Skip to main content
Log in

The Appealing Story of HIV Entry Inhibitors

From Discovery of Biological Mechanisms to Drug Development

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Current therapeutic intervention in HIV infection relies upon 20 different drugs. Despite the impressive efficacy shown by these drugs, we are confronted with an unexpected frequency of adverse effects, such as mitochondrial toxicity and lipodystrophy, and resistance, not only to individual drugs but to entire drug classes.

Thus, there is now a great need for new antiretroviral drugs with reduced toxicity, increased activity against drug-resistant viruses and a greater capacity to reach tissue sanctuaries of the virus. Two different HIV molecules have been selected as targets of drug inhibition so far: reverse transcriptase and protease. Drugs that target the interactions between the HIV envelope and the cellular receptor complex are a ‘new entry’ into the scenario of HIV therapy and have recently raised great interest because of their activity against multidrug-resistant viruses.

There are several compounds that are at different developmental stages in the pipeline to counter HIV entry, among them: (i) the attachment inhibitor dextrin-2-sulfate; (ii) the inhibitors of the glycoprotein (gp) 120/CD4 interaction PRO 542, TNX 355 and BMS 488043; (iii) the co-receptor inhibitors subdivided in those targeting CCR5 (SCH 417690 [SCHD], UK 427857 GW 873140, PRO 140, TAK 220, AMD 887) and those targeting CXCR4 (AMD 070, KRH 2731); and (iv) the fusion inhibitors enfuvirtide (T-20) and tifuvirtide (T-1249).

The story of the first of these drugs, enfuvirtide, which has successfully completed phase III clinical trials, has been approved by the US FDA and by the European Medicines Agency, and is now commercially available worldwide, is an example of how the knowledge of basic molecular mechanisms can rapidly translate into the development of clinically effective molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table I

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Guidelines for the use of antiretroviral agents in HIV-1-infected adults and adolescents. March 23, 2004. Developed by the Panel on Clinical Practices of HIV infection convened by the Department of Health and Human Services (DHHS), USA [online]. Available from URL: http://www.hopkins-aids.edu/guidelines/guidelines.html [Accessed 2005 Mar 17]

  2. Moore JP, Doms RW. The entry of entry inhibitors: a fusion of science and medicine. Proc Natl Acad Sci U S A 2003; 100: 10598–602

    Article  PubMed  CAS  Google Scholar 

  3. Marks K, Gulick RM. New antiretroviral agents for the treatment of HIV infection. Curr Infect Dis Rep 2004; 6: 333–9

    Article  PubMed  Google Scholar 

  4. Greene WC. The brightening future of HIV therapeutics. Nat Immunol 2004; 5: 867–71

    Article  PubMed  CAS  Google Scholar 

  5. Robey WG, Safai B, Oroszlan S, et al. Characterization of envelope and core structural gene products of HTLV-III with sera from AIDS patients. Science 1985; 228: 593–5

    Article  PubMed  CAS  Google Scholar 

  6. Allan JS, Coligan JE, Barin F, et al. Major glycoproteins antigens that induce antibodies in AIDS patients are encoded by HTLV-III. Science 1985; 228: 1091–4

    Article  PubMed  CAS  Google Scholar 

  7. Chakrabarti S, Robert-Guroff M, Wong-Staal F, et al. Expression of the HTLV-III envelope gene by recombinant vaccinia virus. Nature 1986; 320: 535–8

    Article  PubMed  CAS  Google Scholar 

  8. Veronese FD, DeVico AL, Copeland TD, et al. Characterization of gp41 as the transmembrane protein coded by the HTLV-III/ LAV envelope gene. Science 1985; 229: 1402–5

    Article  PubMed  CAS  Google Scholar 

  9. Gallaher WR. Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 1987; 50: 327–8

    Article  PubMed  CAS  Google Scholar 

  10. Bosch ML, Earl PL, Fargnoli K, et al. Identification of the fusion peptide of primate immunodeficiency viruses. Science 1989; 244: 694–7

    Article  PubMed  CAS  Google Scholar 

  11. McDougal JS, Kennedy M, Sligh J, et al. Binding of the HTLVIII/LAV to T4+ T cells by a complex of the 100 K viral protein and the T4 molecule. Science 1986; 231: 382–5

    Article  PubMed  CAS  Google Scholar 

  12. Kowalski M, Potz J, Basiripour L, et al. Functional regions of the human immunodeficiency virus envelope glycoprotein. Science 1987; 237: 1351–5

    Article  PubMed  CAS  Google Scholar 

  13. Maddon PJ, Dalgleish AG, McDougal JS, et al. The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 1986; 47: 333–48

    Article  PubMed  CAS  Google Scholar 

  14. Sattentau QJ, Dalgleish AG, Weiss RA, et al. Epitopes of the CD4 antigen and HIV infection. Science 1986; 234: 1120–3

    Article  PubMed  CAS  Google Scholar 

  15. Sattentau QJ, Weiss R. The CD4 antigen: physiological ligand and HIV receptor. Cell 1988; 52: 631–3

    Article  PubMed  CAS  Google Scholar 

  16. Arthos J, Deen KC, Chaikin MA, et al. Identification of the residues in human CD4 critical for the binding of HIV. Cell 1989; 57: 469–81

    Article  PubMed  CAS  Google Scholar 

  17. Lasky LA, Nakamura G, Smith DH, et al. Delineation of a region of the human immunodeficiency virus type 1 gp120 glycoprotein critical for interaction with the CD4 receptor. Cell 1987; 50: 975–85

    Article  PubMed  CAS  Google Scholar 

  18. Bedinger P, Moriarty A, von Borstel RC, et al. Internalization of the human immunodeficiency virus does not require the cytoplasmic domain of CD 4. Nature 1988; 334: 162–5

    Article  PubMed  CAS  Google Scholar 

  19. Lamarre D, Ashkenazi A, Fleury S, et al. The MHC-binding and the gpl20-binding functions of CD4 are separable. Science 1989; 245: 743–6

    Article  PubMed  CAS  Google Scholar 

  20. Capon DJ, Ward RH. The CD4-gp120 interaction and AIDS pathogenesis. Annu Rev Immunol 1991; 9: 649–78

    Article  PubMed  CAS  Google Scholar 

  21. Smith DH, Byrn RA, Marsters SA, et al. Blocking of HIV-1 infectivity by a soluble, secreted form of the CD4 antigen. Science 1987; 238: 1704–7

    Article  PubMed  CAS  Google Scholar 

  22. Deen KC, McDougal SJ, Inacker R, et al. A soluble form of CD4 (T4) protein inhibits AIDS virus infection. Nature 1988; 331: 82–4

    Article  PubMed  CAS  Google Scholar 

  23. Till MA, Ghetie V, Gregory T, et al. HIV-infected cells are killed by rCD4-ricin A chain. Science 1988; 242: 1166–8

    Article  PubMed  CAS  Google Scholar 

  24. Rubino KL, Tarpley WG, Nicholas JA. Effects of soluble CD4 and CD4-Pseudomonas exotoxin A chimeric protein on human peripheral blood lymphocytes: lymphocyte activation and anti-HIV activity in vitro. Antiviral Res 1991; 16: 267–79

    Article  PubMed  CAS  Google Scholar 

  25. Traunecker A, Schneider J, Kiefer H, et al. Highly efficient neutralization of HIV with recombinant CD4-immunglobulin molecules. Nature 1989; 339: 68–70

    Article  PubMed  CAS  Google Scholar 

  26. Idziorek T, Chams V, Klatzmann D. Characterization and anti-HIV properties of CD4-coated red blood cells. Arch Virol 1992; 126: 81–91

    Article  PubMed  CAS  Google Scholar 

  27. Buonocore L, Rose JK. Prevention of HIV-1 glycoprotein transport by soluble CD4 retained in the endoplasmic reticulum. Nature 1990; 345: 625–8

    Article  PubMed  CAS  Google Scholar 

  28. Hart TK, Kirsh R, Ellens H, et al. Binding of soluble CD4 proteins to human immunodeficiency virus type 1 and infected cells induces release of envelope glycoprotein gp 120. Proc Natl Acad Sci U S A 1991; 88: 2189–93

    Article  PubMed  CAS  Google Scholar 

  29. Berger EA, Lifson JD, Eiden LE. Stimulation of glycoprotein gpl20 dissociation from the envelope glycoprotein complex of human immunodeficiency virus type 1 by soluble CD4 and CD4 peptide derivatives: implications for the role of the complementarity-determining region 3-like region in membrane fusion. Proc Natl Acad Sci U S A 1991; 88: 8082–6

    Article  PubMed  CAS  Google Scholar 

  30. Thali M, Furman C, Helseth E, et al. Lack of correlation between soluble CD4-induced shedding of the human immunodeficiency virus type 1 exterior envelope glycoprotein and subsequent membrane fusion events. J Virol 1992; 66: 5516–24

    PubMed  CAS  Google Scholar 

  31. Johnson VA, Barlow MA, Merrill DP, et al. Three-drug synergistic inhibition of HIV-1 replication in vitro by zidovudine, recombinant soluble CD4, and recombinant interferon-alpha A. J Infect Dis 1990; 161: 1059–67

    Article  PubMed  Google Scholar 

  32. Myers MW. New antiretroviral agents in the clinic. Rev Infect Dis 1990; 12: 944–50

    Article  PubMed  CAS  Google Scholar 

  33. Werner A, Winskowsky G, Kurth R. Soluble CD4 enhances simian immunodeficiency virus SIVagm infection. J Virol 1990; 64: 6252–6

    PubMed  CAS  Google Scholar 

  34. Ashorn PA, Berger EA, Moss B. Human immunodeficiency virus envelope glycoprotein CD4-mediated fusion of nonprimate cells with human cells. J Virol 1990; 64: 2149–56

    PubMed  CAS  Google Scholar 

  35. Lores P, Boucher V, Mackay C, et al. Expression of human CD4 in transgenic mice does not confer sensitivity to human immunodeficiency virus infection. AIDS Res Hum Retroviruses 1992; 8: 2063–71

    Article  PubMed  CAS  Google Scholar 

  36. McKnight A, Clapham PR, Weiss RA. HIV-2 and SIV infection of nonprimate cell lines expressing human CD4: restrictions to replication at distinct stages. Virology 1994; 201: 8–18

    Article  PubMed  CAS  Google Scholar 

  37. Walker CM, Erickson AL, Hsueh FC, et al. Inhibition of human immunodeficiency virus replication in acutely infected CD4+ cells by CD8+ cells involves a noncytotoxic mechanism. J Virol 1991; 65: 5921–7

    PubMed  CAS  Google Scholar 

  38. Cocchi F, De Vico AL, Garzino-Demo A, et al. Identification of RANTES, MIP-1α, and MIP-lβ as the major HIV-suppressive factors produced by CD8+ T cells. Science 1995; 270: 1811–5

    Article  PubMed  CAS  Google Scholar 

  39. Premack BA, Schall TJ. Chemokine receptors: gateways to inflammation and infection. Nat Med 1996; 2: 1174–8

    Article  PubMed  CAS  Google Scholar 

  40. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol 1999; 17: 657–700

    Article  PubMed  CAS  Google Scholar 

  41. Alkhatib G, Combadiere C, Broder CC, et al. CC CKR5: a RANTES, MlP-1α, MIP-1β receptor as a fusion cofactor for macrophage-tropic HIV-1. Science 1996; 272: 1955–8

    Article  PubMed  CAS  Google Scholar 

  42. Choe H, Farzan M, Sun Y, et al. The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 1996; 85: 1135–48

    Article  PubMed  CAS  Google Scholar 

  43. Deng H, Liu R, Ellmeier W, et al. Identification of a major coreceptor for primary isolates of HIV-1. Nature 1996; 381: 661–6

    Article  PubMed  CAS  Google Scholar 

  44. Dragic T, Litwin V, Allaway GP, et al. HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 1996; 381: 667–73

    Article  PubMed  CAS  Google Scholar 

  45. Doranz BJ, Rucker J, Yi Y, et al. A dual-tropic primary HIV-1 isolate that uses fusin and the beta-chemokine receptors CKR-5, CKR-3, and CKR-2b as fusion cofactors. Cell 1996; 85: 1149–58

    Article  PubMed  CAS  Google Scholar 

  46. Feng Y, Broder CC, Kennedy PE, et al. HIV-1 entry cofactor: cloning of a seven transmembrane G protein-coupled receptor. Science 1996; 272: 872–7

    Article  PubMed  CAS  Google Scholar 

  47. Berger EA, Doms RW, Fenyo EM, et al. A new classification for HIV-1 [letter]. Nature 1998; 391: 240

    Article  PubMed  CAS  Google Scholar 

  48. Bleul CC, Farzan M, Choe H, et al. The lymphocyte chemoat-tractant SDF-1 is a ligand for LESTR/fusin and blocks HIV-1 entry. Nature 1996; 382: 829–33

    Article  PubMed  CAS  Google Scholar 

  49. Oberlin E, Amara A, Bachelerie F, et al. The CXC chemokine SDF-1 is the ligand for LESTR/fusin and prevents infection by T-cell-line-adapted HIV-1. Nature 1996; 382: 833–5

    Article  PubMed  CAS  Google Scholar 

  50. Scarlatti G, Tresoldi E, Bjorndal A, et al. In vivo evolution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med 1997; 3: 1259–65

    Article  PubMed  CAS  Google Scholar 

  51. Connor RI, Sheridan KE, Ceradini D, et al. Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 1997; 185: 621–8

    Article  PubMed  CAS  Google Scholar 

  52. Murphy PM, Baggiolini M, Charo IF, et al. International union of pharmacology. XXII: nomenclature for chemokine receptors. Pharmacol Rev 2000; 52: 145–76

    CAS  Google Scholar 

  53. Aramori I, Zhang J, Ferguson SG, et al. Molecular mechanism of desensitization of the chemokine receptor CCR-5: receptor signaling and internalization are dissociable from its role as an HIV-1 co-receptor. EMBO J 1997; 16: 4606–16

    Article  PubMed  CAS  Google Scholar 

  54. Gosling J, Monteclaro FS, Atchison RE, et al. Molecular uncoupling of C-C chemokine receptor 5-induced chemotaxis and signal transduction from HIV coreceptor activity. Proc Natl Acad Sci U S A 1997; 94: 5061–6

    Article  PubMed  CAS  Google Scholar 

  55. Amara A, Le Gall S, Schwartz O, et al. HIV coreceptor downregulation as antiviral principle: SDF-1α-dependent internalization of the chemokine receptor CXCR4 contributes to inhibition of viral replication. J Exp Med 1997; 186: 139–46

    Article  PubMed  CAS  Google Scholar 

  56. Alkhatib G, Locati M, Kennedy PE, et al. HIV-1 coreceptor activity of CCR5 and its inhibition by chemokines: independence from G protein signaling and importance of coreceptor downmodulation. Virology 1997; 234: 340–8

    Article  PubMed  CAS  Google Scholar 

  57. Santoro F, Vassena L, Lusso P. Chemokine receptors as new molecular targets for antiviral therapy. New Microbiol 2004; 27 Suppl. 1: 17–29

    PubMed  CAS  Google Scholar 

  58. Mantovani A. The chemokine system: redundancy for robust outputs. Immunol Today 1999; 20: 254–7

    Article  PubMed  CAS  Google Scholar 

  59. Dean M, Carrington M, Winkler C, et al. Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Science 1996; 273: 1856–62

    Article  PubMed  CAS  Google Scholar 

  60. Huang Y, Paxton WA, Wolinsky SM, et al. The role of a mutant CCR5 allele in HIV-1 transmission and disease progression. Nat Med 1996; 2: 1240–3

    Article  PubMed  CAS  Google Scholar 

  61. Liu R, Paxton WA, Choe S, et al. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996; 86: 367–77

    Article  PubMed  CAS  Google Scholar 

  62. Samson M, Libert F, Doranz BJ, et al. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996; 382: 722–5

    Article  PubMed  CAS  Google Scholar 

  63. Zimmerman PA, Buckler-White A, Alkhatib G, et al. Inherited resistance to HIV-1 conferred by an inactivating mutation in CC chemokine receptor 5: studies in populations with contrasting clinical phenotypes, defined racial background, and quantified risk. Mol Med 1997; 3: 23–36

    PubMed  CAS  Google Scholar 

  64. Wu L, Gerard NP, Wyatt R, et al. CD4-induced interaction of primary HIV-1 gp120 glycoproteins with the chemokine receptor CCR-5. Nature 1996; 384: 179–83

    Article  PubMed  CAS  Google Scholar 

  65. Trkola A, Dragic T, Arthos J, et al. CD4-independent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5. Nature 1996; 384: 184–7

    Article  PubMed  CAS  Google Scholar 

  66. Rizzuto CD, Wyatt R, Hernandez-Ramos N, et al. A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 1998; 280: 1949–53

    Article  PubMed  CAS  Google Scholar 

  67. Root MJ, Steger HK. HIV-1 gp41 as a target for viral entry inhibition. Curr Pharm Des 2004; 10: 1805–25

    Article  PubMed  CAS  Google Scholar 

  68. Weissenhorn W, Dessen A, Harrison SC, et al. Atomic structure of the ectodomain from HIV-1 gp 41. Nature 1997; 387: 426–30

    Article  PubMed  CAS  Google Scholar 

  69. Chan DC, Fass D, Berger JM, et al. Core structure of gp41 from the HIV envelope glycoprotein. Cell 1997; 89: 263–73

    Article  PubMed  CAS  Google Scholar 

  70. Tan K, Liu J, Wang J, et al. Atomic structure of a thermostable subdomain of HIV-1 gp 41. Proc Natl Acad Sci U S A 1997; 94: 12303–8

    Article  PubMed  CAS  Google Scholar 

  71. Wild C, Dubay JW, Greenwell T, et al. Propensity for a leucine zipper-like domain of the human immunodeficiency virus type 1 gp41 to form oligomers correlates with a role in virus-induced fusion rather than assembly of the glycoprotein complex. Proc Natl Acad Sci U S A 1994; 91: 12676–80

    Article  PubMed  CAS  Google Scholar 

  72. Lu M, Blacklow SC, Kim PS. A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 1995; 2: 1075–82

    Article  PubMed  CAS  Google Scholar 

  73. Wild CT, Shugars DC, Greenwell TK, et al. Peptides corresponding to a predictive alpha-helical domain of human immunodeficiency virus type 1 gp41 are potent inhibitors of virus infection. Proc Natl Acad Sci U S A 1994; 91: 9770–4

    Article  PubMed  CAS  Google Scholar 

  74. Lawless MK, Barney S, Guthrie KI, et al. HIV-1 membrane fusion mechanism: structural studies of the interactions between biologically-active peptides from gp 41. Biochemistry 1996; 35: 13697–708

    Article  PubMed  CAS  Google Scholar 

  75. Judice JK, Tom JY, Huang W, et al. Inhibition of HIV type I infectivity by constrained alpha-helical peptides: implications for viral fusion mechanism. Proc Natl Acad Sci U S A 1997; 94: 13426–30

    Article  PubMed  CAS  Google Scholar 

  76. Furuta RA, Wild CT, Weng Y, et al. Capture of an early fusion-active conformation of HIV-1 gp 41. Nat Struct Biol 1998; 5: 276–9

    Article  PubMed  CAS  Google Scholar 

  77. Callahan LN, Phelan M, Mallinson M, et al. Dextran sulfate blocks antibody binding to the principal neutralizing domain of human immunodeficiency virus type 1 without interfering with gpl20-CD4 interactions. J Virol 1991; 65: 1543–50

    PubMed  CAS  Google Scholar 

  78. Batinic D, Robey FA. The V3 region of the envelope glycoprotein of human immunodeficiency virus type 1 binds sulfated polysaccharides and CD4-derived synthetic peptides. J Biol Chem 1992; 267: 6664–71

    PubMed  CAS  Google Scholar 

  79. Harrop HA, Coombe DR, Rider CC. Heparin specifically inhibits binding of V3 loop antibodies to HIV-1 gp120, an effect potentiated by CD4 binding. AIDS 1994; 8: 183–92

    Article  PubMed  CAS  Google Scholar 

  80. Abrams DI, Kuno S, Wong R, et al. Oral dextran sulfate (UA001) in the treatment of the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. Ann Intern Med 1989; 110: 183–8

    PubMed  CAS  Google Scholar 

  81. Shaunak S, Gooderham NJ, Edwards RJ, et al. Infection by HIV-1 blocked by binding of dextrin 2-sulphate to the cell surface of activated human peripheral blood mononuclear cells and cultured T-cells. Br J Pharmacol 1994; 113: 151–8

    Article  PubMed  CAS  Google Scholar 

  82. Javan CM, Gooderham NJ, Edwards RJ, et al. Anti-HIV type 1 activity of sulfated derivatives of dextrin against primary viral isolates of HIV type 1 in lymphocytes and monocyte-derived macrophages. AIDS Res Hum Retroviruses 1997; 13: 875–80

    Article  PubMed  CAS  Google Scholar 

  83. Stafford MK, Cain D, Rosenstein I, et al. A placebo-controlled, double-blind prospective study in healthy female volunteers of dextrin sulphate gel: a novel potential intravaginal virucide. J Acquir Immune Defic Syndr Hum Retrovirol 1997; 14: 213–8

    Article  PubMed  CAS  Google Scholar 

  84. Rosenstein IJ, Stafford MK, Kitchen VS, et al. Effect on normal vaginal flora of three intravaginal microbicidal agents potentially active against human immunodeficiency virus type 1. J Infect Dis 1998; 177: 1386–90

    Article  PubMed  CAS  Google Scholar 

  85. Low-Beer N, Gabe R, McCormack S, et al. Dextrin sulfate as a vaginal microbicide: randomized, double-blind, placebo-controlled trial including healthy female volunteers and their male partners. J Acquir Immune Defic Syndr 2002; 31: 391–8

    Article  PubMed  CAS  Google Scholar 

  86. Allaway GP, Davis-Bruno KL, Beaudry GA, et al. Expression and characterization of CD4-IgG2, a novel heterotetramer that neutralizes primary HIV type 1 isolates. AIDS Res Hum Retroviruses 1995; 11: 533–9

    Article  PubMed  CAS  Google Scholar 

  87. Trkola A, Pomales AB, Yuan H, et al. Cross-clade neutralization of primary isolates of human immunodeficiency virus type 1 by human monoclonal antibodies and tetrameric CD4-IgG. J Virol 1995; 69: 6609–17

    PubMed  CAS  Google Scholar 

  88. Trkola A, Ketas T, Kewalramani VN, et al. Neutralization sensitivity of human immunodeficiency virus type 1 primary isolates to antibodies and CD4-based reagents is independent of coreceptor usage. J Virol 1998; 72: 1876–85

    PubMed  CAS  Google Scholar 

  89. Ketas TJ, Frank I, Klasse PJ, et al. Human immunodeficiency virus type 1 attachment, coreceptor, and fusion inhibitors are active against both direct and trans infection of primary cells. J Virol 2003; 77: 2762–7

    Article  PubMed  CAS  Google Scholar 

  90. Hu Q, Frank I, Williams V, et al. Blockade of attachment and fusion receptors inhibits HIV-1 infection of human cervical tissue. J Exp Med 2004; 199: 1065–75

    Article  PubMed  CAS  Google Scholar 

  91. Jacobson JM, Lowy I, Fletcher CV, et al. Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis 2000; 182: 326–9

    Article  PubMed  CAS  Google Scholar 

  92. Shearer WT, Israel RJ, Starr S, et al. Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: phase 1/2 study. The Pediatrie AIDS Clinical Trials Group Protocol 351 Study Team. J Infect Dis 2000; 182: 1774–9

    CAS  Google Scholar 

  93. Prakash K, Rosenfield SI, Fisch DN, et al. Subcutaneous and intramuscular dosage forms of the HIV-1 entry inhibitor PRO 542 [abstract no. 136]. 41st Annual Meeting of the Infectious Diseases Society of America; 2003 Oct 9–12; San Diego

  94. Jacobson JM, Israel RJ, Lowy I, et al. Treatment of advanced human immunodeficiency virus type 1 disease with the viral entry inhibitor PRO 542. Antimicrob Agents Chemother 2004; 48: 423–9

    Article  PubMed  CAS  Google Scholar 

  95. Nagashima KA, Thompson DA, Rosenfield SI, et al. Human immunodeficiency virus type 1 entry inhibitors PRO 542 and T-20 are potently synergistic in blocking virus-cell and cell-cell fusion. J Infect Dis 2001; 183: 1121–5

    Article  PubMed  CAS  Google Scholar 

  96. Moore JP, Sattentau QJ, Klasse PJ, et al. A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV infection of CD4+ cells. J Virol 1992; 66: 4784–93

    PubMed  CAS  Google Scholar 

  97. Reimann KA, Burkly LC, Burrus B, et al. In vivo administration to rhesus monkeys of a CD4-specific monoclonal antibody capable of blocking AIDS virus replication. AIDS Res Hum Retroviruses 1993; 9: 199–207

    Article  PubMed  CAS  Google Scholar 

  98. Reimann KA, Lin W, Bixler S, et al. A humanized form of a CD4-specific monoclonal antibody exhibits decreased antige-nicity and prolonged plasma half-life in rhesus monkeys while retaining its unique biological and antiviral properties. AIDS Res Hum Retroviruses 1997; 13: 933–43

    Article  PubMed  CAS  Google Scholar 

  99. Reimann KA, Khunkhun R, Lin W, et al. A humanized, nondepleting anti-CD4 antibody that blocks virus entry inhibits virus replication in rhesus monkeys chronically infected with simian immunodeficiency virus. AIDS Res Hum Retroviruses 2002; 18: 747–55

    Article  PubMed  CAS  Google Scholar 

  100. Boon L, Holland B, Gordon W, et al. Development of anti-CD4 MAb hu5A8 for treatment of HIV-1 infection: preclinical assessment in non-human primates. Toxicology 2002; 172: 191–203

    Article  PubMed  CAS  Google Scholar 

  101. Kuritzkes DR, Jacobson J, Powderly WG, et al. Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J Infect Dis 2004; 189: 286–91

    Article  PubMed  CAS  Google Scholar 

  102. Tanox, Inc. [online]. Available from URL: http://www.tanox.com [Accessed 2005 Mar 7]

  103. Lin PF, Ho H, Fan L, et al. Inhibition mechanisms of small-molecule HIV-1 attachment inhibitors [abstract no. 544]. 12th Conference on Retroviruses and Opportunistic Infections (CROI); 2005 Feb 22–25; Boston

  104. Lin PF, Ho HT, Gong YF, et al. Characterization of a small molecule HIV-1 attachment inhibitor BMS-488043: virology, resistance and mechanism of action [abstract no. 535]. 11th Conference on Retroviruses and Opportunistic Infections (CROI); 2004 Feb 8–11; Chicago

  105. Hanna G, Yan JH, Fiske W, et al. Safety, tolerability, and pharmacokinetics of a novel, small-molecule HIV-1 attachment inhibitor, BMS-488043, after single and multiple oral doses in healthy subjects [abstract no. 535]. 11th Conference on Retroviruses and Opportunistic Infections (CROI); 2004 Feb 8–11; Chicago

  106. Hanna G, Lalezari J, Hellinger J, et al. Antiviral activity, safety, and tolerability of a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-488043, in HIV-1 infected subjects [abstract no. 141 (oral)]. 11th Conference on Retroviruses and Opportunistic Infections (CROI); 2004 Feb 8–11; Chicago

  107. Hendrix CW, Collier AC, Lederman MM, et al. Safety, pharmacokinetics, and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr 2004; 37: 1253–62

    Article  PubMed  CAS  Google Scholar 

  108. Tagat JR, McCombie SW, Nazareno D, et al. Piperazine-based CCR5 antagonists as HIV-1 inhibitors. IV: discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl]-4-[4-[2-methoxy-l(R)-4-(trifluoromethyl)phenyl]ethyl-3(S)-methyl-l-piperazinyl]4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J Med Chem 2004; 47: 2405–8

    CAS  Google Scholar 

  109. Data on file, Schering-Plough Research Institute, 2004 Sep 23

  110. Schurmann D, Rouzier R, Nougarede R, et al. SCH D: antiviral activity of a CCR5 receptor antagonist [abstract no. 140LB (oral)]. 11th Conference on Retroviruses and Opportunistic Infections (CROI); 2004 Feb 8–11; Chicago

  111. Dorr P, Macartney M, Rickett G, et al. UK-427,857, a novel small molecule HIV entry inhibitor is a specific antagonist of the chemokine receptor CCR5 [abstract no. 12 (oral)]. 10th Conference on Retroviruses and Opportunistic Infections (CROI); 2003 Feb 10–14; Boston

  112. Macartney MJ, Dorr P, Smith-Burchnell C, et al. In vitro antiviral profile of UK-427,857, a novel CCR5 antagonist [abstract no. H-875]. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); 2003 Sep 14–17; Chicago

  113. Russell D, Bakhtyari A, Jazrawi RP, et al. Multiple dose study to investigate the safety of UK-427,857 (100mg or 300mg) BID for 28 days in healthy males and females [abstract no. H-874]. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); 2003 Sep 14–17; Chicago

  114. Jenkins T, Abel S, Russell D, et al. The effect of P450 inducers on the pharmacokinetics of CCR5 antagonist UK-427,857, in healthy volunteers [abstract no. 37 (oral)]. 5th International Workshop on Clinical Pharmacology of HIV Therapy; 2004 Apr 1–3; Rome

  115. Abel S, Russell D, Ridgway C, et al. The effect of CYP3A4 inhibitors on the pharmacokinetics of CCR5 antagonist UK-427,857, in healthy volunteers [abstract no. 41]. 5th International Workshop on Clinical Pharmacology of HIV Therapy; 2004 Apr 1–3; Rome

  116. Pozniak A, Fätkenheuer G, Johnson M, et al. Effect of short-term monotherapy with UK-427,857 on viral load in HIV-infected patients [abstract no. H-443 (oral)]. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); 2003 Sep 14–17; Chicago

  117. Fätkenheuer G, Pozniak A, Johnson M, et al. Evaluation of dosing frequency and food effect on viral load reduction during short-term monotherapy with UK-427,857, a novel CCR5 antagonist [abstract no. B4489]. 15th International AIDS Conference (IAC); 2004 Jul 11–16; Bangkok

  118. Rosario MC, Poland W, Felstead S, et al. Modeling of UK-427,857, a novel CCR5 antagonist, efficacy in short-term monotherapy [poster; abstract no. B4479]. 15th International AIDS Conference (IAC); 2004 Jul 11–16; Bangkok

  119. Data on file, Pfizer, 2004 Aug 24

  120. Westby M, Smith-Burchnell C, Mori J, et al. In vitro escape of R5 primary isolates from the CCR5 antagonist, UK-427,857 is difficult and involves continued use of the CCR5 receptor [abstract no. 6 (oral)]. 13th International HIV Drug Resistance Workshop; 2004 Jun 8‐12; Tenerife

  121. Maeda K, Nakata H, Koh Y, et al. Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immu-nodeficiency virus type 1 in vitro. J Virol 2004; 78: 8654–62

    Article  PubMed  CAS  Google Scholar 

  122. Demarest J, Shibayama S, Ferris R, et al. A novel CCR5 antagonist, 873140, exhibits potent in vitro anti-HIV activity [abstract no. 1231 (oral)]. 15th International AIDS Conference (IAC); 2004 Jul 11–16; Bangkok

  123. Nakata H, Maeda K, Kawano Y, et al. Potent in vivo anti-R5-HIV effects of AK602, a novel spirodiketopiperazine (SPD)-containing HIV-specific CCR5 inhibitor, in hu-PBMC-NOD-mice [abstract no. 564a]. 10th Conference on Retroviruses and Opportunistic Infections (CROI); 2003 Feb 10–14; Boston

  124. Nakata H, Koh Y, Maeda K, et al. Greater synergistic anti-HIV effects upon combinations of CCR5 inhibitor AK602/ ONO4128/GW873140 with CXCR4 inhibitors than with other anti-HIV drugs [abstract no. 543]. 12th Conference on Retroviruses and Opportunistic Infections (CROI); 2005 Feb 22–25; Boston

  125. Demarest J, Adkison K, Sparks S, et al. Single and multiple dose escalation study to investigate the safety, pharmacokinetics, and receptor binding of GW873140, a novel CCR5 receptor antagonist, in healthy subjects [abstract no. 139 (oral)]. 11th Conference on Retroviruses and Opportunistic Infections (CROI); 2004 Feb 8–11; San Francisco

  126. Olson WC, Rabut GE, Nagashima KA, et al. Differential inhibition of human immunodeficiency virus type 1 fusion, gp120 tide (T-20) in HIV-1-infected patients. J Clin Virol 2003; 28: 217–22

    Article  CAS  Google Scholar 

  127. Trkola A, Ketas TJ, Nagashima KA, et al. Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. J Virol 2001; 75: 579–88

    Article  PubMed  CAS  Google Scholar 

  128. Franti M, Ramos L, Maloveste S, et al. Control of HIV-1 replication in the hu-PBL-SCID mouse model by an anti-CCR5 monoclonal antibody [abstract no. 537]. 11th Conference on Retroviruses and Opportunistic Infections (CROI); 2004 Feb 8–11; San Francisco

  129. Iizawa Y, Kanzaki N, Takashima K, et al. Anti-HIV-1 activity of TAK-220, a small molecule CCR5 antagonist [abstract no. 11 (oral)]. 10th Conference on Retroviruses and Opportunistic Infections (CROI); 2003 Feb 10–14; Boston

  130. Schols D, Vermeire K, Hatse S, et al. In vitro anti-HIV activity profile of AMD877, a novel CCR5 antagonist, in combination with the CXCR4 inhibitor AMD070 [abstract no. 539]. 11th Conference on Retroviruses and Opportunistic Infections (CROI); 2004 Feb 8–11; San Francisco

  131. Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induced stem cell mobilization by decreasing bone marrow SDF-1 and upregulating CXCR4. Nat Immunol 2002; 3: 687–94

    Article  PubMed  CAS  Google Scholar 

  132. Hendrix CW, Stone N, Dunaway S, et al. Biologic activity of an orally bioavailable CXCR4 antagonist in human subjects [abstract no. B4-475]. 15th International AIDS Conference (IAC); 2004 Jul 11–16; Bangkok

  133. Schols D, Claes S, Hatse S, et al. Anti-HIV activity profile of AMD070, an orally bioavailable CXCR4 antagonist [abstract no. 563]. 10th Conference on Retroviruses and Opportunistic Infections (CROI); 2003 Feb 10–14; Boston

  134. Murakami T, Yoshida A, Kumakura S, et al. KRH-2731-5HC1: a new potent and orally bioavailable X4 HIV-1 inhibiting CXCR4 antagonist in vivo [abstract no. LbA01 (oral)]. 15th International AIDS Conference (IAC); 2004 Jul 11–16; Bangkok

  135. Murakami T, Yoshida A, Tanaka R, et al. KRH-2371: an orally bioavailable CXCR4 antagonist is a potent inhibitor of HIV-1 infection [abstract no. 541]. 11th Conference on Retroviruses and Opportunistic Infections (CROI); 2004 Feb 8–11; Chicago

  136. Matthews T, Salgo M, Greenberg M, et al. Enfuvirtide: the first therapy to inhibit the entry of HIV-1 into host CD4 lymphocytes. Nat Rev Drug Discov 2004; 3: 215

    Article  PubMed  CAS  Google Scholar 

  137. Asboe D. Enfuvirtide: antiretroviral class 4, drug 1. HIV Clin Trials 2004; 5: 1–6

    Article  PubMed  Google Scholar 

  138. Fletcher CV. Enfuvirtide, a new drug for HIV infection. Lancet 2003; 361: 1577–8

    Article  PubMed  Google Scholar 

  139. Dando TM, Perry CM. Enfuvirtide. Drugs 2003; 63(24): 2755–66

    Article  PubMed  CAS  Google Scholar 

  140. Cervia JS, Smith MA. Enfuvirtide (T-20): a novel human immunodeficiency virus type 1 fusion inhibitor. Clin Infect Dis 2003; 37: 1102–6

  141. Robertson D. US FDA approves new class of HIV therapeutics. Nat Biotechnol 2003; 21: 470–1

    Article  PubMed  CAS  Google Scholar 

  142. Kliger Y, Shai Y. Inhibition of HIV-1 entry before gp41 folds into its fusion-active conformation. J Mol Biol 2000; 295: 163–8

    Article  PubMed  CAS  Google Scholar 

  143. Munoz-Barroso I, Durell S, Sakaguchi K, et al. Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J Cell Biol 1998; 140: 315–23

    Article  PubMed  CAS  Google Scholar 

  144. Bray BL. Large-scale manufacture of peptide therapeutics by chemical synthesis. Nat Rev Drug Discov 2003; 2: 587–93

    Article  PubMed  CAS  Google Scholar 

  145. Hildinger M, Dittmar MT, Schult-Dietrich P, et al. Membrane-anchored peptide inhibits human immunodeficiency virus entry. J Virol 2001; 75: 3038–42

    Article  PubMed  CAS  Google Scholar 

  146. Reeves JD, Gallo SA, Ahmad N, et al. Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci U S A 2002; 99: 16249–54

    Article  PubMed  CAS  Google Scholar 

  147. Derdeyn CA, Decker JM, Sfakianos JN, et al. Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 2000; 74: 8358–67

    Article  PubMed  CAS  Google Scholar 

  148. Derdeyn CA, Decker JM, Sfakianos JN, et al. Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor. J Virol 2001; 75: 8605–14

    Article  PubMed  CAS  Google Scholar 

  149. Cilliers T, Patience T, Pillay C, et al. Sensitivity of HIV type 1 subtype C isolates to the entry inhibitor T-20. AIDS Res Hum Retroviruses 2004; 20: 477–82

    Article  PubMed  CAS  Google Scholar 

  150. Poveda E, Rodes B, Toro C, et al. Are fusion inhibitors active against all HIV variants? AIDS Res Hum Retroviruses 2004; 20: 347–8

    Article  PubMed  CAS  Google Scholar 

  151. Witvrouw M, Pannecouque C, Switzer WM, et al. Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: implications for treatment and postexposure prophylaxis. Antiviral Ther 2004; 9: 57–65

    CAS  Google Scholar 

  152. Su SB, Gong WH, Gao JL, et al. T20/DP178, an ectodomain peptide of human immunodeficiency virus type 1 gp41, is an activator of human phagocyte N-formyl peptide receptor. Blood 1999; 93: 3885–92

    PubMed  CAS  Google Scholar 

  153. Hartt JK, Liang T, Sahagun-Ruiz A, et al. The HIV-1 cell entry inhibitor T-20 potently chemoattracts neutrophils by specifically activating the N-formylpeptide receptor. Biochem Biophys Res Commun 2000; 272: 699–704

    Article  PubMed  CAS  Google Scholar 

  154. Braun MC, Wang JM, Lahey E, et al. Activation of the formyl peptide receptor by the HIV-derived peptide T-20 suppresses interleukin-12 p70 production by human monocytes. Blood 2001; 97: 3531–6

    Article  PubMed  CAS  Google Scholar 

  155. Roche. Fuzeon-enfuvirtide. Investigator’s brochure. Monza: Roche S.p.A., 2003 Dec 1

  156. Bonora S, Castagna A, Aguilar Marucco D, et al. Inter- and intra-individual variability of enfuvirtide (ENV) plasma trough concentrations (Ctrough) in the clinical setting [abstract no. 46]. 5th International Workshop on Clinical Pharmacology of HIV Therapy; 2004 Apr 1–3; Rome

  157. Ghosn J, Chaix ML, Peytavin G, et al. Penetration of enfuvirtide, tenofovir, efavirenz, and protease inhibitors in the genital tract of HIV-1-infected men. AIDS 2004; 18: 1958–61

    Google Scholar 

  158. Kilby JM, Lalezari JP, Eron JJ, et al. The safety, plasma pharmacokinetics, and antiviral activity of subcutaneous enfuvirtide (T-20), a peptide inhibitor of gp41-mediated virus fusion, in HIV-infected adults. AIDS Res Hum Retroviruses 2002; 18: 685–93

    Google Scholar 

  159. Zhang X, Nieforth K, Lang JM, et al. Pharmacokinetics of plasma enfuvirtide after subcutaneous administration to patients with human immunodeficiency virus: inverse Gaussian density absorption and 2-compartment disposition. Clin Pharmacol Ther 2002; 72: 10–9

    Article  PubMed  CAS  Google Scholar 

  160. Lalezari JP, Eron JJ, Carlson M, et al. A phase II clinical study of the long-term safety and antiviral activity of enfuvirtide-based antiretroviral therapy. AIDS 2003; 17: 691–8

    Article  PubMed  CAS  Google Scholar 

  161. Lalezari JP, Patel IH, Zhang X, et al. Influence of subcutaneous injection site on the steady-state pharmacokinetics of enfuvirtide (T-20) in HIV-1-infected patients. J Clin Virol 2003; 28:. J Infect Dis 2003; 188: 1827- 217-22

    Google Scholar 

  162. Bellibas SE, Siddique Z, Dorr A, et al. Pharmacokinetics of enfuvirtide in pediatric human immunodeficiency virus 1-infected patients receiving combination therapy. Pediatr Infect Dis J 2004; 23: 1137–41

    PubMed  Google Scholar 

  163. Ruxrungtham K, Boyd M, Bellibas SE, et al. Lack of interaction between enfuvirtide and ritonavir or ritonavir-boosted saquinavir in HIV-1-infected patients. J Clin Pharmacol 2004; 44: 793–803

    Article  PubMed  CAS  Google Scholar 

  164. Boyd MA, Zhang X, Dorr A, et al. Lack of enzyme-inducing effect of rifampicin on the pharmacokinetics of enfuvirtide. J Clin Pharmacol 2003; 43: 1382–91

    Article  PubMed  CAS  Google Scholar 

  165. Zhang X, Lalezari JP, Badley AD, et al. Assessment of drug-drug interaction potential of enfuvirtide in human immunodeficiency virus type 1-infected patients. Clin Pharmacol Ther 2004; 75: 558–68

    Article  PubMed  CAS  Google Scholar 

  166. Kilby JM, Hopkins S, Venetta TM, et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 1998; 4: 1302–7

    Article  PubMed  CAS  Google Scholar 

  167. Lalezari JP, Henry K, O’Hearn M, et al. Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 2003; 348: 2175–85

    Article  PubMed  CAS  Google Scholar 

  168. Lazzarin A, Clotet B, Cooper D, et al. Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N Engl J Med 2003; 348: 2186–95

    Article  PubMed  CAS  Google Scholar 

  169. Hasson H, Castagna A, Clementi M, et al. The introduction of fusion inhibitors in the HAART-regimens. New Microbiol 2004; 27 Suppl. 1: 11–6

    PubMed  CAS  Google Scholar 

  170. Arasteh K, Lazzarin A, Clotet B, et al. TORO: 96 week virological and immunological response and safety evaluation of enfuvirtide with an optimized background regimen [abstract no. B1058 (oral)]. 15th International AIDS Conference (IAC); 2004 Jul 11–16; Bangkok

  171. Hornberger JC, Witek J, Kilby JM, et al. Clinical prognosis and cost-effectiveness of enfuvirtide in the United States [abstract no. H-837]. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC); 2003 Sep 14–17; Chicago

  172. Church JA, Hughes M, Chen J, et al. Long term tolerability and safety of enfuvirtide for human immunodeficiency virus 1-infected children. Pediatr Infect Dis J 2004; 23: 713–8

    Article  PubMed  Google Scholar 

  173. Fung HB, Guo Y. Enfuvirtide: a fusion inhibitor for the treatment of HIV infection. Clin Ther 2004; 26: 352–78

    Article  PubMed  CAS  Google Scholar 

  174. Hardy H, Skolnik PR. Enfuvirtide, a new fusion inhibitor for therapy of human immunodeficiency virus infection. Pharmacotherapy 2004; 24: 198–211

    Article  PubMed  CAS  Google Scholar 

  175. Cooper DA, Lange JM. Peptide inhibitors of virus-cell fusion: enfuvirtide as a case study in clinical discovery and development. Lancet Infect Dis 2004; 4: 426–36

    Article  PubMed  CAS  Google Scholar 

  176. Cooper DA, Reiss P, Henry K, et al. The effects of enfuvirtide on body composition and serum lipids through 48 weeks in the TORO trial [poster no. 714]. 11th Conference on Retroviruses and Opportunistic Infections (CROI); 2004 Feb 8–11; Chicago

  177. Cohen C, Hellinger J, Johnson M, et al. Patient acceptance of self-injected enfuvirtide at 8 and 24 weeks. HIV Clin Trials 2003; 4: 347–57

    Article  PubMed  Google Scholar 

  178. Cohen CJ, Clumeck N, Molina JM, et al. Health-related quality of life with Enfuvirtide (ENF; T-20) in combination with an optimized background regimen. J Acquir Immune Defic Syndr 2004; 37: 1140–6

    Article  PubMed  CAS  Google Scholar 

  179. Walmsley S, Henry K, Katlama C, et al. Enfuvirtide (T-20) cross-reactive glycoprotein 41 antibody does not impair the efficacy or safety of enfuvirtide. J Infect Dis 2003; 188: 1827–33

    Article  PubMed  CAS  Google Scholar 

  180. Hasson H, Danise A, Carini E, et al. Increase in serum IgE levels during enfuvirtide treatment in multidrug-resistant HIV-1 infected patients [abstract no. B4560]. 15th International AIDS Conference (IAC); 2004 Jul 11–16; Bangkok

  181. Barretina J, Blanco J, Bonjoch A, et al. Immunological and virological study of enfuvirtide-treated HIV-positive patients. AIDS 2004; 18: 1673–82

    Article  PubMed  CAS  Google Scholar 

  182. Rimsky LT, Shugars DC, Matthews TJ. Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J Virol 1998; 72: 986–93

    PubMed  CAS  Google Scholar 

  183. Zollner B, Feucht HH, Schroter M, et al. Primary genotypic resistance of HIV-1 to the fusion inhibitor T-20 in long-term infected patients. AIDS 2001; 15: 935–6

    Article  PubMed  CAS  Google Scholar 

  184. Roman F, Gonzales D, Lambert C, et al. Uncommon mutations at residue positions critical for enfuvirtide (T-20) resistance in enfuvirtide-naive patients infected with subtype B and non-B HIV-1 strains. J Acquir Immune Defic Syndr 2003; 33: 134–9

    Article  PubMed  Google Scholar 

  185. Wei X, Decker JM, Liu H, et al. Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 2002; 46: 1896–905

    Article  PubMed  CAS  Google Scholar 

  186. Sista PR, Melby T, Davison D, et al. Characterization of determinants of genotypic and phenotypic resistance to enfuvirtide in baseline and on-treatment HIV-1 isolates. AIDS 2004; 18: 1787–94

    Article  PubMed  CAS  Google Scholar 

  187. Poveda E, Rodes B, Labernardiere JL, et al. Evolution of genotypic and phenotypic resistance to enfuvirtide in HIV-infected patients experiencing prolonged virologic failure. J Med Virol 2004; 74: 21–8

    Article  PubMed  CAS  Google Scholar 

  188. Greenberg ML, Cammack N. Resistance to enfuvirtide, the first HIV fusion inhibitor. J Antimicrob Chemother 2004; 54: 333-40

    Article  PubMed  CAS  Google Scholar 

  189. Marcelin AG, Reynes J, Yerly S, et al. Characterization of genotypic determinants in HR-1 and HR-2 gp41 domains in individuals with persistent HIV viraemia under T-20. AIDS 2004; 18: 1340–2

    Article  PubMed  CAS  Google Scholar 

  190. Heil ML, Decker JM, Sfakianos JN, et al. Determinants of human immunodeficiency virus type 1 baseline susceptibility to the fusion inhibitors enfuvirtide and T-649 reside outside the peptide interaction site. J Virol 2004; 78: 7582–9

    Article  PubMed  CAS  Google Scholar 

  191. Menzo S, Castagna A, Monachetti A, et al. Genotype and phenotype patterns of human immunodeficiency virus type 1 resistance to enfuvirtide during long-term treatment. Antimicrob Agents Chemother 2004; 48: 3253–9

    Article  PubMed  CAS  Google Scholar 

  192. Lu J, Sista P, Giguel F, et al. Relative replicative fitness of human immunodeficiency virus type 1 mutants resistant to enfuvirtide (T-20). J Virol 2004; 78: 4628–37

    Article  PubMed  CAS  Google Scholar 

  193. Beausejour Y, Tremblay MJ. Susceptibility of HIV type 1 to the fusion inhibitor T-20 is reduced on insertion of host intercellular adhesion molecule 1 in the virus membrane. J Infect Dis 2004; 190: 894–902

    Article  PubMed  CAS  Google Scholar 

  194. Clotet B, Raffi F, Cooper D, et al. Clinical management of treatment-experienced, HIV-infected patients with the fusion inhibitor enfuvirtide: consensus recommendations. AIDS 2004; 18: 1137–46

    Article  PubMed  CAS  Google Scholar 

  195. Eron JJ, Gulick RM, Bartlett JA, et al. Short-term safety and antiretroviral activity of T-1249, a second-generation fusion inhibitor of HIV. J Infect Dis 2004; 189: 1075–83

    Article  PubMed  CAS  Google Scholar 

  196. Lalezari JP, Bellos NC, Sathasivan K, et al. T-1249 retains potent antiretroviral activity in patients who had experienced virological failure while on an enfuvirtide-containing treatment regimen. J Infect Dis 2005; 191: 1153–63

    Article  Google Scholar 

  197. Martin-Carbonero L. Discontinuation of the clinical development of fusion inhibitor T-1249. AIDS Rev 2004; 6: 61

    PubMed  Google Scholar 

  198. Roche/Trimeris conference call with investment analysts. Jan 5, 2004; Trimeris: “Dear Fuzeon Investigator” Letter. Jan 5, 2004; Roche Laboratories. “Following the successful development of Fuzeon, Roche and Trimeris sign new research agreement to develop next generation HIV fusion inhibitors” [press release]. 2004 Jan 6 [online]. Available from URL: http://www.trimeris.com/news/pr/2004 [Accessed 2005 Mar 17]

Download references

Acknowledgements

Unrestricted Educational Grants from Boehringer-Ingelheim, Bristol-Myers Squibb, Gilead, GlaxoSmithKline, Janssen-Cilag, Merck Sharp & Dohme, Pfizer, Roche, Schering-Plough, Tibotec support the continuing clinical trials that take place at the Clinic of Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy. We are greatly indebted to the patient volunteers who take part in the trials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriano Lazzarin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Castagna, A., Biswas, P., Beretta, A. et al. The Appealing Story of HIV Entry Inhibitors. CNS Drugs 65, 879–904 (2005). https://doi.org/10.2165/00003495-200565070-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565070-00001

Keywords

Navigation