google Scholar 

  • Jones NL, Sutton JR, Taylor R, Toews CJ. Effect of pH on car-diorespiratory and metabolic responses to exercise. Journal of Applied Physiology 43: 959–964, 1977

    PubMed  CAS  Google Scholar 

  • Kaiser P. Physical performance and muscle metabolism during β-adrenergic blockade in man. Acta Physiologica Scandinavica (Suppl.) 536, 1984

  • Kaiser P, Tesch PA. Effects of acute β-adrenergic blockade on blood and muscle lactate concentration during submaximal exercise. International Journal of Sports Medicine 4: 275–277, 1983

    PubMed  CAS  Google Scholar 

  • Kaiser P, Tesch PA, Thorsson A, Karlsson J, Kaijser L. Skeletal muscle glycolysis during submaximal exercise following acute β-adrenergic blockade in man. Acta Physiologica Scandinavica 123: 285–291, 1985

    PubMed  CAS  Google Scholar 

  • Karlsson J. Lactate and phosphagen concentrations in working muscle of man. Acta Physiologica Scandinavica (Suppl.) 358, 1971

  • Karlsson J, Bonde-Petersen F, Henriksson J, Knuttgen HG. Effects of previous exercise with arms or legs on metabolism and performance in exhaustive exercise. Journal of Applied Physiology 38: 763–767, 1975

    PubMed  CAS  Google Scholar 

  • Karlsson J, Dlin R, Kaiser P, Tesch PA, Kaijser C. Muscle metabolism, regulation of circulation and beta blockade. Journal of Cardiac Rehabilitation 3: 404–420, 1983a

    Google Scholar 

  • Karlsson J, Jacobs I, Sjodin B, Tesch P, Kaiser P, et al. Semiautomatic blood lactate assay: experiences from an exercise laboratory. International Journal df Sports Medicine 4: 52–55, 1983

    CAS  Google Scholar 

  • Karlsson J, Nordesjö LO, Jorfeldt L, Saltin B. Muscle lactate, ATP, and CP levels during exercise after physical training in man. Journal of Applied Physiology 33: 199–203, 1972

    PubMed  CAS  Google Scholar 

  • Katch V, Weltman A, Sady S, Freedson P. Validity of the relative percent concept for equating training intensity. European Journal of Applied Physiology 39: 219–227, 1978

    CAS  Google Scholar 

  • Kindermann W, Keul J. Lactate acidosis with different forms of sports activities. Canadian Journal of Applied Sport Sciences 2: 177–182, 1977

    CAS  Google Scholar 

  • Kindermann W, Schramm M, Keul J. Aerobic performance diagnostics with different experimental settings. International Journal of Sports Medicine 1: 110–114, 1980

    Google Scholar 

  • Kindermann W, Simon G, Keul J. The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. European Journal of Applied Physiology 42: 25–34, 1979

    CAS  Google Scholar 

  • Klausen K, Knuttgen HG, Forster HV. Effect of pre-existing high blood lactate concentrations on maximal exercise performance. Scandinavian Journal of Clinical and Laboratory Investigations 30: 415–419, 1972

    CAS  Google Scholar 

  • Komi PV, Karlsson J. Skeletal muscle fibre types, enzyme activites and physical performance in young males and females. Acta Physiologica Scandinavica 103: 210–218, 1978

    PubMed  CAS  Google Scholar 

  • Kowalchuk JM, Heigenhauser JF, Jones NL. Effect of pH on metabolic and cardiorespiratory responses during progressive exercise. Journal of Applied Physiology 57: 1558–1563, 1984

    PubMed  CAS  Google Scholar 

  • Kumagai S, Tanaka K, Matsuura Y, Matsuzaka A, Hirakoba K, et al. Relationships of the anaerobic threshold with the 5km, 10km and 10 mile races. European Journal of Applied Physiology 49: 13–23, 1982

    CAS  Google Scholar 

  • LaFontaine TP, Londeree BR, Spath WK. The maximal steady-state versus selected running events. Medicine and Science in Sports and Exercise 13: 190–192, 1981

    PubMed  CAS  Google Scholar 

  • Lehmann M, Berg A, Kapp R, Wessinhage T, Keul J. Correlations between laboratory testing and distance running performance in marathoners of similar performance ability. International Journal of Sports Medicine 4: 226–230, 1983

    PubMed  CAS  Google Scholar 

  • Liesen H, Dufaux B, Heck H, Mader A, Rost R, et al. Körperliche Belastung und Training im Alter. Deutsche Zeitschrift für Sportmedizin 30: 218–226, 1979

    CAS  Google Scholar 

  • Löllgen H, Graham TE, Sjøgaard G. Muscle metabolites, force and perceived exertion bicycling at varying pedal rates. Medicine and Science in Sports and Exercise 12: 345–351, 1980

    PubMed  Google Scholar 

  • Mader A. The contribution of physiology to the science of coaching. In Simri (Ed.) The art and science of coaching, Wingate Institute Press, Netanya, 1980

    Google Scholar 

  • Mader A, Heck H, Föhrenbach R, Hollmann W. Das Statische and dynamische Verhalten des Laktats und des Säure-Basen-Status im Bereich niedriger bis maximaler Azidosen bei 400-und 800-m-Läufern bei beiden Geschlechtern nach Belastungsabbruch. Deutsche Zeitschrift für Sportmedizin 30: 203–211, 1979

    CAS  Google Scholar 

  • Mader A, Liesen H, Heck H, Philippi H, Rost R, et al. Beurteilung der sportartspezifischen Ausdauerleistungsfahigkeit im Labour. Sportarzt und Sportmedizin 4: 80–88, 1976

    Google Scholar 

  • Margaria R, Oliva D, Di Prampero PE, Cerretelli P. Energy utilization in intermittent exercise of supramaximal intensity. Journal of Applied Physiology 26: 752–756, 1969

    PubMed  CAS  Google Scholar 

  • Maughan RJ. A simple, rapid method for the determination of glucose, lactate, pyruvate, alanine, 3-hydroxybutyrate, and aceto-acetate on a single 20 μ1 blood sample. Clinica Chimica Acta 122: 231–240, 1982

    CAS  Google Scholar 

  • Maughan RJ, Poole DC. The effects of glycogen loading regimen on the capacity to perform anaerobic exercise. European Journal of Applied Physiology 46: 211–219, 1981

    CAS  Google Scholar 

  • McArdle B. Myopathy due to a defect in muscle glycogen breakdown. Clinical Science 10: 13–18, 1951

    CAS  Google Scholar 

  • McLellan T. Ventilatory and plasma lactate response with different exercise protocols: a comparison of methods. International Journal of Sports Medicine 6: 30–35, 1985

    PubMed  CAS  Google Scholar 

  • McLellan T, Skinnere JS. Blood lactate removal during active recovery related to the aerobic threshold. International Journal of Sports Medicine 3: 224–229, 1982

    CAS  Google Scholar 

  • Nakao T, Fujiwara S, Isoda K, Miyahara T. Impaired lactate production by skeletal muscle with anaerobic exercise in patients with chronic renal failure. Nephron 31: 111–115, 1982

    PubMed  CAS  Google Scholar 

  • Newman E, Dill DB, Edwards HT, Webster FA. The rate of lactic acid removal in exercise. American Journal of Physiology 118: 457–462, 1937

    CAS  Google Scholar 

  • Noble B, Borg G, Jacobs I, Kaiser P, Cecci R. Validation of a category-ratio perceived exertion scale: relationship to blood and muscle lactates and heart rate. Medicine and Science in Sports and Exercise 15: 523–528, 1983

    PubMed  CAS  Google Scholar 

  • Nygaard E. Skeletal muscle fibre characteristics in young women. Acta Physiologica Scandinavica 112: 299–304, 1981

    PubMed  CAS  Google Scholar 

  • Ohkuwa T, Kato Y, Katsumata K, Nakao T, Miyamura M. Blood lactate and glycerol after 400m and 3,000m runs in sprint and long distance runners. European Journal of Applied Physiology 53: 213–218, 1984

    CAS  Google Scholar 

  • Olbrecht J, Madsen Ø, Mader A, Leisen H, Hollmann W. Relationship between swimming velocity and lactic concentration during continuous and intermittent training exercises. International Journal of Sports Medicine 6: 74–77, 1985

    PubMed  CAS  Google Scholar 

  • Owles WH. Alterations in the lactic acid content of the blood as a result of light exercise, and associated changes in the CO2-combining power of the blood and in the alveolar CO2 pressure. Journal of Physiology 69: 214–237, 1930

    PubMed  CAS  Google Scholar 

  • Roth V, Pansold B, Hasart E, Zinner J, Gabriel B. Zum Infor-mationsgehalf leistungs- diagnostischer Parameter in Abhlän-gigkeit von der Zunahme der Leistungsfahigkeit bei Sportlern. Medicin und Sport 21: 326–336, 1981

    Google Scholar 

  • Sahlin K. Intracellular pH and energy metabolism in skeletal muscle in man. Acta Physiological Scandinavica. (Suppl.) 455, 1978

  • Sale DG, Norman RW. Testing strength and power. In Mac-Dougall et al. (Eds) Physiological testing of the elite athlete, Mutual Press, Ottawa, 1982

    Google Scholar 

  • Saltin B. Circulatory response to submaximal and maximal exercise after thermal dehydration. Journal of Applied Physiology 19: 1125–1132, 1964

    PubMed  CAS  Google Scholar 

  • Saltin B, Blomqvist G, Mitchell JH, Johnson RL, Wildenthal K, et al. Response to submaximal and maximal exercise after bed rest and training. Circulation 38.(Suppl. 7), 1968

    Google Scholar 

  • Schnabel A, Kindermann W, Salas-Fraine O, Cassens J, Stgeink-raus V. Effect of β-adrenergic blockade on supramaximal exercise capacity. International Journal of Sports Medicine 4: 278–281, 1983

    PubMed  CAS  Google Scholar 

  • Schnabel A, Kindermann W, Steinkraus V, Salas-Fraire O, Biro G. Metabolic and hormonal responses to exhaustive supra-maximal running with and without β-adrenergic blockade. European Journal of Applied Physiology 52: 214–218, 1984

    CAS  Google Scholar 

  • Sjödin B, Jacobs I. Onset of blood lactate accumulation and marathon running performance. International Journal of Sports Medicine 2: 23–26, 1981

    PubMed  Google Scholar 

  • Sjödin B, Jacobs I, Karlsson J. Onset of blood lactate accumulation and enzyme activities in m. vastus lateralis in man. International Journal of Sports Medicine 2: 166–170, 1981

    Google Scholar 

  • Sjödin B, Jacobs I, Svedenhag J. Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. European Journal of Applied Physiology 49: 45–57, 1982

    Google Scholar 

  • Stamford BA, Weltman A, Moffat R, Sady S. Exercise recovery above and below anaerobic threshold following maximal work. Journal of Applied Physiology 51: 840–844, 1981

    PubMed  CAS  Google Scholar 

  • Stegmann H, Kindermann W. Comparison of prolonged exercise tests at the individual anaerobic threshold and the fixed anaerobic threshold of 4 mmol/L. International Journal of Sports Medicine 3: 105–110, 1982

    PubMed  CAS  Google Scholar 

  • Stegmann H, Kindermann W, Schnabel A. Lactate kinetics and individual anaerobic threshold. International Journal of Sports Medicine 2: 160–165, 1981

    PubMed  CAS  Google Scholar 

  • Svedenhag J, Sjödin B. Maximal and submaximal oxygen uptakes and blood lactate levels in élite male middle- and long-distance runners. International Journal of Sports Medicine 5: 255–261, 1984

    PubMed  CAS  Google Scholar 

  • Tarui S, Okuno G, Ikura Y, Tanaka Y, Tanaka T, et al. Phos-phofructokinase deficiency in skeletal muscle: a new type of glycogenosis. Biochemical and Biophysical Research Communications 19: 517–523, 1965

    PubMed  CAS  Google Scholar 

  • Tesch PA. Muscle fatigue in man. Acta Physiologica Scandinavica (Suppl) 480, 1980

  • Tesch P.A. Exercise and β-blockers. Sports Medicine 2(6): 389–412, 1985

    PubMed  CAS  Google Scholar 

  • Tesch PA, Lindeberg S. Blood lactate accumulation during arm exercise in world class kayak paddlers and strength trained athletes. European Journal of Applied Physiology 52: 441–445, 1984

    CAS  Google Scholar 

  • Tesch PA, Sharp DS, Daniels WL. Influence of fiber type composition and capillary density on onset of blood lactate accumulation. International Journal of Sports Medicine 2: 252–25, 1981

    Google Scholar 

  • Tesch PA, Wright JE. Recovery from short term intense exercise: its relation to capillary supply and blood lactate concentration. European Journal of Applied Physiology 52: 98–103, 1983

    CAS  Google Scholar 

  • Wasserman K, Whipp BJ, Koyal SN, Beaver WL. Anaerobic thre-hold and respiratory gas exchange during exercise. Journal of Applied Physiology 35: 236–243, 1973

    PubMed  CAS  Google Scholar 

  • Wells JG, Balke B, Van Fossan DD. Lactic acid accumulation during work. A suggested standardization of work classification. Journal of Applied Physiology 10: 51–55, 1957

    CAS  Google Scholar 

  • Weltman A, Regan JD. Prior exhaustive exercise and subsequent, maximal constant load exercise performance. International Journal of Sports Medicine 4: 184–189, 1983

    PubMed  CAS  Google Scholar 

  • Weltman A, Stamford BA, Moffat RJ, Katch VL. Exercise recovery, lactate removal, and subsequent high intensity exercise performance. Research Quarterly 48: 786–796, 1977

    PubMed  CAS  Google Scholar 

  • Williams C, Nute ML. Some physiological demands of a half-marathon race on recreational runners. British Journal of Sports Medicine 17: 152–161, 1983

    PubMed  CAS  Google Scholar 

  • Williams CG, Wyndham CH, Kok R, Von Rahden MJ. Effect of training on maximum oxygen intake and anaerobic metabolism in man. Internationale Zeitschrift für angewandte Physiologie einschliesslich Arbeitsphysiologie 24: 18–23, 1967

    CAS  Google Scholar 

  • Yates JW, Gladden LB, Cresanta MK. Effects of prior dynamic leg exercise on static effort of the elbow flexors. Journal of Applied Physiology 55: 891–896, 1983

    PubMed  CAS  Google Scholar 

  • Yeh MP, Gardner RM, Adams TD, Yanowitz FG, Crapo RO. ’Anaerobic threshold’: problems of determination and validation. Journal of Applied Physiology 55: 1178–1186, 1983

    PubMed  CAS  Google Scholar 

  • Yoshida T. Effect of exercise duration during incremental exercise on the determination of anaerobic threshold and the onset of blood lactate accumulation. European Journal of Applied Physiology 53: 196–199, 1984a

    CAS  Google Scholar 

  • Yoshida T. Effect of dietary modification on lactate threshold and onset of blood lactate accumulation during incremental exercise. European Journal of Applied Physiology 53: 200–205d, 1984b

    CAS  Google Scholar 

  • Yoshida T, Suda Y, Takeuchi N. Endurance training regimen based upon arterial blood lactate: effects on anaerobic threshold. European Journal of Applied Physiology 49: 223–230, 1982a

    CAS  Google Scholar 

  • Yoshida T, Takeuchi N, Suda Y. Arterial versus venous blood lactate increase in the forearm during incremental bicycle exercise. European Journal of Applied Physiology 50: 87–93, 1982b

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, I. Blood Lactate. Sports Medicine 3, 10–25 (1986). https://doi.org/10.2165/00007256-198603010-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198603010-00003

Keywords

Navigation