Skip to main content
Log in

Applied Physiology of Marathon Running

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Summary

Performance in marathon running is influenced by a variety of factors, most of which are of a physiological nature. Accordingly, the marathon runner must rely to a large extent on a high aerobic capacity. But great variations in maximal oxygen uptake V̇O2 max have been observed among runners with a similar performance capacity, indicating complementary factors are of importance for performance. The oxygen cost of running or the running economy (expressed, e.g. as V̇O2 15 at 15 km/h) as well as the fractional utilisation of V̇O2 max max at marathon race pace %V̇O2 ma × V̇O2 ma −1) [where Ma = mean marathon velocity] are additional factors which are known to affect the performance capacity. Together V̇O2 max, V̇O2 15 and %V̇O2 ma × V̇O2 ma −1 can almost entirely explain the variation in marathon performance. To a similar degree, these variables have also been found to explain the variations in the ‘anaerobic threshold’. This factor, which is closely related to the metabolic response to increasing exercise intensities, is the single variable that has the highest predictive power for marathon performance. But a major limiting factor to marathon performance is probably the choice of fuels for the exercising muscles, which factor is related to the %V̇O2 ma × V̇O2 ma −1. Present indications are that marathon runners, compared with normal individuals, have a higher turnover rate in fat metabolism at given high exercise intensities expressed both in absolute (m/sec) and relative %V̇O2 max terms. The selection of fat for oxidation by the muscles is important since the stores of the most efficient fuel, the carbohydrates, are limited. The large amount of endurance training done by marathon runners is probably responsible for similar metabolic adaptations, which contribute to a delayed onset of fatigue and raise the %V̇O2 ma × V̇O2 ma −1. There is probably an upper limit in training kilometrage above which there are no improvements in the fractional utilisation of V̇O2 max at the marathon race pace. The influence of training on V̇O2 max and, to some extent, on the running economy appears, however, to be limited by genetic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åstrand, P.-O.: New records in human power. Nature 176: 922–923(1955).

    Article  Google Scholar 

  • Åstrand, P.-O. and Rodahl, K.: Textbook of Work Physiology (McGraw-Hill Book Company, New York 1977).

    Google Scholar 

  • Bergh, U.: Physiology of Cross-Country Ski Racing, pp. 29–31 (Human Kinetics Publishers, Champaign, Illinois 1982).

    Google Scholar 

  • Bergström, J.; Hermansen, L.; Hultman, E. and Saltin, B.: Diet, muscle glycogen and physical performance. Acta Physiologica Scandinavica 71: 140–150 (1967).

    Article  PubMed  Google Scholar 

  • Blomqvist, G. and Saltin, B.: Cardiovascular adaptations to physical training. Annual Review of Physiology 45: 169–189 (1983).

    Google Scholar 

  • Chi, M.M.-Y.; Hintz, C.S.; Coyle, E.F.; Martin III, W.H.; Ivy, J.L.; Nemeth, P.M.; Holloszy, J.O. and Lowry, O.H.: Effects of detraining on enzymes of energy metabolism in individual human muscle fibers. American Journal of Physiology 244: C276–C287(1983).

    PubMed  CAS  Google Scholar 

  • Conconi, R; Ferrari, M.; Ziglio, P.G.; Droghetti, P. and Codeca, L.: Determination of the anaerobic threshold by a noninvasive field test in runners. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 52: 869–873 (1982).

    CAS  Google Scholar 

  • Conley, D.L. and Krahenbuhl, G.S.: Running economy and distance running performance of highly trained athletes. Medicine and Science in Sports and Exercise 12: 357–360 (1980).

    PubMed  CAS  Google Scholar 

  • Conley, D.L.; Krahenbuhl, G.S. and Burkett, L.N.: Training for aerobic capacity and running economy. The Physician and Sportsmedicine 9: 107–115 (1981).

    Google Scholar 

  • Costill, D.L.: Metabolic responses during distance running. Journal of Applied Physiology 28: 251–255 (1970).

    PubMed  CAS  Google Scholar 

  • Costill, D.L.: Physiology of marathon running. Journal of the American Medical Association 221: 1024–1029 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Costill, D.L.; Branam, G.; Eddy, D. and Sparks, K.: Determinants of marathon running success. Internationale Zeitschrift für angewandte Physiologie einschliesslich Arbeitsphysiologie 29: 249–254(1971).

    CAS  Google Scholar 

  • Costill, D.L.; Coyle, E.; Dulsky, G.; Evans, W.; Fink, W. and Hoopes, D.: Effect of elevated plasma FFA and insulin on muscle glycogen usage during exercise. Journal of Applied Physiology 43: 695–699 (1977).

    PubMed  CAS  Google Scholar 

  • Costill, D.L.; Fink, W.L.; Getchell, L.H.; Ivy, J.L. and Witzmann, F.A.: Lipid metabolism in skeletal muscle of endurance-trained males and females. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 47: 787–791 (1979).

    CAS  Google Scholar 

  • Costill, D.L.; Fink, W.J. and Pollock, M.L.: Muscle fiber composition and enzyme activities of elite distance runners. Medicine and Science in Sports 8: 96–100 (1976).

    PubMed  CAS  Google Scholar 

  • Costill, D.L. and Fox, E.L.: Energetics of marathon running. Medicine and Science in Sports 1: 81–86 (1969).

    Google Scholar 

  • Costill, D.L. and Miller, J.M.: Nutrition for endurance sport: Carbohydrate and fluid balance. International Journal of Sports Medicine 1: 2–14(1980).

    Article  CAS  Google Scholar 

  • Costill, D.L. and Saltin, B.: Factors limiting gastric emptying during rest and exercise. Journal of Applied Physiology 37: 679–683(1974).

    PubMed  CAS  Google Scholar 

  • Costill, D.L.; Thomason, H. and Roberts, E.: Fractional utilization of the aerobic capacity during distance running. Medicine and Science in Sports 5: 248–252 (1973).

    PubMed  CAS  Google Scholar 

  • Costill, D.L. and Winrow, E.: Maximal oxygen intake among marathon runners. Archives of Physical Medicine and Rehabilitation 51: 317–320(1970).

    PubMed  CAS  Google Scholar 

  • Coyle, E.F. and Coggan, A.R.: Effectiveness of carbohydrate feeding in delaying fatigue during prolonged exercise. Sports Medicine I: 446–458 (1984).

    Article  Google Scholar 

  • Daniels, J.: Physiological characteristics of champion male athletes. Research Quarterly 45: 342–348 (1974).

    PubMed  CAS  Google Scholar 

  • Daum, F.; Cohen, M.; McNamara, H. and Finberg, L.: Intestinal osmolality and carbohydrate absorption in rats treated with polymerized glucose. Pediatric Research 12: 24–26 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Davies, C.T.M.: Effects of wind assistance and resistance on the forward motion of a runner. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 48: 702–709(1980).

    CAS  Google Scholar 

  • Davies, C.T.M. and Thompson, M.W.: Aerobic performance of female marathon and male ultramarathon athletes. European Journal of Applied Physiology 41: 233–245 (1979).

    Article  CAS  Google Scholar 

  • Dill, D.B.: Oxygen used in horizontal and grade walking and running on the treadmill. Journal of Applied Physiology 20: 19–22(1965).

    PubMed  CAS  Google Scholar 

  • Dohm, G.L.; Williams, R.T.; Kasperek, G.J. and van Rij, A.M.: Increased excretion of urea and N-methylhistidine by rats and humans after a bout of exercise. Journal of Applied Physiology 52: 27–33(1982).

    PubMed  CAS  Google Scholar 

  • Essén-Gustavsson, B. and Henriksson, J.: Enzyme levels in pools of microdissected human muscle fibres of identified type. Acta Physiologica Scandinavica 120: 505–515 (1984).

    Article  PubMed  Google Scholar 

  • Essén, B.; Jansson, E.; Henriksson, J.; Taylor, A.W. and Saltin, B.: Metabolic characteristics of fibre types in human skeletal muscles. Acta Physiologica Scandinavica 95: 153–165 (1975).

    Article  PubMed  Google Scholar 

  • Farrell, P.A.; Wilmore, J.H.; Coyle, E.F.; Billing, J.E. and Costill, D.L.: Plasma lactate accumulation and distance running performance. Medicine and Science in Sports 11: 338–344 (1979).

    PubMed  CAS  Google Scholar 

  • Felig, P. and Wahren, J.: Fuel homeostasis in exercise. New England Journal of Medicine 293: 1078–1084 (1975).

    Article  PubMed  CAS  Google Scholar 

  • Foster, C; Daniels, J.T. and Yarbrough, R.A.: Physiological and training correlates of marathon running performance. Australian Journal of Sports Medicine 9: 58–61 (1977).

    Google Scholar 

  • Hagan, R.D.; Smith, M.G. and Gettman, L.R.: Marathon performance in relation to maximal aerobic power and training indices. Medicine and Science in Sports and Exercise 13: 185–189(1981).

    Article  PubMed  CAS  Google Scholar 

  • Hermansen, L.; Hultman, E. and Saltin, B.: Muscle glycogen during prolonged severe exercise. Acta Physiologica Scandinavica 71: 129–139(1967).

    Article  PubMed  CAS  Google Scholar 

  • Hickson, R.C.; Rennie, M.J.; Conlee, R.K.; Winder, W.W. and Holloszy J.O.: Effects of increased plasma fatty acids on glycogen utilization and endurance. Journal of Applied Physiology 43: 829–833(1977).

    PubMed  CAS  Google Scholar 

  • Hultman, E.: Muscle glycogen in man determined in needle biopsy specimens. Method and normal values. Scandinavian Journal of Clinical and Laboratory Investigation 19: 209–217(1967).

    Article  CAS  Google Scholar 

  • Hurley, B.F.; Hagberg, J.M.; Allen, W.K.; Seals, D.R.; Young, J.C.; Cuddihee, R.W. and Holloszy, J.O.: Effect of training on blood lactate levels during submaximal exercise. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 56: 1260–1264 (1984).

    CAS  Google Scholar 

  • Ivy, J.L.; Withers, R.T.; van Handel, P.J.; Elger, D.H. and Costill, D.L.: Muscle respiratory capacity and fiber type as determinants of the lactate threshold. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 48: 523–527(1980).

    CAS  Google Scholar 

  • Jansson, E. and Kaijser, L.: Muscle adaptation to extreme endurance training in man. Acta Physiologica Scandinavica 100: 315–324(1977).

    Article  PubMed  CAS  Google Scholar 

  • Karlsson, J. and Saltin, B.: Diet, muscle glycogen, and endurance performance. Journal of Applied Physiology 31: 203–206 (1971).

    PubMed  CAS  Google Scholar 

  • Keul, J.; Dickhuth, H.-H.; Lehmann, M. and Staiger, J.: The athlete’s heart — haemodynamics and structure. International Journal of Sports Medicine 3: 33–43 (1982).

    Article  PubMed  Google Scholar 

  • Kindermann, W.; Simon, G. and Keul, J.: The significance of the aerobic-anaerobic transition for the determination of work load intensities during endurance training. European Journal of Applied Physiology 42: 25–34 (1979).

    Google Scholar 

  • Lenzi, G.: The women’s marathon: Preparing for an important event in the season; in Alford (Ed.) Running (The IAAF Symposium on Middle and Long Distance Events), pp.59–66 (International Amateur Athletic Federation, London 1983).

    Google Scholar 

  • Lithell, H.; Orlander, j.; Schéie, R.; Sjödin, B. and Karlsson, J.: Changes in lipoprotein-lipase activity and lipid stores in human skeletal muscle with prolonged heavy exercise. Acta Physiologica Scandinavica 107: 257–261 (1979).

    Article  PubMed  CAS  Google Scholar 

  • Locksley, R.: Fuel utilization in marathons: Implications for performance — Medical Staff Conference, University of California, San Francisco. Western Journal of Medicine 133: 493–502 (1980).

    Google Scholar 

  • Londeree, B.R. and Ames, S.A: Maximal steady state versus state of conditioning. European Journal of Applied Physiology 34: 269–278(1975).

    Article  CAS  Google Scholar 

  • MacDougall, J.D.: The anaerobic threshold: Its significance for the endurance athlete. Canadian Journal of Applied Sport Sciences 2: 137–140(1977).

    Google Scholar 

  • Mahler, D.A. and Loke, J.: The physiology of endurance exercise. The Marathon: Clinics in Chest Medicine 5: 63–75 (1984).

    PubMed  CAS  Google Scholar 

  • Maron, M.B.; Horvath, S.M. and Wilkerson, J.E.: Acute blood biochemical alterations in response to marathon running. European Journal of Applied Physiology 34: 173–181(1975).

    Google Scholar 

  • Maron, M.B.; Horvath, S.M.; Wilkerson, J.E. and Gliner, J.A.: Oxygen uptake measurements during competitive marathon running. Journal of Applied Physiology 40: 836–838 (1976).

    PubMed  CAS  Google Scholar 

  • Maron, M.B.; Wagner, J.A. and Horvath, S.M.: Thermoregulatory responses during competitive marathon running. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 42: 909–914 (1977).

    CAS  Google Scholar 

  • Maughan, R.J. and Leiper, J.B.: Aerobic capacity and fractional utilisation of aerobic capacity in elite and non-elite male and female marathon runners. Ctiropean Journal of Applied Physiology 52: 80–87(1983).

    Article  CAS  Google Scholar 

  • McMiken, D.F. and Daniels, J.T.: Aerobic requirements and maximum aerobic power in treadmill and track running. Medicine and Science in Sports 8: 14–17 (1976).

    PubMed  CAS  Google Scholar 

  • Morgan, W.P. and Costill, D.L.: Psychological characteristic of the marathon runner. Journal of Sports Medicine and Physical Fitness 12: 42–46(1972).

    PubMed  CAS  Google Scholar 

  • Newsholme, E.A.: The glucose/fatty acid cycle and physical exhaustion; in Human Muscle Fatigue: Physiological Mechanisms, pp.89–101 (Pitman Medical, London 1981).

    Google Scholar 

  • Newsholme, E.A.: Control of metabolism and the integration of fuel supply for the,marathon runner; in Knuttgen, Vogel and Poortmans (Eds) Biochemistry of Exercise, pp. 144–150 (Human Kinetics Publishers, Champaign, Illinois 1983).

    Google Scholar 

  • Padykula, H.A. and Herman, E.: The specificity of the histochemical method for adenosine triphosphatase. Journal of Histochemistry and Cytochemistry 3: 170–183 (1955).

    Article  PubMed  CAS  Google Scholar 

  • Parker, B.M.; Londerec, B.R.; Cupp, G.V. and Dubicl, J.P.: The noninvasive cardiac evaluation of long-distance runners. Chest 73: 376–381 (1978).

    Article  PubMed  CAS  Google Scholar 

  • Pate, R.R. and Kriska, A.: Physiological Basis of the sex difference in cardiorespiratory endurance. Sports Mediciner: 87–89 (1984).

    Google Scholar 

  • Paulsen, W.; Boughncr, D.R.; Ko, P.; Cunningham, D.A. and Persuad, J.A.: Left ventricular function in marathon runners: Echocardiographic assessment. Journal of Applied Physiology: Respiratory, Environmental and Exercise Physiology 51: 881–886(1981).

    CAS  Google Scholar 

  • Pcrnow, B. and Saltin, B.: Availability of substrates and capacity for prolonged heavy exercise in man. Journal of Applied Physiology 31: 416–422 (1971).

    Google Scholar 

  • Pollock, M.L.: Submaximal and maximal working capacity of elite distance runners. Part I.: Cardiorespiratory aspects. Annals of the New York Academy of Sciences 301: 310–322 (1977).

    Article  PubMed  CAS  Google Scholar 

  • Powers, S.K.; Dobb, S.; Deason, R.; Byrd, R. and McKnight, T.: Ventilatory threshold, running economy and distance running performance of trained athletes. Research Ouarterly for Exercise and Sport 54: 179–182 (1983).

    Google Scholar 

  • Pugh, L.G.C.E.: Oxygen intake in track and treadmill running with observations on the effect of air resistance. Journal of Physiology 207: 823–835 (1970).

    PubMed  CAS  Google Scholar 

  • Pugh, L.G.C.E.; Corbett, J.L. and Johnson, R.H.: Rectal temperatures, weight losses, and sweat rates in marathon running. Journal of Applied Physiology 23: 347–352 (1967).

    PubMed  CAS  Google Scholar 

  • Rhodes, E.C. and McKenzie, D.C.: Predicting marathon time from anaerobic threshold measurements. Physician and Sports medicine 12: 95–98 (1984).

    Google Scholar 

  • Robinson, S.; Edwards, H.T. and Dill, D.B.: New records in human power. Science 85: 409–410 (1937).

    Article  PubMed  CAS  Google Scholar 

  • Saltin, B.: Aerobic work capacity and circulation at exercise in man. Acta Physiologica Scandinavica (Suppl. 230): (1964).

  • Saltin, B. and Astrand, P.-O.: Maximal oxygen uptake in athletes. Journal of Applied Physiology 23: 353–358 (1967).

    PubMed  CAS  Google Scholar 

  • Sjödin, B.: Lactate dehydrogenase in human skeletal muscle. Acta Physiologica Scandinavica (Suppl. 436): (1976).

  • Sjödin, B. and Jacobs, I.: Onset of blood lactate accumulation and marathon running performance. International Journal of Sports Medicine 2: 23–26 (1981).

    Article  PubMed  Google Scholar 

  • Sjödin, B.; Jacobs, I. and Svedenhag, J.: Changes in onset of blood lactate accumulation (OBLA) and muscle enzymes after training at OBLA. European Journal of Applied Physiology 49: 45–57(1982).

    Article  Google Scholar 

  • Sjödin, B. Schéle, R.: Oxygen cost of treadmill running in long distance runners: in Komi (Ed.) Exercise and Sport Biology, pp.61–67 (Human Kinetics Publishers, Champaign, Illinois 1982).

    Google Scholar 

  • Skilleter, D.N. and Kun, E.: The oxidation of L-lactate by liver mitochondria. Archives of Biochemistry and Biophysics 152: 92–104(1972).

    Article  PubMed  CAS  Google Scholar 

  • Snedecor, G.W. and Cochran, W.G. (Eds): Statistical Methods (Iowa State University Press, Ames, Iowa 1968).

    Book  Google Scholar 

  • Svedenhag, J. and Sjödin, B.: Maximal and submaximal oxygen uptakes and blood lactate levels in elite male middle- and longdistance runners. International Journal of Sports Medicine 5: 255–261 (1984).

    Article  PubMed  CAS  Google Scholar 

  • Svedenhag, J. and Sjödin, B.: Physiological characteristics of elite male runners in and off-season. Canadian Journal of Applied Sport Sciences (to be published, 1985).

  • Tesch, P.: Musele fatigue in man with special reference to lactate accumulation during short term intense exercise. Acta Physiologica Scandinavica (Suppl. 480): (1980).

  • Thorstcnsson, A.: Musele strength, fibre types and enzyme activities in man. Acta Physiologica Scandinavica (Suppl. 443): (1976).

  • Wasscrman, K.; Whipp, B.J.; Koyal, S.N. and Beaver, W.L.: Anaerobic threshold and respiratory gas exchange during exercise. Journal of Applied Physiology 35: 235–243 (1973).

    Google Scholar 

  • Wells, C.L.; Hecht, L.H. and Krahenbuhl, G.S.: Physical characteristics and oxygen utilization of male and female marathon runners. Research Quarterly for Exercise and Sport 52(2): 281–285(1981).

    PubMed  CAS  Google Scholar 

  • Williams, C. and Nute, M.L.G.: Some physiological demands of a half-marathon race on recreational runners. British Journal of Sports Medicine 17: 152–161 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Wyndham, C.H. and Strydom, N.B.: The danger of an inadequate water intake during marathon running. South African Medical Journal 43: 893–896(1969).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sjodin, B., Svedenhag, J. Applied Physiology of Marathon Running. Sports Medicine 2, 83–99 (1985). https://doi.org/10.2165/00007256-198502020-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00007256-198502020-00002

Keywords

Navigation