Skip to main content

Abstract

Marathon running has evolved as one of the world’s popular running experiences. Independent of the runner’s performance level the marathon event represent a major challenge to the runner’s biology. Multiple integrated physiological processes operate to resist fatigue during marathon running. The physical preparation for a marathon involves a series of complex biological adaptations to counteract exercise induced fatigue. The following chapter aims at describing important physiological components that are proposed to constrain a champion’s physiological capacity for ultimate endurance performance. Further, potential limiting factors of the lungs, cardio-vascular system, blood oxygen carrying capacity, muscle properties and metabolism are explained in order to understand the underlying mechanisms for developing specific training methods and to estimate the race pace during marathon running. Other important biological aspects involved in marathon running such as nutrition, thermoregulation, biomechanics will be discusses in detail in the following chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akimoto T, Pohnert SC, Li P, Zhang M, Gumbs C, Rosenberg PB, Williams RS, Yan Z (2005) Exercise stimulates Pgc-1alpha transcription in skeletal muscle through activation of the p38 MAPK pathway. J Biol Chem 280(20):19587–19593. doi:10.1074/jbc.M408862200

    Article  CAS  PubMed  Google Scholar 

  • Barnes KR, Kilding AE (2015) Strategies to improve running economy. Sports Med 45(1):37–56. doi:10.1007/s40279-014-0246-y

    Article  PubMed  Google Scholar 

  • Bassel-Duby R, Olson EN (2006) Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem 75:19–37. doi:10.1146/annurev.biochem.75.103004.142622

    Article  CAS  PubMed  Google Scholar 

  • Bassett DR Jr (2002) Scientific contributions of A. V. Hill: exercise physiology pioneer. J Appl Physiol (1985) 93(5):1567–1582. doi:10.1152/japplphysiol.01246.2001

    Google Scholar 

  • Bassett DR Jr, Howley ET (2000) Limiting factors for maximum oxygen uptake and determinants of endurance performance. Med Sci Sports Exerc 32(1):70–84

    Article  PubMed  Google Scholar 

  • Billat LV (2001) Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part II: anaerobic interval training. Sports Med 31(2):75–90

    Article  CAS  PubMed  Google Scholar 

  • Bizeau ME, Willis WT, Hazel JR (1998) Differential responses to endurance training in subsarcolemmal and intermyofibrillar mitochondria. J Appl Physiol 85(4):1279–1284

    CAS  PubMed  Google Scholar 

  • Bouchard C, Lesage R, Lortie G, Simoneau JA, Hamel P, Boulay MR, Perusse L, Theriault G, Leblanc C (1986) Aerobic performance in brothers, dizygotic and monozygotic twins. Med Sci Sports Exerc 18(6):639–646

    Article  CAS  PubMed  Google Scholar 

  • Bouchard C, Rankinen T, Timmons JA (2011) Genomics and genetics in the biology of adaptation to exercise. Compr Physiol 1(3):1603–1648. doi:10.1002/cphy.c100059

    PubMed  PubMed Central  Google Scholar 

  • Burgomaster KA, Howarth KR, Phillips SM, Rakobowchuk M, Macdonald MJ, McGee SL, Gibala MJ (2008) Similar metabolic adaptations during exercise after low volume sprint interval and traditional endurance training in humans. J Physiol 586(1):151–160. doi:10.1113/jphysiol.2007.142109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cairns SP (2006) Lactic acid and exercise performance: culprit or friend? Sports Med 36(4):279–291

    Article  PubMed  Google Scholar 

  • Cheuvront SN, Haymes EM (2001) Thermoregulation and marathon running: biological and environmental influences. Sports Med 31(10):743–762

    Article  CAS  PubMed  Google Scholar 

  • Conley DL, Krahenbuhl GS (1980) Running economy and distance running performance of highly trained athletes. Med Sci Sports Exerc 12(5):357–360

    Article  CAS  PubMed  Google Scholar 

  • Conley KGSBLE et al (1984) Following Steve Scott: physiological changes accompanying training. Phys Sports Med 12(1):103–106

    Google Scholar 

  • Costill DL (1970) Metabolic responses during distance running. J Appl Physiol 28(3):251–255

    CAS  PubMed  Google Scholar 

  • Costill DL, Flynn MG, Kirwan JP, Houmard JA, Mitchell JB, Thomas R, Park SH (1988) Effects of repeated days of intensified training on muscle glycogen and swimming performance. Med Sci Sports Exerc 20(3):249–254

    Article  CAS  PubMed  Google Scholar 

  • Costill DL, Thomas R, Robergs RA, Pascoe D, Lambert C, Barr S, Fink WJ (1991) Adaptations to swimming training: influence of training volume. Med Sci Sports Exerc 23(3):371–377

    Article  CAS  PubMed  Google Scholar 

  • Costill DL, Thomason H, Roberts E (1973) Fractional utilization of the aerobic capacity during distance running. Med Sci Sports 5(4):248–252

    CAS  PubMed  Google Scholar 

  • Coyle EF (1999) Physiological determinants of endurance exercise performance. J Sci Med Sport 2(3):181–189

    Article  CAS  PubMed  Google Scholar 

  • Coyle EF, Feltner ME, Kautz SA, Hamilton MT, Montain SJ, Baylor AM, Abraham LD, Petrek GW (1991) Physiological and biomechanical factors associated with elite endurance cycling performance. Med Sci Sports Exerc 23(1):93–107

    Article  CAS  PubMed  Google Scholar 

  • Coyle EF, Hagberg JM, Hurley BF, Martin WH, Ehsani AA, Holloszy JO (1983) Carbohydrate feeding during prolonged strenuous exercise can delay fatigue. J Appl Physiol Respir Environ Exerc Physiol 55(1 Pt 1):230–235

    CAS  PubMed  Google Scholar 

  • Coyle EF, Montain SJ (1992) Carbohydrate and fluid ingestion during exercise: are there trade-offs? Med Sci Sports Exerc 24(6):671–678

    Article  CAS  PubMed  Google Scholar 

  • Daussin FN, Ponsot E, Dufour SP, Lonsdorfer-Wolf E, Doutreleau S, Geny B, Piquard F, Richard R (2007) Improvement of VO2max by cardiac output and oxygen extraction adaptation during intermittent versus continuous endurance training. Eur J Appl Physiol 101(3):377–383. doi:10.1007/s00421-007-0499-3

    Article  PubMed  Google Scholar 

  • Daussin FN, Zoll J, Ponsot E, Dufour SP, Doutreleau S, Lonsdorfer E, Ventura-Clapier R, Mettauer B, Piquard F, Geny B, Richard R (2008) Training at high exercise intensity promotes qualitative adaptations of mitochondrial function in human skeletal muscle. J Appl Physiol 104(5):1436–1441. doi:10.1152/japplphysiol.01135.2007 01135.2007[pii]

    Article  PubMed  Google Scholar 

  • Dempsey JA, Hanson PG, Henderson KS (1984) Exercise-induced arterial hypoxaemia in healthy human subjects at sea level. J Physiol 355:161–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • di Prampero PE, Atchou G, Bruckner JC, Moia C (1986) The energetics of endurance running. Eur J Appl Physiol Occup Physiol 55(3):259–266

    Article  PubMed  Google Scholar 

  • Duffield R, Dawson B, Goodman C (2005a) Energy system contribution to 400-metre and 800-metre track running. J Sports Sci 23(3):299–307. doi:10.1080/02640410410001730043

    Article  PubMed  Google Scholar 

  • Duffield R, Dawson B, Goodman C (2005b) Energy system contribution to 1500- and 3000-metre track running. J Sports Sci 23(10):993–1002. doi:10.1080/02640410400021963

    Article  PubMed  Google Scholar 

  • Foster C, Lucia A (2007) Running economy: the forgotten factor in elite performance. Sports Med (Auckland, NZ) 37 (4–5):316-319

    Google Scholar 

  • Gibala MJ, Little JP, van Essen M, Wilkin GP, Burgomaster KA, Safdar A, Raha S, Tarnopolsky MA (2006) Short-term sprint interval versus traditional endurance training: similar initial adaptations in human skeletal muscle and exercise performance. J Physiol 575(Pt 3):901–911. doi:10.1113/jphysiol.2006.112094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson AS, Lambert MI, Noakes TD (2001) Neural control of force output during maximal and submaximal exercise. Sports Med 31(9):637–650

    Article  Google Scholar 

  • Green HJ (1997) Mechanisms of muscle fatigue in intense exercise. J Sports Sci 15(3):247–256. doi:10.1080/026404197367254

    Article  CAS  PubMed  Google Scholar 

  • Green HJ, Jones LL, Hughson RL, Painter DC, Farrance BW (1987) Training-induced hypervolemia: lack of an effect on oxygen utilization during exercise. Med Sci Sports Exerc 19(3):202–206

    Article  CAS  PubMed  Google Scholar 

  • Green HJ, Jones LL, Painter DC (1990) Effects of short-term training on cardiac function during prolonged exercise. Med Sci Sports Exerc 22(4):488–493

    Article  CAS  PubMed  Google Scholar 

  • Hagerman FC (1984) Applied physiology of rowing. Sports Med 1(4):303–326

    Article  CAS  PubMed  Google Scholar 

  • Hampson DB, St Clair Gibson A, Lambert MI, Noakes TD (2001) The influence of sensory cues on the perception of exertion during exercise and central regulation of exercise performance. Sports Med 31(13):935–952

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA (2002) Adaptations of skeletal muscle to prolonged, intense endurance training. Clin Exp Pharmacol Physiol 29(3):218–222

    Article  CAS  PubMed  Google Scholar 

  • Hawley JA, Burke LM, Phillips SM, Spriet LL (2011) Nutritional modulation of training-induced skeletal muscle adaptations. J Appl Physiol (1985) 110(3):834–845. doi:10.1152/japplphysiol.00949.2010

    Article  CAS  Google Scholar 

  • Helgerud J, Hoydal K, Wang E, Karlsen T, Berg P, Bjerkaas M, Simonsen T, Helgesen C, Hjorth N, Bach R, Hoff J (2007) Aerobic high-intensity intervals improve VO2max more than moderate training. Med Sci Sports Exerc 39(4):665–671. doi:10.1249/mss.0b013e3180304570

    Article  PubMed  Google Scholar 

  • Henriksson J (1992) Effects of physical training on the metabolism of skeletal muscle. Diabetes Care 15(11):1701–1711

    Article  CAS  PubMed  Google Scholar 

  • Hickson RC, Hagberg JM, Ehsani AA, Holloszy JO (1981) Time course of the adaptive responses of aerobic power and heart rate to training. Med Sci Sports Exerc 13(1):17–20

    CAS  PubMed  Google Scholar 

  • Holloszy JO (1967) Biochemical adaptations in muscle. Effects of exercise on mitochondrial oxygen uptake and respiratory enzyme activity in skeletal muscle. J Biol Chem 242(9):2278–2282

    CAS  PubMed  Google Scholar 

  • Holloszy JO, Rennie MJ, Hickson RC, Conlee RK, Hagberg JM (1977) Physiological consequences of the biochemical adaptations to endurance exercise. Ann N Y Acad Sci 301:440–450

    Article  CAS  PubMed  Google Scholar 

  • Hoppeler H, Weibel ER (2000) Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand 168(4):445–456

    Article  CAS  PubMed  Google Scholar 

  • Hunter AM, St Clair Gibson A, Lambert MI, Nobbs L, Noakes TD (2003) Effects of supramaximal exercise on the electromyographic signal. Br J Sports Med 37(4):296–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AM (2006) The physiology of the women’s world record holder for the women’s marathon. Int J Sports Sci Coaching 1(2):101–116

    Article  Google Scholar 

  • Joyner MJ, Coyle EF (2008) Endurance exercise performance: the physiology of champions. J Physiol 586(1):35–44. doi:10.1113/jphysiol.2007.143834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joyner MJ, Ruiz JR, Lucia A (2011) The two-hour marathon: who and when? J Appl Physiol (1985) 110(1):275–277. doi:10.1152/japplphysiol.00563.2010

    Article  CAS  PubMed  Google Scholar 

  • Kay D, Marino FE (2000) Fluid ingestion and exercise hyperthermia: implications for performance, thermoregulation, metabolism and the development of fatigue. J Sports Sci 18(2):71–82. doi:10.1080/026404100365135

    Article  CAS  PubMed  Google Scholar 

  • Kay D, Marino FE, Cannon J, St Clair Gibson A, Lambert MI, Noakes TD (2001) Evidence for neuromuscular fatigue during high-intensity cycling in warm, humid conditions. Eur J Appl Physiol 84(1–2):115–121. doi:10.1007/s004210000340

    Article  CAS  PubMed  Google Scholar 

  • Kirkendall DT, Garrett WE Jr (1998) The effects of aging and training on skeletal muscle. Am J Sports Med 26(4):598–602

    CAS  PubMed  Google Scholar 

  • Kusuhara K, Madsen K, Jensen L, Hellsten Y, Pilegaard H (2007) Calcium signalling in the regulation of PGC-1alpha, PDK4 and HKII mRNA expression. Biol Chem 388(5):481–488. doi:10.1515/BC.2007.052

    Article  CAS  PubMed  Google Scholar 

  • Lake MJ, Cavanagh PR (1996) Six weeks of training does not change running mechanics or improve running economy. Med Sci Sports Exerc 28(7):860–869

    Article  CAS  PubMed  Google Scholar 

  • Laursen PB, Jenkins DG (2002) The scientific basis for high-intensity interval training: optimising training programmes and maximising performance in highly trained endurance athletes. Sports Med 32(1):53–73

    Article  PubMed  Google Scholar 

  • Linossier MT, Denis C, Dormois D, Geyssant A, Lacour JR (1993) Ergometric and metabolic adaptation to a 5-s sprint training programme. Eur J Appl Physiol 67(5):408–414

    Article  CAS  Google Scholar 

  • Londeree BR (1997) Effect of training on lactate/ventilatory thresholds: a meta-analysis. Med Sci Sports Exerc 29(6):837–843

    Article  CAS  PubMed  Google Scholar 

  • Lucia A, Olivan J, Bravo J, Gonzalez-Freire M, Foster C (2008) The key to top-level endurance running performance: a unique example. British J Sports Med 42 (3):172–174; discussion 174. doi:10.1136/bjsm.2007.040725

    Google Scholar 

  • Midgley AW, McNaughton LR, Jones AM (2007) Training to enhance the physiological determinants of long-distance running performance: can valid recommendations be given to runners and coaches based on current scientific knowledge? Sports Med 37(10):857–880 37103 [pii]

    Article  PubMed  Google Scholar 

  • Millet G, Lepers R, Lattier G, Martin V, Babault N, Maffiuletti N (2000) Influence of ultra-long-term fatigue on the oxygen cost of two types of locomotion. Eur J Appl Physiol 83(4–5):376–380

    Article  CAS  PubMed  Google Scholar 

  • Millet GY, Lepers R, Maffiuletti NA, Babault N, Martin V, Lattier G (2002) Alterations of neuromuscular function after an ultramarathon. J Appl Physiol 92(2):486–492. doi:10.1152/japplphysiol.00122.2001

    Article  CAS  PubMed  Google Scholar 

  • Murray R (1998) Rehydration strategies–balancing substrate, fluid, and electrolyte provision. Int J Sports Med 19(Suppl 2):S133–S135. doi:10.1055/s-2007-971978

    Article  CAS  PubMed  Google Scholar 

  • Nagashima J, Musha H, Takada H, Murayama M (2003) New upper limit of physiologic cardiac hypertrophy in Japanese participants in the 100-km ultramarathon. J Am Coll Cardiol 42(9):1617–1623

    Article  PubMed  Google Scholar 

  • Nelson RC, Gregor RJ (1976) Biomechanics of distance running: a longitudinal study. Res Quarterly 47(3):417–428

    CAS  Google Scholar 

  • Noakes TD (2000) Physiological models to understand exercise fatigue and the adaptations that predict or enhance athletic performance. Scand J Med Sci Sports 10(3):123–145

    Article  CAS  PubMed  Google Scholar 

  • Noakes TD (2007) The central governor model of exercise regulation applied to the marathon. Sports Med 37(4–5):374–377

    Article  PubMed  Google Scholar 

  • O’Brien MJ, Viguie CA, Mazzeo RS, Brooks GA (1993) Carbohydrate dependence during marathon running. Med Sci Sports Exerc 25(9):1009–1017

    Article  PubMed  Google Scholar 

  • Pavlik G, Major Z, Csajagi E, Jeserich M, Kneffel Z (2013) The athlete’s heart Part II Influencing factors on the athlete’s heart: Types of sports and age (Review). Acta Physiol Hung 100(1):1–27 10.1556/APhysiol. 100.2013.1.1

    Article  PubMed  Google Scholar 

  • Pinniger GJ, Steele JR, Groeller H (2000) Does fatigue induced by repeated dynamic efforts affect hamstring muscle function? Med Sci Sport Exer 32(3):647–653. doi:10.1097/00005768-200003000-00015

    Article  CAS  Google Scholar 

  • Powers SK, Lawler J, Dempsey JA, Dodd S (1985) Landry G (1989) Effects of incomplete pulmonary gas exchange on VO2 max. J Appl Physiol 66(6):2491–2495

    Google Scholar 

  • Pringle JS, Doust JH, Carter H, Tolfrey K, Campbell IT, Sakkas GK, Jones AM (2003) Oxygen uptake kinetics during moderate, heavy and severe intensity “submaximal” exercise in humans: the influence of muscle fibre type and capillarisation. Eur J Appl Physiol 89(3–4):289–300. doi:10.1007/s00421-003-0799-1

    Article  PubMed  Google Scholar 

  • Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287(3):R502–R516. doi:10.1152/ajpregu.00114.2004

    Article  CAS  PubMed  Google Scholar 

  • Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, Wolfe RR (1993) Regulation of endogenous fat and carbohydrate metabolism in relation to exercise intensity and duration. Am J Physiol 265(3 Pt 1):E380–E391

    CAS  PubMed  Google Scholar 

  • Saltin B, Henriksson J, Nygaard E, Andersen P, Jansson E (1977) Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann N Y Acad Sci 301:3–29

    Article  CAS  PubMed  Google Scholar 

  • Saunders PU, Pyne DB, Telford RD, Hawley JA (2004) Factors affecting running economy in trained distance runners. Sports Med (Auckland, NZ) 34 (7):465–485

    Google Scholar 

  • Scharhag-Rosenberger F, Meyer T, Gassler N, Faude O, Kindermann W (2010) Exercise at given percentages of VO2max: heterogeneous metabolic responses between individuals. J Sci Med Sport/Sports Med Australia 13(1):74–79. doi:10.1016/j.jsams.2008.12.626

    Article  Google Scholar 

  • Serpiello FR, McKenna MJ, Bishop DJ, Aughey RJ, Caldow MK, Cameron-Smith D, Stepto NK (2011) Repeated sprints alter signalling related to mitochondrial biogenesis in humans. Med Sci Sports Exerc. doi:10.1249/MSS.0b013e318240067e

    Google Scholar 

  • Sherman WM, Costill DL (1984) The marathon: dietary manipulation to optimize performance. Am J sports Med 12(1):44–51

    Article  CAS  PubMed  Google Scholar 

  • Sjodin B, Svedenhag J (1985) Applied physiology of marathon running. Sports Med 2(2):83–99

    Article  CAS  PubMed  Google Scholar 

  • Spriet LL (2007) Regulation of substrate use during the marathon. Sports Med 37(4–5):332–336

    Article  PubMed  Google Scholar 

  • St Clair Gibson A, Schabort EJ, Noakes TD (2001) Reduced neuromuscular activity and force generation during prolonged cycling. Am J Physiol Regul Integr Comp Physiol 281(1):R187–R196

    CAS  PubMed  Google Scholar 

  • Stepto NK, Martin DT, Fallon KE, Hawley JA (2001) Metabolic demands of intense aerobic interval training in competitive cyclists. Med Sci Sports Exerc 33(2):303–310

    Article  CAS  PubMed  Google Scholar 

  • Svedenhag J, Sjödin B (1985) Physiological characteristics of elite male runners in and off-season. Canadian journal of applied sport sciences Journal canadien des sciences appliquées au sport 10(3):127–133

    CAS  PubMed  Google Scholar 

  • Thompson PD (2007) Cardiovascular adaptations to marathon running: the marathoner’s heart. Sports Med 37(4–5):444–447

    Article  PubMed  Google Scholar 

  • Tonkonogi M, Walsh B, Svensson M, Sahlin K (2000) Mitochondrial function and antioxidative defence in human muscle: effects of endurance training and oxidative stress. J Physiol 528(Pt 2):379–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Underwood RH, Schwade JL (1977) Noninvasive analysis of cardiac function of elite distance runners–echocardiography, vectorcardiography, and cardiac intervals. Ann N Y Acad Sci 301:297–309

    Article  CAS  PubMed  Google Scholar 

  • van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536(Pt 1):295–304

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilmore JH, Costill DL (1999) Physiology of sport and exercise, 2nd edn. Human Kinetics, Champaign, IL

    Google Scholar 

  • Wojtaszewski JF, Richter EA (1998) Glucose utilization during exercise: influence of endurance training. Acta Physiol Scand 162(3):351–358. doi:10.1046/j.1365-201X.1998.0322e.x

    Article  CAS  PubMed  Google Scholar 

  • Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2(10):e348. doi:10.1371/journal.pbio.0020348

    Article  PubMed  PubMed Central  Google Scholar 

  • Zinner C, Sperlich B, Wahl P, Mester J (2015) Classification of selected cardiopulmonary variables of elite athletes of different age, gender, and disciplines during incremental exercise testing. SpringerPlus 4:544. doi:10.1186/s40064-015-1341-8

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Billy Sperlich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sperlich, B. (2016). Physiological Aspects of Marathon Running. In: Zinner, C., Sperlich, B. (eds) Marathon Running: Physiology, Psychology, Nutrition and Training Aspects. Springer, Cham. https://doi.org/10.1007/978-3-319-29728-6_1

Download citation

Publish with us

Policies and ethics