Skip to main content
Log in

Vascular Effects of Calcium Channel Antagonists: New Evidence

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Calcium channel antagonists have a well-established role in the management of cardiovascular diseases. L-type calcium channels in vascular cells are a key therapeutic target in hypertension and are the preferred molecular target of the initial calcium channel antagonists. However, third-generation dihydropyridine (DHP) calcium channel antagonists, including manidipine, nilvadipine, benidipine and efonidipine, appear to have effects in addition to blockade of the L-type calcium channel. Voltage-gated calcium channels are widely expressed throughout the cardiovascular system. They constitute the main route for calcium entry, essential for the maintenance of contraction. Cardiac and vascular cells predominantly express L-type calcium channels. More recently, T-type channels have been discovered, and there is emerging evidence of their significance in the regulation of arterial resistance. A lack of functional expression of L-type channels in renal efferent arterioles may be consistent with an important role of T-type channels in the regulation of efferent arteriolar tone. Although the exact role of T-type calcium channels in vascular beds remains to be determined, they could be associated with gene-activated cell replication and growth during pathology. The three major classes of calcium channel antagonists are chemically distinct, and exhibit different functional effects depending on their biophysical, conformation-dependent interactions with the L-type calcium channel. The DHPs are more potent vasodilators, and generally have less cardiode-pressant activity than representatives of other classes of calcium channel antagonist such as diltiazem (a phenylalkylamine) and verapamil (a benzothiazepine). In contrast to older calcium channel antagonists, the newer DHPs, manidipine, nilvadipine, benidipine and efonidipine, dilate not only afferent but also efferent renal arterioles, a potentially beneficial effect that may improve glomerular hypertension and provide renoprotection. The underlying mechanisms for the heterogenous effects of calcium channel antagonists in the renal microvasculature are unclear. A credible hypothesis suggests a contribution of T-type calcium channels to efferent arteriolar tone, and that manidipine, nilvadipine and efonidipine inhibit both L and T-type channels. However, other mechanisms, including an effect on neuronal P/Q-type calcium channels (recently detected in arterioles), the microheterogeneity of vascular beds, and other types of calcium influx may also play a role. This article presents recent data about the expression and physiological role of calcium channels in arteries and the molecular targets of the calcium channel antagonists, particularly those exhibiting distinct renovascular effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. McKeage K, Scott LJ. Manidipine: a review of its use in the management of hypertension. Drugs 2004; 64: 1923–40

    Article  PubMed  CAS  Google Scholar 

  2. Ringer S. A further contribution regarding the influence of the different constituents of the blood on the contraction of the heart. J Physiol 1883; 4: 29–42

    PubMed  CAS  Google Scholar 

  3. Yamakage M, Namiki A. Calcium channels-basic aspects of their structure, function and gene encoding; anesthetic action on the channels-a review. Can J Anaesth 2002; 49: 151–64

    Article  PubMed  Google Scholar 

  4. Somlyo AP, Somlyo AV. Signal transduction and regulation in smooth muscle. Nature 1994; 372: 231–6

    Article  PubMed  CAS  Google Scholar 

  5. Catterall WA. Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 2000; 16: 521–55

    Article  PubMed  CAS  Google Scholar 

  6. Nargeot J, Lory P, Richard S. Molecular basis of the diversity of calcium channels in cardiovascular tissues. Eur Heart J 1997; 18 suppl. A: A15–26

    Article  PubMed  CAS  Google Scholar 

  7. Triggle DJ. 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell Mol Neurobiol 2003; 23: 293–303

    Article  PubMed  CAS  Google Scholar 

  8. van Zwieten PA. The pharmacological properties of lipophilic calcium antagonists. Blood Press Suppl 1998; 2: 5–9

    PubMed  Google Scholar 

  9. Perez-Reyes E. Molecular characterization of a novel family of low voltage-activated, T-type, calcium channels. J Bioenerg Biomembr 1998; 30: 313–8

    Article  PubMed  CAS  Google Scholar 

  10. Perez-Reyes E. Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 2003; 83: 117–61

    PubMed  CAS  Google Scholar 

  11. Perez-Reyes E. Paradoxical role of t-type calcium channels in coronary smooth muscle. Mol Interv 2004; 4: 16–8

    Article  PubMed  CAS  Google Scholar 

  12. Knot HJ, Nelson MT. Regulation of arterial diameter and wall Ca2+ in cerebral arteries of rat by membrane potential and intravascular pressure. J Physiol 1998; 508: 199–209

    Article  PubMed  CAS  Google Scholar 

  13. Nelson MT, Patlak JB, Worley JF, et al. Calcium channels, potassium channels, and voltage dependence of arterial smooth muscle tone. Am J Physiol 1990; 259: C3–18

    PubMed  CAS  Google Scholar 

  14. Kamishima T, Mccarron JG. Regulation of the cytosolic Ca2+ concentration by Ca2+ stores in single smooth muscle cells from rat cerebral arteries. J Physiol 1997; 501: 497–508

    Article  PubMed  CAS  Google Scholar 

  15. Moosmang S, Schulla V, Welling A, et al. Dominant role of smooth muscle L-type calcium channel Cav1.2 for blood pressure regulation. Embo J 2003; 22: 6027–34

    Article  PubMed  CAS  Google Scholar 

  16. Wilde DW, Furspan PB, Szocik JF. Calcium current in smooth muscle cells from normotensive and genetically hypertensive rats. Hypertension 1994; 24: 739–46

    Article  PubMed  CAS  Google Scholar 

  17. Harder DR, Smeda J, Lombard J. Enhanced myogenic depolarization in hypertensive cerebral arterial muscle. Circ Res 1985; 57: 319–22

    Article  PubMed  CAS  Google Scholar 

  18. Pesic A, Madden JA, Pesic M, et al. High blood pressure upregulates arterial L-type Ca2+ channels: is membrane depolarization the signal? Circ Res 2004; 94: e97–104

    Article  PubMed  CAS  Google Scholar 

  19. Wellman GC, Cartin L, Eckman DM, et al. Membrane depolarization, elevated Ca2+ entry, and gene expression in cerebral arteries of hypertensive rats. Am J Physiol Heart Circ Physiol 2001; 281: H2559–67

    PubMed  CAS  Google Scholar 

  20. Richard S, Nargeot J. T-type calcium currents in vascular smooth muscle cells: a role in cellular proliferation? In: Tsien R, Clozel J, Nargeot J, editors. Low-voltage-activated T-type calcium channels. Proceedings of the International Electrophysiology Meeting. Montpellier, France, 21–22 October 1996. Chester (UK): Adis International; 1998

    Google Scholar 

  21. Quignard JF, Frapier JM, Harricane MC, et al. Voltage-gated calcium channel currents in human coronary myocytes. Regulation by cyclic GMP and nitric oxide. J Clin Invest 1997; 99: 185–93

    CAS  Google Scholar 

  22. Kuga T, Kobayashi S, Hirakawa Y, et al. Cell cycle-dependent expression of L- and T-type Ca2+ currents in rat aortic smooth muscle cells in primary culture. Circ Res 1996; 79: 14–9

    Article  PubMed  CAS  Google Scholar 

  23. Neveu D, Quignard JF, Fernandez A, et al. Differential beta-adrenergic regulation and phenotypic modulation of voltage-gated calcium currents in rat aortic myocytes. J Physiol 1994; 479: 171–82

    PubMed  CAS  Google Scholar 

  24. Gordienko DV, Clausen C, Goligorsky MS. Ionic currents and endothelin signaling in smooth muscle cells from rat renal resistance arteries. Am J Physiol 1994; 266: F325–41

    PubMed  CAS  Google Scholar 

  25. Chen CC, Lamping KG, Nuno DW, et al. Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 2003; 302: 1416–8

    Article  PubMed  CAS  Google Scholar 

  26. Wellman GC, Nelson MT. Signaling between SR and plasmalemma in smooth muscle: sparks and the activation of Ca2+-sensitive ion channels. Cell Calcium 2003; 34: 211–29

    Article  PubMed  CAS  Google Scholar 

  27. VanBavel E, Sorop O, Andreasen D, et al. Role of T-type calcium channels in myogenic tone of skeletal muscle resistance arteries. Am J Physiol Heart Circ Physiol 2002; 283: H2239–43

    PubMed  CAS  Google Scholar 

  28. Feng MG, Li M, Navar LG. T-type calcium channels in the regulation of afferent and efferent arterioles in rats. Am J Physiol Renal Physiol 2004; 286: F331–7

    Article  PubMed  CAS  Google Scholar 

  29. Hansen PB, Jensen BL, Andreasen D, et al. Differential expression of T- and L-type voltage-dependent calcium channels in renal resistance vessels. Circ Res 2001; 89: 630–8

    Article  PubMed  CAS  Google Scholar 

  30. Ozawa Y, Hayashi K, Nagahama T, et al. Effect of T-type selective calcium antagonist on renal microcirculation: studies in the isolated perfused hydronephrotic kidney. Hypertension 2001; 38: 343–7

    Article  PubMed  CAS  Google Scholar 

  31. Jensen LJ, Salomonsson M, Jensen BL, et al. Depolarization-induced calcium influx in rat mesenteric small arterioles is mediated exclusively via mibefradil-sensitive calcium channels. Br J Pharmacol 2004; 142: 709–18

    Article  PubMed  CAS  Google Scholar 

  32. Gustafsson F, Andreasen D, Salomonsson M, et al. Conducted vasoconstriction in rat mesenteric arterioles: role for dihydropyridine-insensitive Ca2+ channels. Am J Physiol Heart Circ Physiol 2001; 280: H582–90

    PubMed  CAS  Google Scholar 

  33. Hansen PB, Jensen BL, Andreasen D, et al. Vascular smooth muscle cells express the alpha1A subunit of a P-/Q-type voltage-dependent Ca2+Channel, and It is functionally important in renal afferent arterioles. Circ Res 2000; 87: 896–902

    Article  PubMed  CAS  Google Scholar 

  34. Salomonsson M, Sorensen CM, Arendshorst WJ, et al. Calcium handling in afferent arterioles. Acta Physiol Scand 2004; 181: 421–9

    Article  PubMed  CAS  Google Scholar 

  35. Bossert F, Vater W. Dihydropyridines, a new group of strongly effective coronary therapeutic agents [in German]. Naturwissenschaften 1971; 58: 578

    Article  PubMed  CAS  Google Scholar 

  36. Grun G, Fleckenstein A. Electromechanical uncoupling of vascular smooth muscle as the basic principle of coronary dilatation by 4-(2′-nitrophenyl-2,6-dimethyl-1, 4-dihydropyridine-3,5-dicarboxylic acid dimethyl ester (BAY a 1040, Nifedipine). 1. The significance of Ca++ ions for the bioelectrical and mechanical activity of smooth muscle [in German]. Arzneimittelforschung 1972; 22: 334–44

    PubMed  CAS  Google Scholar 

  37. Grun G, Fleckenstein A. Calcium-antagonism, a new principle in coronary vasodilation [in Italian]. Minerva Med 1975; 66: 1838–45

    PubMed  CAS  Google Scholar 

  38. Sun J, Triggle DJ. Calcium channel antagonists: cardiovascular selectivity of action. J Pharmacol Exp Ther 1995; 274: 419–26

    PubMed  CAS  Google Scholar 

  39. Striessnig J, Grabner M, Mitterdorfer J, et al. Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol Sci 1998; 19: 108–15

    Article  PubMed  CAS  Google Scholar 

  40. Neveu D, Nargeot J, Richard S. Two high-voltage-activated, dihydropyridine-sensitive Ca2+ channel currents with distinct electrophysiological and pharmacological properties in cultured rat aortic myocytes. Pflugers Arch 1993; 424: 45–53

    Article  PubMed  CAS  Google Scholar 

  41. Hayashi K, Ozawa Y, Fujiwara K, et al. Role of actions of calcium antagonists on efferent arterioles-with special references to glomerular hypertension. Am J Nephrol 2003; 23: 229–44

    Article  PubMed  CAS  Google Scholar 

  42. Tanaka H, Shigenobu K. Efonidipine hydrochloride: a dual blocker of L- and T-type Ca2+ channels. Cardiovasc Drug Rev 2002; 20: 81–92

    Article  PubMed  CAS  Google Scholar 

  43. Honda M, Hayashi K, Matsuda H, et al. Divergent renal vasodilator action of L- and T-type calcium antagonists in vivo. J Hypertens 2001; 19: 2031–7

    Article  PubMed  CAS  Google Scholar 

  44. Hayashi K, Nagahama T, Oka K, et al. Disparate effects of calcium antagonists on renal microcirculation. Hypertens Res 1996; 19: 31–6

    Article  PubMed  CAS  Google Scholar 

  45. Takabatake T, Ohta H, Sasaki T, et al. Renal effects of manidipine hydrochloride. A new calcium antagonist in hypertensive patients. Eur J Clin Pharmacol 1993; 45: 321–5

    CAS  Google Scholar 

  46. Yue W, Kimura S, Fujisawa Y, et al. Benidipine dilates both pre- and post-glomerular arteriole in the canine kidney. Hypertens Res 2001; 24: 429–36

    Article  PubMed  CAS  Google Scholar 

  47. Del Vecchio L, Pozzi M, Salvetti A, et al. Efficacy and tolerability of manidipine in the treatment of hypertension in patients with non-diabetic chronic kidney disease without glomerular disease. Prospective, randomized, double-blind study of parallel groups in comparison with enalapril. J Nephrol 2004; 17: 261–9

    Google Scholar 

  48. Arima S, Ito S, Omata K, et al. Diverse effects of calcium antagonists on glomerular hemodynamics. Kidney Int Suppl 1996; 55: S132–4

    PubMed  CAS  Google Scholar 

  49. Furukawa T, Miura R, Honda M, et al. Identification of R (−)-isomer of efonidipine as a selective blocker of T-type Ca2+ channels. Br J Pharmacol 2004; 143: 1050–7

    Article  PubMed  CAS  Google Scholar 

  50. Furukawa T, Nukada T, Miura R, et al. Differential blocking action of dihydropyridine Ca2+ antagonists on a T-type Ca2+ channel (alpha1G) expressed in Xenopus oocytes. J Cardiovasc Pharmacol 2005; 45: 241–6

    Article  PubMed  CAS  Google Scholar 

  51. Fink K, Meder WP, Clusmann H, et al. Ca2+ entry via P/Q-type Ca2+ channels and the Na+/Ca2+ exchanger in rat and human neocortical synaptosomes. Naunyn Schmiedebergs Arch Pharmacol 2002; 366: 458–63

    Article  PubMed  CAS  Google Scholar 

  52. Loutzenhiser K, Loutzenhiser R. Angiotensin II-induced Ca2+ influx in renal afferent and efferent arterioles: differing roles of voltage-gated and store-operated Ca2+ entry. Circ Res 2000; 87: 551–7

    Article  PubMed  CAS  Google Scholar 

  53. Takenaka T, Suzuki H, Okada H, et al. Transient receptor potential channels in rat renal microcirculation: actions of angiotensin II. Kidney Int 2002; 62: 558–65

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvain Richard.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richard, S. Vascular Effects of Calcium Channel Antagonists: New Evidence. Drugs 65 (Suppl 2), 1–10 (2005). https://doi.org/10.2165/00003495-200565002-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565002-00002

Keywords

Navigation