Skip to main content
Log in

Cardiovascular Risk in Patients with HIV Infection

Impact of Antiretroviral Therapy

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Increased coronary heart disease risk in HIV-positive patients using antiretroviral therapy (ART) has been a controversial topic since 1998 when the dyslipidaemic effect of protease inhibitors (PIs) was recognised. Accumulating evidence suggests an association between ART and increased coronary heart disease risk. In 2003, the large, prospective D:A:D (Data Collection on Adverse Events of Anti-HIV Drugs) study reported a 26% relative increase in the rate of myocardial infarction per year of exposure during the first 4–6 years of use. As the HIV-population grows older, infectious disease specialists have to consider unfamiliar areas of internal medicine such as lipid-lowering therapy and smoking cessation. Moreover, the ART regimen itself may be a modifiable risk factor, as there are both class differences and within-class differences in the tendency to increase lipids. Most nucleoside reverse transcriptase inhibitors (NRTIs), including the newer agents tenofovir disoproxil fumarate and emtricitabine, have little or no effect on lipid levels or glucose metabolism. One exception is the highly effective NRTI stavudine, which has a dyslipidaemic profile and a negative effect on glucose metabolism. In contrast the non-nucleoside reverse transcriptase inhibitor nevirapine may increase the ‘good cholesterol’ high-density lipoprotein (HDL) cholesterol and thus reduce the total cholesterol : HDL cholesterol index. Most of the PIs have some dyslipidaemic effect, especially ritonavir (alone or in combination with other PIs), fosamprenavir and the novel PI tipranavir. Only atazanavir, and to some extent saquinavir, seem to have little effect on lipid levels and glucose metabolism.

Studies on blood pressure in HIV-positive patients have been contradictory. Apart from a recent report from the D:A:D study where lower blood pressure was found in patients receiving NNRTIs, the influence of the individual drugs on blood pressure is unknown. When hypertension is detected in a HIV-positive patient, creatinine clearance (CLCR) should be calculated and the urine checked for proteinuria. When CLCR is <30 mL/min, tenofovir disoproxil fumarate is not recommended. Many hypertensive HIV-positive patients have proteinuria and an ACE inhibitor or an angiotensin II receptor antagonist is a better choice than a thiazide diuretic or calcium channel antagonist in these patients. In addition, physicians treating patients with ART should be especially aware of the long list of possible interactions between PIs and anti-hypertensive- and lipid-lowering drugs.

This review discusses important clinical aspects of treating middle-aged HIV-positive patients who have an increased risk of experiencing a cardiovascular event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Table II
Table III
Fig. 3

Similar content being viewed by others

References

  1. Mocroft A, Brettle R, Kirk O, et al. Changes in the cause of death among HIV positive subjects across Europe: results from the EuroSIDA study. AIDS 2002; 16(12): 1663–71

    Article  PubMed  CAS  Google Scholar 

  2. Lewden C, Salmon D, Morlat P, et al. Causes of death among human immunodeficiency virus (HIV)-infected adults in the era of potent antiretroviral therapy: emerging role of hepatitis and cancers, persistent role of AIDS. Int J Epidemiol 2005 Feb; 34(1): 121–130. Epub 2004 Nov 23

    Article  PubMed  Google Scholar 

  3. Calabrese LH, Albrecht M, Young J, et al. Successful cardiac transplantation in an HIV-1-infected patient with advanced disease. N Engl J Med 2003; 348(23): 2323–8

    Article  PubMed  Google Scholar 

  4. UNAIDS. 2004 report on the global AIDS epidemic: 4th global report July 2004 [online]. Available from URL: http://www.unaids.org/bangkok2004/GAR2004_html/GAR2004_00_en.htm [Accessed 2006 July 26]

  5. Bozzette SA, Ake CF, Tam HK, et al. Cardiovascular and cerebrovascular events in patients treated for human immunodeficiency virus infection. N Engl J Med 2003; 348(8): 702–10

    Article  PubMed  CAS  Google Scholar 

  6. Klein D, Hurley LB, Quesenberry Jr CP, et al. Do protease inhibitors increase the risk for coronary heart disease in patients with HIV-1 infection? J Acquir Immune Defic Syndr 2002; 30(5): 471–7

    Article  PubMed  CAS  Google Scholar 

  7. The Data Collection on Adverse Events of Anti-HIV Drugs (DAD) Study Group. Combination antiretroviral therapy and the risk of myocardial infarction. N Engl J Med 2003; 349(21): 1993–2003

    Article  Google Scholar 

  8. Coplan PM, Nikas A, Japour A, et al. Incidence of myocardial infarction in randomized clinical trials of protease inhibitor-based antiretroviral therapy: an analysis of four different protease inhibitors. AIDS Res Hum Retroviruses 2003; 19(6): 449–55

    Article  PubMed  CAS  Google Scholar 

  9. Currier JS, Taylor A, Boyd F, et al. Coronary heart disease in HIV-infected individuals. J Acquir Immune Defic Syndr 2003; 33(4): 506–12

    Article  PubMed  Google Scholar 

  10. Mary-Krause M, Cotte L, Simon A, et al. Increased risk of myocardial infarction with duration of protease inhibitor therapy in HIV-infected men. AIDS 2003; 17(17): 2479–86

    Article  PubMed  Google Scholar 

  11. Barbara G, Di Lorenzo G, Cirelli A, et al. An open-label, prospective, observational study of the incidence of coronary artery disease in patients with HIV infection receiving highly active antiretroviral therapy. Clin Ther 2003; 25(9): 2405–18

    Article  Google Scholar 

  12. Holmberg SD, Moorman AC, Williamson JM, et al. Protease inhibitors and cardiovascular outcomes in patients with HIV- 1. Lancet 2002; 360(9347): 1747–8

    Article  PubMed  CAS  Google Scholar 

  13. d’Arminio A, Sabin CA, Phillips AN, et al. Cardio- and cerebrovascular events in HIV-infected persons. AIDS 2004; 18(13): 1811–7

    Article  PubMed  Google Scholar 

  14. Nordoy I, Aukrust P, Muller F, et al. Abnormal levels of circulating adhesion molecules in HIV-1 infection with characteristic alterations in opportunistic infections. Clin Immunol Immunopathol 1996; 81(1): 16–21

    Article  PubMed  CAS  Google Scholar 

  15. Chi D, Henry J, Kelley J, et al. The effects of HIV infection on endothelial function. Endothelium 2000; 7(4): 223–42

    PubMed  CAS  Google Scholar 

  16. Depairon M, Chessex S, Sudre P, et al. Premature atherosclerosis in HIV-infected individuals: focus on protease inhibitor therapy. AIDS 2001; 15(3): 329–34

    Article  PubMed  CAS  Google Scholar 

  17. Maggi P, Lillo A, Perilli F, et al. Colour-Doppler ultrasonography of carotid vessels in patients treated with antiretroviral therapy: a comparative study. AIDS 2004; 18(7): 1023–8

    Article  PubMed  CAS  Google Scholar 

  18. de Saint Martin L, Vandhuick O, Guillo P, et al. Premature atherosclerosis in HIV positive patients and cumulated time of exposure to antiretroviral therapy (SHIVA study). Atherosclerosis 2006; 185(2): 361- 7. Epub 2005 Aug 30

    Article  PubMed  CAS  Google Scholar 

  19. Mercie P, Thiebaut R, Aurillac-Lavignolle V, et al. Carotid intima-media thickness is slightly increased over time in HIV-1-infected patients. HIV Med 2005; 6(6): 380–7

    Article  PubMed  CAS  Google Scholar 

  20. Meng Q, Lima JA, Lai H, et al. Coronary artery calcification, atherogenic lipid changes, and increased erythrocyte volume in black injection drug users infected with human immunodeficiency virus-1 treated with protease inhibitors. Am Heart J 2002; 144(4): 642–8

    PubMed  Google Scholar 

  21. Talwani R, Falusi OM, Mendes de Leon CF, et al. Electron beam computed tomography for assessment of coronary artery disease in HIV-infected men receiving antiretroviral therapy. J Acquir Immune Defic Syndr 2002; 30(2): 191–5

    PubMed  Google Scholar 

  22. Conroy RM, Pyorala K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003; 24(11): 987–1003

    Article  PubMed  CAS  Google Scholar 

  23. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 2002; 105(3): 310–5

    Article  PubMed  Google Scholar 

  24. Anderson KM, Odell PM, Wilson PW, et al. Cardiovascular disease risk profiles. Am Heart J 1991; 121 (1 Pt 2): 293–8

    Article  PubMed  CAS  Google Scholar 

  25. Bergersen BM, Sandvik L, Bruun JN, et al. Elevated Framingham risk score in HIV-positive patients on highly active antiretroviral therapy: results from a Norwegian study of 721 subjects. Eur J Clin Microbiol Infect Dis 2004; 23(8): 625–30

    Article  PubMed  CAS  Google Scholar 

  26. Grover SA, Coupal L, Gilmore N, et al. Impact of dyslipidemia associated with Highly Active Antiretroviral Therapy (HAART) on cardiovascular risk and life expectancy. Am J Cardiol 2005; 95(5): 586–91

    Article  PubMed  CAS  Google Scholar 

  27. Friis-Moller N, Weber R, Reiss P, et al. Cardiovascular disease risk factors in HIV patients: association with antiretroviral therapy: results from the DAD study. AIDS 2003; 17(8): 1179–93

    Article  PubMed  Google Scholar 

  28. Empana JP, Ducimetiere P, Arveiler D, et al. Are the Framingham and PROCAM coronary heart disease risk functions applicable to different European populations? The PRIME Study. Eur Heart J 2003; 24(21): 1903–11

    Article  PubMed  CAS  Google Scholar 

  29. Thomsen TF, McGee D, Davidsen M, et al. A cross-validation of risk-scores for coronary heart disease mortality based on data from the Glostrup Population Studies and Framingham Heart Study. Int J Epidemiol 2002; 31(4): 817–22

    Article  PubMed  Google Scholar 

  30. Carr A, Samaras K, Burton S, et al. A syndrome of peripheral lipodystrophy, hyperlipidaemia and insulin resistance in patients receiving HIV protease inhibitors. AIDS 1998; 12(7): F51–8

    Article  PubMed  CAS  Google Scholar 

  31. Foster DW. The lipodystrophies and other rare disorders of adipose tissue. In: Wilson JD, editor. Harrison’s principles of internal medicine. 12th ed. International edition. New York: McGraw-Hill Inc., 1991: 1883–7

    Google Scholar 

  32. Garg A. Lipodystrophies. Am J Med 2000; 108(2): 143–52

    Article  PubMed  CAS  Google Scholar 

  33. Grunfeld C, Pang M, Doerrler W, et al. Lipids, lipoproteins, triglyceride clearance, and cytokines in human immunodeficiency virus infection and the acquired immunodeficiency syndrome. J Clin Endocrinol Metab 1992; 74(5): 1045–52

    Article  PubMed  CAS  Google Scholar 

  34. Riddler SA, Smit E, Cole SR, et al. Impact of HIV infection and HAART on serum lipids in men. JAMA 2003; 289(22): 2978–82

    Article  PubMed  CAS  Google Scholar 

  35. Moriya K, Shintani Y, Fujie H, et al. Serum lipid profile of patients with genotype 1b hepatitis C viral infection in Japan. Hepatol Res 2003; 25(4): 371–6

    Article  PubMed  CAS  Google Scholar 

  36. Polgreen PM, Fultz SL, Justice AC, et al. Association of hypocholesterolaemia with hepatitis C virus infection in HIV-infected people. HIV Med 2004; 5(3): 144–50

    Article  PubMed  CAS  Google Scholar 

  37. Bergersen BM, Schumacher A, Sandvik L, et al. Important differences in components of the metabolic syndrome between HIV-patients with and without highly active antiretroviral therapy and healthy controls. Scand J Infect Dis 2006; 38(8): 682–9

    Article  PubMed  Google Scholar 

  38. van der Valk, Kastelein JJ, Murphy RL, et al. Nevirapine-containing antiretroviral therapy in HIV-1 infected patients results in an anti-atherogenic lipid profile. AIDS 2001; 15(18): 2407–14

    Article  Google Scholar 

  39. Bergersen BM, Tonstad S, Sandvik L, et al. Low prevalence of high-density lipoprotein cholesterol level < 1 mmol/L in non-nucleoside reverse transcriptase inhibitor recipients. Int J STD AIDS 2005; 16(5): 365–9

    Article  PubMed  Google Scholar 

  40. Fontas E, van Leth F, Sabin CA, et al. Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy: are different antiretroviral drugs associated with different lipid profiles? J Infect Dis 2004; 189(6): 1056–74

    Article  PubMed  CAS  Google Scholar 

  41. Periard D, Telenti A, Sudre P, et al. Atherogenic dyslipidemia in HIV-infected individuals treated with protease inhibitors: the Swiss HIV Cohort Study. Circulation 1999; 100(7): 700–5

    Article  PubMed  CAS  Google Scholar 

  42. Manfredi R, Chiodo F. Disorders of lipid metabolism in patients with HIV disease treated with antiretroviral agents: frequency, relationship with administered drugs, and role of hypolipidaemic therapy with bezafibrate. J Infect 2001; 42(3): 181–8

    Article  PubMed  CAS  Google Scholar 

  43. Bastard JP, Caron M, Vidal H, et al. Association between altered expression of adipogenic factor SREBPl in lipoatrophic adipose tissue from HIV-1-infected patients and abnormal adipocyte differentiation and insulin resistance. Lancet 2002; 359(9311): 1026–31

    Article  PubMed  CAS  Google Scholar 

  44. Mynarcik DC, McNurlan MA, Steigbigel RT, et al. Association of severe insulin resistance with both loss of limb fat and elevated serum tumor necrosis factor receptor levels in HIV lipodystrophy. J Acquir Immune Defic Syndr 2000; 25(4): 312–21

    Article  PubMed  CAS  Google Scholar 

  45. Ledru E, Christeff N, Patey O, et al. Alteration of tumor necrosis factor-alpha T-cell homeostasis following potent antiretroviral therapy: contribution to the development of human immunodeficiency virus-associated lipodystrophy syndrome. Blood 2000; 95(10): 3191–8

    PubMed  CAS  Google Scholar 

  46. Limone P, Biglino A, Valle M, et al. Insulin resistance in HIV-infected patients: relationship with pro-inflammatory cytokines released by peripheral leukocytes. J Infect 2003; 47(1): 52–8

    Article  PubMed  Google Scholar 

  47. Nolan D, Moore C, Castley A, et al. Tumour necrosis factor-alpha gene -238G/A promoter polymorphism associated with a more rapid onset of lipodystrophy. AIDS 2003; 17(1): 121–3

    Article  PubMed  Google Scholar 

  48. Brinkman K, Smeitink JA, Romijn JA, et al. Mitochondrial toxicity induced by nucleoside-analogue reverse-transcriptase inhibitors is a key factor in the pathogenesis of antiretroviral-therapy-related lipodystrophy. Lancet 1999; 354(9184): 1112–5

    Article  PubMed  CAS  Google Scholar 

  49. Balasubramanyam A, Sekhar RV, Jahoor F, et al. Pathophysiology of dyslipidemia and increased cardiovascular risk in HIV lipodystrophy: a model of ‘systemic steatosis’. Curr Opin Lipidol 2004; 15(1): 59–67

    Article  PubMed  CAS  Google Scholar 

  50. Mauss S, Stechel J, Willers R, et al. Differentiating hyperlipidaemia associated with antiretroviral therapy. AIDS 2003; 17(2): 189–94

    Article  PubMed  CAS  Google Scholar 

  51. Danesh J, Collins R, Peto R. Chronic infections and coronary heart disease: is there a link? Lancet 1997; 350(9075): 430–6

    Article  PubMed  CAS  Google Scholar 

  52. Ghuran A, Nolan J. Recreational drug misuse: issues for the cardiologist. Heart 2000; 83(6): 627–33

    Article  PubMed  CAS  Google Scholar 

  53. International Task Force for the Prevention of Coronary Heart Disease. Coronary heart assessment [online]. Available from URL: http://www.chd-taskforce.com [Accessed 2006 Jun 28]

  54. National Cholesterol Education Program. Risk assessment tool for estimating your 10-year risk of having a heart attack [online]. Available from URL: http://hp2010.nhlbihin.net/atpiii/calculator.asp [Accessed 2006 Jun 28]

  55. Dube MP, Stein JH, Aberg JA, et al. Guidelines for the evaluation and management of dyslipidemia in human immunodeficiency virus (HIV)-infected adults receiving antiretroviral therapy: recommendations of the HIV Medical Association of the Infectious Disease Society of America and the Adult AIDS Clinical Trials Group. Clin Infect Dis 2003; 37(5): 613–27

    Article  PubMed  Google Scholar 

  56. Grundy SM, Denke MA. Dietary influences on serum lipids and lipoproteins. J Lipid Res 1990; 31(7): 1149–72

    PubMed  CAS  Google Scholar 

  57. Barrios A, Blanco F, Garcia-Benayas T, et al. Effect of dietary intervention on highly active antiretroviral therapy-related dyslipemia. AIDS 2002; 16(15): 2079–81

    Article  PubMed  Google Scholar 

  58. Moyle GJ, Lloyd M, Reynolds B, et al. Dietary advice with or without pravastatin for the management of hypercholesterolaemia associated with protease inhibitor therapy. AIDS 2001; 15(12): 1503–8

    Article  PubMed  CAS  Google Scholar 

  59. Henry K, Melroe H, Huebesch J, et al. Atorvastatin and gemfibrozil for protease-inhibitor-related lipid abnormalities. Lancet 1998; 352(9133): 1031–2

    Article  PubMed  CAS  Google Scholar 

  60. Jones SP, Doran DA, Leatt PB, et al. Short-term exercise training improves body composition and hyperlipidaemia in HIV-positive individuals with lipodystrophy. AIDS 2001; 15(15): 2049–51

    Article  PubMed  CAS  Google Scholar 

  61. Roubenoff R, Weiss L, McDermott A, et al. A pilot study of exercise training to reduce trunk fat in adults with HIV-associated fat redistribution. AIDS 1999; 13(11): 1373–5

    Article  PubMed  CAS  Google Scholar 

  62. Perret B, Ruidavets JB, Vieu C, et al. Alcohol consumption is associated with enrichment of high-density lipoprotein particles in polyunsaturated lipids and increased cholesterol esterification rate. Alcohol Clin Exp Res 2002; 26(8): 1134–40

    Article  PubMed  CAS  Google Scholar 

  63. Hadigan C, Jeste S, Anderson EJ, et al. Modifiable dietary habits and their relation to metabolic abnormalities in men and women with human immunodeficiency virus infection and fat redistribution. Clin Infect Dis 2001; 33(5): 710–7

    Article  PubMed  CAS  Google Scholar 

  64. Spoerl D, Elzi L, Voggensperger J. A stop smoking program in HIV-1-infected patients: a pilot study [abstract no. PS5/4 2006]. Program and abstracts from the 10th European AIDS Conference; 2005 Nov 17–20; Dublin

  65. Kontorinis N, Dieterich DT. Toxicity of non-nucleoside analogue reverse transcriptase inhibitors. Semin Liver Dis 2003; 23(2): 173–82

    Article  PubMed  CAS  Google Scholar 

  66. Hetherington S, McGuirk S, Powell G, et al. Hypersensitivity reactions during therapy with the nucleoside reverse transcriptase inhibitor abacavir. Clin Ther 2001; 23(10): 1603–14

    Article  PubMed  CAS  Google Scholar 

  67. Schambelan M, Benson CA, Carr A, et al. Management of metabolic complications associated with antiretroviral therapy for HIV-1 infection: recommendations of an International AIDS Society-USA panel. J Acquir Immune Defic Syndr 2002; 31(3): 257–75

    Article  PubMed  Google Scholar 

  68. Saves M, Raffi F, Capeau J, et al. Factors related to lipodystrophy and metabolic alterations in patients with human immunodeficiency virus infection receiving highly active antiretroviral therapy. Clin Infect Dis 2002; 34(10): 1396–405

    Article  PubMed  CAS  Google Scholar 

  69. Clumeck N, Goebel F, Rozenbaum W, et al. Simplification with abacavir-based triple nucleoside therapy versus continued protease inhibitor-based highly active antiretroviral therapy in HIV-1-infected patients with undetectable plasma HIV-1 RNA. AIDS 2001; 15(12): 1517–26

    Article  PubMed  CAS  Google Scholar 

  70. Mallal S, Nolan D, Witt C, et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet 2002; 359(9308): 727–32

    Article  PubMed  CAS  Google Scholar 

  71. Martin AM, Nolan D, Mallal S. HLA-B*5701 typing by sequence-specific amplification: validation and comparison with sequence-based typing. Tissue Antigens 2005; 65(6): 571–4

    Article  PubMed  CAS  Google Scholar 

  72. National Institute of Allergy and Infectious Diseases. Important interim results from a phase III, randomized, double-blind comparison of three protease-inhibitor-sparing regimens for the initial treatment of HIV infection (AACTG Protocol A5095). March 12, 2003 [online]. Available from URL: http://www.nlm.nih.gov/databases/alerts/clinical_alerts.html [Accessed 2006 Jul 26]

  73. Moreno S, Domingo P, Labarga P, et al. Dyslipidemia improvement in patients switching from d4T to tenofovir [poster]. 43rd Annual Interscience Conference on Antimicrobial Agents and Chemotherapy; 2003 Sep 14–17; Chicago, H-355b

  74. Gallant JE, Staszewski S, Pozniak AL, et al. Efficacy and safety of tenofovir DF vs stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA 2004; 292(2): 191–201

    Article  PubMed  CAS  Google Scholar 

  75. Saag MS. Emtricitabine, a new antiretroviral agent with activity against HIV and hepatitis B virus. Clin Infect Dis 2006; 42(1): 126–31

    Article  PubMed  CAS  Google Scholar 

  76. Molina JM, Cox SL. Emtricitabine: a novel nucleoside reverse transcriptase inhibitor. Drugs Today (Barc) 2005; 41(4): 241–52

    Article  CAS  Google Scholar 

  77. Levy AR, McCandless L, Harrigan PR, et al. Changes in lipids over twelve months after initiating protease inhibitor therapy among persons treated for HIV/AIDS. Lipids Health Dis 2005; 4(1): 4

    Article  PubMed  CAS  Google Scholar 

  78. Sanne I, Piliero P, Squires K, et al. Results of a phase 2 clinical trial at 48 weeks (AI424-007): a dose-ranging, safety, and efficacy comparative trial of atazanavir at three doses in combination with didanosine and stavudine in antiretroviral-naive subjects. J Acquir Immune Defic Syndr 2003; 32(1): 18–29

    Article  PubMed  CAS  Google Scholar 

  79. Lee GA, Seneviratne T, Noor MA, et al. The metabolic effects of lopinavir/ritonavir in HIV-negative men. AIDS 2004; 18(4): 641–9

    Article  PubMed  CAS  Google Scholar 

  80. Johnson M, Grinsztejn B, Rodriguez C, et al. 96-week comparison of once-daily atazanavir/ritonavir and twice-daily lopinavir/ritonavir in patients with multiple virologic failures. AIDS 2006; 20(5): 711–8

    Article  PubMed  CAS  Google Scholar 

  81. Noor MA, Parker RA, O’Mara E, et al. The effects of HIV protease inhibitors atazanavir and lopinavir/ritonavir on insulin sensitivity in HIV-seronegative healthy adults. AIDS 2004; 18(16): 2137–44

    Article  PubMed  CAS  Google Scholar 

  82. Pearce D, Carpio F Guyer B, et al. The VeLLA Study: a prospective study of tenofovir DF/emtricitabine/atazanavir/ritonavir in naive patients [abstract no. PE7/15]. Abstracts of 10th European AIDS Conference/EACS; 2005 Nov 17–20; Dublin

  83. Croom KF, Keam SJ. Tipranavir: a ritonavir-boosted protease inhibitor. Drugs 2005; 65(12): 1669–77

    Article  PubMed  CAS  Google Scholar 

  84. Gathe Jr JC, Ive P, Wood R, et al. SOLO: 48-week efficacy and safety comparison of once-daily fosamprenavir /ritonavir versus twice-daily nelfinavir in naive HIV-1-infected patients. AIDS 2004; 18(11): 1529–37

    Article  PubMed  CAS  Google Scholar 

  85. Friis-Møller N, Reiss P, El Sadr W, et al. Exposure to PI and NNRTI and risk of myocardial infarction: results from the D: A: D Study [abstract no. 144]. 13th Conference on Retroviruses and Opportunistic Infections; 2006 Feb 5–8; Denver (CO)

  86. Fisac C, Fumero E, Crespo M, et al. Metabolic benefits 24 months after replacing a protease inhibitor with abacavir, efavirenz or nevirapine. AIDS 2005; 19(9): 917–25

    Article  PubMed  CAS  Google Scholar 

  87. Executive Summary of the Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). JAMA 2001; 285(19): 2486–97 [online]. Available from URL: http://www.nhlbi.nih.gov/guidelines/cholesterol/atp3xsum.pdf [Accessed 2006 Jul 27]

    Google Scholar 

  88. Miller J, Brown D, Amin J, et al. A randomized, double-blind study of gemfibrozil for the treatment of protease inhibitor-associated hypertriglyceridaemia. AIDS 2002; 16(16): 2195–200

    Article  PubMed  CAS  Google Scholar 

  89. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004; 291(9): 1071–80

    Article  PubMed  CAS  Google Scholar 

  90. Fichtenbaum CJ, Gerber JG. Interactions between antiretroviral drugs and drugs used for the therapy of the metabolic complications encountered during HIV infection. Clin Pharmacokinet 2002; 41(14): 1195–211

    Article  PubMed  CAS  Google Scholar 

  91. Dube MP, Aberg JA. Safety and efficacy of extended-release niacin for the treatment of dyslipidemia in patiens with HIV infection: a prospective, multicenter study (ACTG 5148) [abstract no. 12]. Program and abstracts of the 7th International Workshop on Adverse Drug Reactions and Lipodystrophy in HIV; 2005 Nov 13–16; Dublin

  92. Stein E, Stender S, Mata P, et al. Achieving lipoprotein goals in patients at high risk with severe hypercholesterolemia: efficacy and safety of ezetimibe co-administered with atorvastatin. Am Heart J 2004; 148(3): 447–55

    Article  PubMed  CAS  Google Scholar 

  93. Negredo E, Rey-Joly C, Puig J. Ezetimibe, a selective inhibitor of cholesterol absorption, as a new strategy for treatment of hypercholesterolemia secondary to antiretroviral therapy [abstract no. H-336]. Program and abstracts from the 45th ICAAC; 2005 Dec 16–19; Washington, DC

  94. Noor MA, Lo JC, Mulligan K, et al. Metabolic effects of indinavir in healthy HIV-seronegative men. AIDS 2001; 15(7): F11–8

    Article  PubMed  CAS  Google Scholar 

  95. Murata H, Hruz PW, Mueckler M. Indinavir inhibits the glucose transporter isoform Glut4 at physiologic concentrations. AIDS 2002; 16(6): 859–63

    Article  PubMed  CAS  Google Scholar 

  96. Kino T, Chrousos GP. Human immunodeficiency virus type-1 accessory protein Vpr: a causative agent of the AIDS-related insulin resistance/lipodystrophy syndrome? Ann N Y Acad Sci 2004; 1024: 153–67

    Article  PubMed  CAS  Google Scholar 

  97. Torriani M, Hadigan C, Jensen ME, et al. Psoas muscle attenuation measurement with computed tomography indicates intramuscular fat accumulation in patients with the HIV-lipodystrophy syndrome. J Appl Physiol 2003; 95(3): 1005–10

    PubMed  Google Scholar 

  98. Hadigan C, Meigs JB, Corcoran C, et al. Metabolic abnormalities and cardiovascular disease risk factors in adults with human immunodeficiency virus infection and lipodystrophy. Clin Infect Dis 2001; 32(1): 130–9

    Article  PubMed  CAS  Google Scholar 

  99. Grinspoon S. Insulin resistance in the HIV-lipodystrophy syndrome. Trends Endocrinol Metab 2001; 12(9): 413–9

    Article  PubMed  CAS  Google Scholar 

  100. Gazzaruso C, Sacchi P, Garzaniti A, et al. Prevalence of metabolic syndrome among HIV patients. Diabetes Care 2002; 25(7): 1253–4

    Article  PubMed  Google Scholar 

  101. De Larranaga G, Galich A, Puga L, et al. Insulin resistance status is an important determinant of PAI-1 levels in HIV-infected patients, independently of the lipid profile. J Thromb Haemost 2004; 2(3): 532–4

    Article  PubMed  Google Scholar 

  102. Arioglu E, Duncan-Morin J, Sebring N, et al. Efficacy and safety of troglitazone in the treatment of lipodystrophy syndromes. Ann Intern Med 2000; 133(4): 263–74

    PubMed  CAS  Google Scholar 

  103. Sutinen J, Hakkinen AM, Westerbacka J, et al. Rosiglitazone in the treatment of HAART-associated lipodystrophy: a randomized double-blind placebo-controlled study. Antivir Ther 2003; 8(3): 199–207

    PubMed  CAS  Google Scholar 

  104. Carr A, Workman C, Carey D, et al. No effect of rosiglitazone for treatment of HIV-1 lipoatrophy: randomised, double-blind, placebo-controlled trial. Lancet 2004; 363(9407): 429–38

    Article  PubMed  CAS  Google Scholar 

  105. Hadigan C, Yawetz S, Thomas A, et al. Metabolic effects of rosiglitazone in HIV lipodystrophy: a randomized, controlled trial. Ann Intern Med 2004; 140(10): 786–94

    PubMed  CAS  Google Scholar 

  106. Slama L, Lanoy E, Valentin MA, et al. Effect of pioglitazone on HIV-1 related lipoatrophy: a randomized double-blind placebo-controlled trial (ANRS 113) with 130 patients [abstract no. 151LB]. Program and abstracts of the 13th Conference on Retroviruses and Opportunistic Infections; 2006 Feb 5–8; Denver (CO)

  107. Mattana J, Siegal FP, Sankaran RT, et al. Absence of age-related increase in systolic blood pressure in ambulatory patients with HIV infection. Am J Med Sci 1999; 317(4): 232–7

    Article  PubMed  CAS  Google Scholar 

  108. Aoun S, Ramos E. Hypertension in the HIV-infected patient. Curr Hypertens Rep 2000; 2(5): 478–81

    Article  PubMed  CAS  Google Scholar 

  109. Cattelan AM, Trevenzoli M, Sasset L, et al. Indinavir and systemic hypertension. AIDS 2001; 15(6): 805–7

    Article  PubMed  CAS  Google Scholar 

  110. Sattler FR, Qian D, Louie S, et al. Elevated blood pressure in subjects with lipodystrophy. AIDS 2001; 15(15): 2001–10

    Article  PubMed  CAS  Google Scholar 

  111. Gazzaruso C, Bruno R, Garzaniti A, et al. Hypertension among HIV patients: prevalence and relationships to insulin resistance and metabolic syndrome. J Hypertens 2003; 21(7): 1377–82

    Article  PubMed  CAS  Google Scholar 

  112. Palacios R, Santos J, Garcia A, et al. Impact of highly active antiretroviral therapy on blood pressure in HIV-infected patients: a prospective study in a cohort of naive patients. HIV Med 2006; 7(1): 10–5

    Article  PubMed  CAS  Google Scholar 

  113. Bergersen BM, Sandvik L, Dunlop O, et al. Prevalence of hypertension in HIV-positive patients on highly active retroviral therapy (HAART) compared with HAART-naive and HIV-negative controls: results from a Norwegian study of 721 patients. Eur J Clin Microbiol Infect Dis 2003; 22(12): 731–6

    Article  PubMed  CAS  Google Scholar 

  114. Seaberg EC, Munoz A, Lu M, et al. HIV infection, HAART and blood pressure: results from the Multicenter AIDS Cohort Study (MACS) [abstract no. P-774]. 10th Conference on Retroviruses and Opportunistic Infections; 2003 Feb 10–14; Boston (MA)

  115. Jung O, Bickel M, Ditting T, et al. Hypertension in HIV-1-infected patients and its impact on renal and cardiovascular integrity. Nephrol Dial Transplant 2004; 19(9): 2250–8

    Article  PubMed  Google Scholar 

  116. Thiebaut R, El Sadr WM, Friis-Moller N, et al. Predictors of hypertension and changes of blood pressure in HIV-infected patients. Antivir Ther 2005; 10(7): 811–23

    PubMed  Google Scholar 

  117. Cockroft DW, Gault M. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16: 31–41

    Article  Google Scholar 

  118. Levey AS, Green T, Kusek JW, et al. A simplified equation to predict glomerular filtration rate from serum creatinine [abstract]. J Am Soc Nephrol 2000; 11: 155A

    Google Scholar 

  119. National Kidney Foundation. CLCR calculator [online]. Available from URL: http://www.kidney.org/progfessionals/KDOQI/gfr_calculator.cfm [Accessed 2006 Jul 26]

  120. HIV InSite. Database of antiretroviral drug interactions [online]. Available from URL: http://hivinsite.ucsf.edu/InSite?page=ar-00-02 [Accessed 2006 Jul 26]

  121. Glesby MJ, Aberg JA, Kendall MA, et al. Pharmacokinetic interactions between indinavir plus ritonavir and calcium channel blockers. Clin Pharmacol Ther 2005; 78(2): 143–53

    Article  PubMed  CAS  Google Scholar 

  122. Izzedine H, Launay-Vacher V, Deray G, et al. Nelfinavir and felodipine: a cytochrome P450 3A4-mediated drug interaction. Clin Pharmacol Ther 2004; 75(4): 362–3

    Article  PubMed  CAS  Google Scholar 

  123. Wei A, Burns GC, Williams BA, et al. Long-term renal survival in HIV-associated nephropathy with angiotensin-converting enzyme inhibition. Kidney Int 2003; 64(4): 1462–71

    Article  PubMed  CAS  Google Scholar 

  124. Gupta SK, Eustace JA, Winston JA, et al. Guidelines for the management of chronic kidney disease in HIV-infected patients: recommendations of the HIV Medicine Association of the Infectious Diseases Society of America. Clin Infect Dis 2005; 40(11): 1559–85

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. Dr Bergersen has participated in various Norwegian symposia sponsored by Roche, GSK, BMS and Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bente Magny Bergersen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bergersen, B.M. Cardiovascular Risk in Patients with HIV Infection. Drugs 66, 1971–1987 (2006). https://doi.org/10.2165/00003495-200666150-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200666150-00006

Keywords

Navigation