Skip to main content
Log in

Role of Fibric Acid Derivatives in the Management of Risk Factors for Coronary Heart Disease

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Although elevated low-density lipoprotein (LDL)-cholesterol is a well established coronary heart disease (CHD) risk factor, the ability to adequately discriminate high-risk individuals by this risk factor alone is limited and other metabolic risk variables are known to modulate CHD risk. For instance, it has been reported that the cluster of metabolic disturbances observed among individuals with abdominal obesity, the so-called metabolic syndrome, is associated with a substantially increased risk of CHD. Among the features of the dyslipidaemic profile observed in these individuals, the high triglyceride-low high-density lipoprotein (HDL)-cholesterol dyslipidaemia is predictive of an elevated risk of CHD. Fibric acid derivatives (fibrates) have been used in clinical practice for more than 2 decades as a class of agents known to decrease triglyceride levels while substantially increasing HDL-cholesterol levels, with a limited but significant additional lowering effect on LDL-cholesterol levels. Although the clinical benefits of HMG-CoA reductase inhibitors (statins) have been well documented by primary and secondary prevention trials that justify their widespread use, it was not until the publication of the VA-HIT (Veterans Affairs High-Density Lipoprotein Intervention Trial) that the relevance of identifying HDL-cholesterol as a therapeutic target to reduce the risk of recurrent CHD events was finally confirmed.

The clinical benefits of fibrate therapy are especially important in the subpopulation of patients with low HDL-cholesterol levels with the metabolic syndrome, particularly in patients with type 2 diabetes mellitus or in abdominally obese, hyperinsulinaemic patients. Evidence also suggests that there is a ‘fibrate effect’ that mediates the reduction in CHD risk beyond the favourable impact of these agents on HDL-cholesterol levels. This last notion is consistent with the pleiotropic effects of fibrates which are known to be related to their mechanisms of action.

Through peroxisome proliferator-activated α-receptors, fibrates have a significant impact on the synthesis of several apolipoproteins (apo) and enzymes of lipoprotein metabolism as well as on the expression of several genes involved in fibrinolysis and inflammation. Fibrate therapy has been reported to decrease apo CIII levels (a powerful inhibitor of lipoprotein lipase) and increase apo AI levels, as well as to increase lipoprotein lipase activity. Such changes contribute to improve the catabolism of triglyceride-rich lipoproteins, leading to a substantial increase in HDL-cholesterol levels accompanied by a shift in the size and density of LDL particles (from small, dense LDL particles to larger, more buoyant cholesteryl ester-rich LDL).

It is proposed that some of these pleiotropic effects could explain some of the clinical benefits of fibrate therapy beyond its HDL-raising properties, particularly among patients with abdominal obesity, hyperinsulinaemia or type 2 diabetes with both low HDL- and low/normal LDL-cholesterol levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4

Similar content being viewed by others

References

  1. Castelli WP. Epidemiology of coronary heart disease: the Framingham Study. Am J Med 1984; 76: 4–12

    Article  PubMed  CAS  Google Scholar 

  2. Stamler J, Wentworth D, Neaton JD. Is the relationship between serum cholesterol and risk of premature death from coronary heart disease continuous and graded? Findings in 356,222 primary screenees of the Multiple Risk Factor Intervention Trial (MRFIT). JAMA 1986; 256: 2823–8

    Article  PubMed  CAS  Google Scholar 

  3. Sharrett AR, Ballantyne CM, Coady SA, et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A-I and B, and HDL density subfractions: the Atherosclerosis Risk in Communities (ARIC) Study. Circulation 2001; 104(10): 1108–13

    Article  PubMed  CAS  Google Scholar 

  4. Lamarche B, Després JP, Moorjani M, et al. Prevalence of dyslipidemic phenotypes in ischemic heart disease (prospective results from the Quebéc Cardiovascular Study). Am J Cardiol 1995; 75: 1189–95

    Article  PubMed  CAS  Google Scholar 

  5. LaRosa JC, He J, Vupputuri S. Effect of statins on risk of coronary disease: a meta-analysis of randomized controlled trials. JAMA 1999; 282(24): 2340–6

    Article  PubMed  CAS  Google Scholar 

  6. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia: West of Scotland Coronary Prevention Study Group. N Engl J Med 1995; 333(20): 1301–7

    Article  PubMed  CAS  Google Scholar 

  7. Downs JR, Clearfield M, Weis S, et al. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998; 279(20): 1615–22

    CAS  Google Scholar 

  8. Randomized trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9

    Google Scholar 

  9. Sacks FM, Pfeffer MA, Moye LA, et al. The effect of pravastatin on coronary events after myocardial infarction in patients with average cholesterol levels. N Engl J Med 1996; 335: 1001–9

    Article  PubMed  CAS  Google Scholar 

  10. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002; 360(9326): 7–22

    Article  Google Scholar 

  11. Prevention of cardiovascular events and death with pravastatin in patients with coronary heart disease and a broad range of initial cholesterol levels: the Long-Term Intervention with Pravastatin in Ischaemic Disease (LIPID) Study Group. N Engl J Med 1998; 339(19): 1349–57

    Article  Google Scholar 

  12. Genest JJ, McNamara JR, Ordovas JM, et al. Lipoprotein cholesterol, apolipoprotein A-I and B and lipoprotein (a) abnormality in men with premature coronary heart disease. J Am Coll Cardiol 1992; 19: 792–802

    Article  PubMed  Google Scholar 

  13. Lee WL, Cheung AM, Cape D, et al. Impact of diabetes on coronary artery disease in women and men. Diabetes Care 2000; 23(7): 962–8

    Article  PubMed  CAS  Google Scholar 

  14. Kaukua J, Turpeinen A, Uusitupa M, et al. Clustering of cardiovascular risk factors in type 2 diabetes mellitus: prognostic significance and tracking. Diabetes Obes Metab 2001; 3(1): 17–23

    Article  PubMed  CAS  Google Scholar 

  15. Friesinger GC, Gavin JA. Diabetes and the cardiologists: a call to action. J Am Coll Cardiol 2000; 35(5): 1130–3

    Article  PubMed  Google Scholar 

  16. Expert Panel on Detection, Evaluation And Treatment of High Blood Cholesterol In Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). JAMA 2001; 285(19): 2486–97

    Article  Google Scholar 

  17. Stamler J. Blood pressure and high blood pressure: aspects of risk. Hypertension 1991; 18 (3 Suppl.): I95–107

    Article  PubMed  CAS  Google Scholar 

  18. Shaten BJ, Kuller LH, Neaton JD. Association between baseline risk factors, cigarette smoking, and CHD mortality after 10.5 years: MRFIT Research Group. Prev Med 1991; 20(5): 655–9

    Article  PubMed  CAS  Google Scholar 

  19. Wilson PW, D’Agostino RB, Levy D, et al. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837–47

    Article  PubMed  CAS  Google Scholar 

  20. Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Munster (PROCAM) study. Circulation 2002; 105(3): 310–5

    Article  PubMed  Google Scholar 

  21. Gordon T, Castelli WP, Hjortland MC, et al. High density lipoprotein as a protective factor against coronary heart disease: the Framingham Study. Am J Med 1977; 62: 707–14

    Article  PubMed  CAS  Google Scholar 

  22. Després JP, Lemieux I, Dagenais GR, et al. HDL-cholesterol as a marker of coronary heart disease risk: the Quebec cardiovascular study. Atherosclerosis 2000; 153(2): 263–72

    Article  PubMed  Google Scholar 

  23. Miller NE, Forde OH, Thelle DS, et al. The Tromso Heart Study: high-density lipoprotein as a protective factor against coronary heart disease: a prospective case-control study. Lancet 1977; I: 965–7

    Article  Google Scholar 

  24. Castelli WP, Doyles JT, Gordon T. HDL-cholesterol and other lipids in coronary heart disease: the Cooperative Lipoprotein Phenotyping Study. Circulation 1977; 55: 767–72

    Article  PubMed  CAS  Google Scholar 

  25. Castelli WP. Cholesterol and lipids in the risk of coronary artery disease: the Framingham Heart Study. Can J Cardiol 1988; 4 Suppl. A: 5A–10A

    PubMed  Google Scholar 

  26. Assmann G, Schulte H. Relation of high-density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Am J Cardiol 1992; 70: 733–7

    Article  PubMed  CAS  Google Scholar 

  27. Robins SJ, Collins D, Wittes JT, et al. Relation of gemfibrozil treatment and lipid levels with major coronary events. VA-HIT: a randomized controlled trial. JAMA 2001; 285(12): 1585–91

    Article  PubMed  CAS  Google Scholar 

  28. Brunner D, Altman S, Loebl K, et al. Serum cholesterol and triglyceride in patients suffering from ischemic heart disease and in healthy subjects. Atherosclerosis 1977; 28: 197–204

    Article  PubMed  CAS  Google Scholar 

  29. Lamarche B, Després JP, Moorjani S, et al. Triglycerides and HDL-cholesterol as risk factors for ischemic heart disease: results from the Quebéc cardiovascular study. Atherosclerosis 1996; 119: 235–45

    Article  PubMed  CAS  Google Scholar 

  30. Tverdal A, Foss OP, Leren P, et al. Serum triglycerides as an independent risk factor for death from coronary heart disease in middle-aged Norwegian men. Am J Epidemiol 1989; 129: 458–65

    PubMed  CAS  Google Scholar 

  31. Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler Thromb Vasc Biol 1991; 11: 2–14

    Article  CAS  Google Scholar 

  32. Hokanson JE, Austin MA. Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996; 3(2): 213–9

    Article  PubMed  CAS  Google Scholar 

  33. Gotto Jr AM. Triglyceride as a risk factor for coronary artery disease. Am J Cardiol 1998; 82(9A): 22Q–5Q

    Article  PubMed  Google Scholar 

  34. Manninen V, Tenkanen L, Koshinen P, et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study: implications for treatment. Circulation 1992; 85: 37–45

    Article  PubMed  CAS  Google Scholar 

  35. Austin MA. Plasma triglyceride as risk factor for coronary heart disease: the epidemiologic evidence and beyond. Am J Epidemiol 1989; 129: 249–59

    PubMed  CAS  Google Scholar 

  36. Lemieux I, Lamarche B, Couillard C, et al. Total cholesterol/ HDL cholesterol ratio vs LDL cholesterol/HDL cholesterol ratio as indices of ischemic heart disease risk in men: the Quebec Cardiovascular Study. Arch Intern Med 2001; 161: 2685–92

    Article  PubMed  CAS  Google Scholar 

  37. Kinosian B, Glick H, Garland G. Cholesterol and coronary heart disease: predicting risks by levels and ratios. Ann Intern Med 1994; 121(9): 641–7

    PubMed  CAS  Google Scholar 

  38. Lamarche B, Moorjani S, Lupien PJ, et al. Apolipoprotein A-I and B levels and the risk of ischemic heart disease during a five-year follow-up of men in the Quebéc cardiovascular study. Circulation 1996; 94: 273–8

    Article  PubMed  CAS  Google Scholar 

  39. Jeppesen J, Hein HO, Suadicani P, et al. Relation of high TG-low HDL cholesterol and LDL cholesterol to the incidence of ischemic heart disease: an 8-year follow-up in the Copenhagen Male Study. Arterioscler Thromb Vasc Biol 1997; 17(6): 1114–20

    Article  PubMed  CAS  Google Scholar 

  40. Kinosian B, Glick H, Preiss L, et al. Cholesterol and coronary heart disease: predicting risks in men by changes in levels and ratios. J Investig Med 1995; 43(5): 443–50

    PubMed  CAS  Google Scholar 

  41. Rubins HB, Robins SJ, Collins D, et al. Distribution of lipids in 8,500 men with coronary artery disease: Department of Veterans Affairs HDL Intervention Trial Study Group. Am J Cardiol 1995; 75(17): 1196–201

    Article  PubMed  CAS  Google Scholar 

  42. Bierman EL. Atherogenesis in diabetes. Arterioscler Thromb Vasc Biol 1992; 12: 647–56

    Article  CAS  Google Scholar 

  43. Howard BV. Lipoprotein metabolism in diabetes mellitus. J Lipid Res 1987; 28(6): 613–28

    PubMed  CAS  Google Scholar 

  44. Laakso M, Sarlund H, Mykkanen L. Insulin resistance is associated with lipid and lipoprotein abnormalities in subjects with varying degrees of glucose tolerance. Arteriosclerosis 1990; 10(2): 223–31

    Article  PubMed  CAS  Google Scholar 

  45. Pouliot MC, Després JP, Nadeau A, et al. Visceral obesity in men. Associations with glucose tolerance, plasma insulin, and lipoprotein levels. Diabetes 1992; 41(7): 826–34

    CAS  Google Scholar 

  46. Després JP, Moorjani S, Ferland M, et al. Adipose tissue distribution and plasma lipoprotein levels in obese women: importance of intra-abdominal fat. Arteriosclerosis 1989; 9(2): 203–10

    Article  PubMed  Google Scholar 

  47. Després JP, Lemieux I, Prud’homme D. Treatment of obesity: need to focus on high risk abdominally obese patients. BMJ 2001; 322(7288): 716–20

    Article  PubMed  Google Scholar 

  48. Després JP, Moorjani S, Lupien PJ, et al. Regional distribution of body fat, plasma lipoproteins, and cardiovascular disease. Arteriosclerosis 1990; 10(4): 497–511

    Article  PubMed  Google Scholar 

  49. Grundy SM. Hypertriglyceridemia, insulin resistance, and the metabolic syndrome. Am J Cardiol 1999; 83(9B): 25F–9F

    Article  PubMed  CAS  Google Scholar 

  50. Després JP. Abdominal obesity as important component of insulin-resistance syndrome. Nutrition 1993; 9(5): 452–9

    PubMed  Google Scholar 

  51. Després JP. Health consequences of visceral obesity. Ann Med 2001; 33(8): 534–41

    Article  PubMed  Google Scholar 

  52. Lamarche B, Tchernof A, Mauriège P, et al. Fasting insulin and apolipoprotein B levels and low-density lipoprotein particle size as risk factors for ischemic heart disease. JAMA 1998; 279(24): 1955–61

    Article  PubMed  CAS  Google Scholar 

  53. Lemieux I, Pascot A, Couillard C, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia, hyperapolipoprotein B, small, dense LDL) in men? Circulation 2000; 102: 179–84

    Article  PubMed  CAS  Google Scholar 

  54. Gotto Jr AM, Whitney E, Stein EA, et al. Relation between baseline and on-treatment lipid parameters and first acute major coronary events in the Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS). Circulation 2000; 101(5): 477–84

    Article  PubMed  CAS  Google Scholar 

  55. Walldius G, Jungner I, Holme I, et al. High apolipoprotein B, low apolipoprotein A-I, and improvement in the prediction of fatal myocardial infarction (AMORIS study): a prospective study. Lancet 2001; 358(9298): 2026–33

    Article  PubMed  CAS  Google Scholar 

  56. Campos H, Genest JJ, Blijlevens E, et al. Low density lipoprotein particle size and coronary artery disease. Arterioscler Thromb Vasc Biol 1992; 12: 187–95

    Article  CAS  Google Scholar 

  57. Austin MA, Breslow JL, Hennekens CH, et al. Low density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988; 260: 1917–21

    Article  PubMed  CAS  Google Scholar 

  58. Coresh J, Kwiterovich Jr PO, Smith HH, et al. Association of plasma triglyceride concentration and LDL particle diameter, density, and chemical composition with premature coronary artery disease in men and women. J Lipid Res 1993; 34(10): 1687–97

    PubMed  CAS  Google Scholar 

  59. Gardner CD, Fortmann SP, Krauss RM. Association of small low-density lipoprotein particles with the incidence of coronary artery disease in men and women. JAMA 1996; 276: 875–81

    Article  PubMed  CAS  Google Scholar 

  60. Stampfer MJ, Krauss RM, Ma J, et al. A prospective study of triglyceride level, low-density lipoprotein particle diameter, and risk of myocardial infarction. JAMA 1996; 276: 882–8

    Article  PubMed  CAS  Google Scholar 

  61. Lamarche B, Tchernof A, Moorjani S, et al. Small, dense low-density lipoprotein particles as a predictor of the risk of ischemic heart disease in men: prospective results from the Quebéc Cardiovascular Study. Circulation 1997; 95: 69–75

    Article  PubMed  CAS  Google Scholar 

  62. Tchernof A, Lamarche B, Prud’homme D, et al. The dense LDL phenotype: association with plasma lipoprotein levels, visceral obesity, and hyperinsulinemia in men. Diabetes Care 1996; 19(6): 629–37

    Article  PubMed  CAS  Google Scholar 

  63. Williams PT, Haskell WL, Vranizan KM, et al. The associations of high-density lipoprotein subclasses with insulin and glucose levels, physical activity, resting heart rate, and regional adiposity in men with coronary artery disease: the Stanford Coronary Risk Intervention Project baseline survey. Metabolism 1995; 44(1): 106–14

    Article  PubMed  CAS  Google Scholar 

  64. Syvanne M, Ahola M, Lahdenpera S, et al. High density lipoprotein subfractions in non-insulin-dependent diabetes mellitus and coronary artery disease. J Lipid Res 1995; 36(3): 573–82

    PubMed  CAS  Google Scholar 

  65. Lamarche B, Moorjani S, Cantin B, et al. Associations of HDL2 and HDL3 subfractions with ischemic heart disease in men: prospective results from the Quebec Cardiovascular Study. Arterioscler Thromb Vasc Biol 1997; 17(6): 1098–105

    Article  PubMed  CAS  Google Scholar 

  66. Pascot A, Lemieux I, Prud’homme D, et al. Reduced HDL particle size as an additional feature of the atherogenic dyslipidemia of abdominal obesity. J Lipid Res 2001; 42(12): 2007–14

    PubMed  CAS  Google Scholar 

  67. Lamarche B, Uffelman KD, Carpentier A, et al. Triglyceride enrichment of HDL enhances in vivo metabolic clearance of HDL apo A-I in healthy men. J Clin Invest 1999; 103(8): 1191–9

    Article  PubMed  CAS  Google Scholar 

  68. Yudkin JS, Stehouwer CD, Emeis JJ, et al. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol 1999; 19(4): 972–8

    Article  PubMed  CAS  Google Scholar 

  69. Juhan-Vague I, Alessi MC. PAI-1, obesity, insulin resistance and risk of cardiovascular events. Thromb Haemost 1997; 78(1): 656–60

    PubMed  CAS  Google Scholar 

  70. Juhan-Vague I, Morange P, Renucci JF, et al. Fibrinogen, obesity and insulin resistance. Blood Coagul Fibrinolysis 1999; 10 Suppl. 1: S25–8

    Article  PubMed  Google Scholar 

  71. Garaulet M, Perex-Llamas F, Fuente T, et al. Anthropometric, computed tomography and fat cell data in an obese population: relationship with insulin, leptin, tumor necrosis factor-alpha, sex hormone-binding globulin and sex hormones. Eur J Endocrinol 2000; 143(5): 657–66

    Article  PubMed  CAS  Google Scholar 

  72. Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation 2002; 105(9): 1135–43

    Article  PubMed  CAS  Google Scholar 

  73. Lemieux I, Pascot A, Prud’homme D, et al. Elevated C-reactive protein: another component of the atherothrombotic profile of abdominal obesity. Arterioscler Thromb Vasc Biol 2001; 21(6): 961–7

    Article  PubMed  CAS  Google Scholar 

  74. Brook RD, Bard RL, Rubenfire M, et al. Usefulness of visceral obesity (waist/hip ratio) in predicting vascular endothelial function in healthy overweight adults. Am J Cardiol 2001; 88: 1264–9

    Article  PubMed  CAS  Google Scholar 

  75. Fruchart JC, Brewer Jr HB, Leitersdorf E. Consensus for the use of fibrates in the treatment of dyslipoproteinemia and coronary heart disease: Fibrate Consensus Group. Am J Cardiol 1998; 81(7): 912–7

    Article  PubMed  CAS  Google Scholar 

  76. Staels B, Dallongeville J, Auwerx J, et al. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98: 2088–93

    Article  PubMed  CAS  Google Scholar 

  77. Staels B, Vu-Dac N, Kosykh VA, et al. Fibrates downregulate apolipoprotein C-III expression independent of induction of peroxisomal acyl coenzyme A oxidase: a potential mechanism for the hypolipidemic action of fibrates. J Clin Invest 1995; 95(2): 705–12

    Article  PubMed  CAS  Google Scholar 

  78. Saku K, Gartside PS, Hynd BH, et al. Mechanisms of action of gemfibrozil on lipoprotein metabolism. J Clin Invest 1985; 75: 1702–12

    Article  PubMed  CAS  Google Scholar 

  79. Capell WH, De Souza CA, Weil KM, et al. Triglyceride lowering with fenofibrate improves endothelial vasodilator function in patient with hypertriglyceridemia. Circulation 2001; 102 Suppl. II: 240

    Google Scholar 

  80. Gnasso A, LehnerB, Haberbosch W, et al. Effect of gemfibrozil on lipids, apoproteins, and postheparin lipolytic activities in normolipidemic subjects. Metabolism 1986; 35(5): 387–93

    Article  PubMed  CAS  Google Scholar 

  81. Zhu D, Ganji SH, Kamanna VS, et al. Effect of gemfibrozil on apolipoprotein B secretion and diacylglycerol acyltransferase activity in human hepatoblastoma (HepG2) cells. Atherosclerosis 2002; 164(2): 221–8

    Article  PubMed  CAS  Google Scholar 

  82. Roglans N, Peris C, Verd JC, et al. Increase in hepatic expression of SREBP-2 by gemfibrozil administration to rats. Biochem Pharmacol 2001; 62(6): 803–9

    Article  PubMed  CAS  Google Scholar 

  83. Berthou L, Staels B, Saldicco I, et al. Opposite in vitro and in vivo regulation of hepatic apolipoprotein A-I gene expression by retinoic acid: absence of effects on apolipoprotein A-II gene expression. Arterioscler Thromb 1994; 14(10): 1657–64

    Article  PubMed  CAS  Google Scholar 

  84. Vu-Dac N, Schoonjans K, Kosykh V, et al. Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor. J Clin Invest 1995; 96(2): 741–50

    Article  PubMed  CAS  Google Scholar 

  85. Nigon F, Lesnik P, Rouis M, et al. Discrete subspecies of human low density lipoproteins are heterogeneous in their interaction with the cellular LDL receptor. J Lipid Res 1991; 32(11): 1741–53

    PubMed  CAS  Google Scholar 

  86. Caslake MJ, Packard CJ, Gaw A, et al. Fenofibrate and LDL metabolic heterogeneity in hypercholesterolemia. Arterioscler Thromb 1993; 13(5): 702–11

    Article  PubMed  CAS  Google Scholar 

  87. Lemieux I, Salomon H, Després JP. Contribution of apo CIII reduction to the greater effect of 12-week micronized fenofibrate than atorvastatin therapy on triglyceride levels and LDL size in dyslipidemic patients. Ann Med 2003; 35(6): 442–8

    Article  PubMed  CAS  Google Scholar 

  88. Fruchart JC, Duriez P, Staels B. Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr Opin Lipidol 1999; 10(3): 245–57

    Article  PubMed  CAS  Google Scholar 

  89. Fruchart JC, Staels B, Duriez P. The role of fibric acids in atherosclerosis. Curr Atheroscler Rep 2001; 3(1): 83–92

    Article  PubMed  CAS  Google Scholar 

  90. Sueyoshi S, Yamada T, Niihasi M, et al. Expression of peroxisome proliferator-activated receptor subtypes in human atherosclerosis. Ann N Y Acad Sci 2001; 947: 429–32

    Article  PubMed  CAS  Google Scholar 

  91. Frick MH, Syvanne M, Nieminen MS, et al. Prevention of the angiographic progression of coronary and vein-graft atherosclerosis by gemfibrozil after coronary bypass surgery in men with low levels of HDL cholesterol: Lopid Coronary Angiography Trial (LOCAT) Study Group. Circulation 1997; 96(7): 2137–43

    Article  PubMed  CAS  Google Scholar 

  92. Ericsson CG, Hamsten A, Nilsson J, et al. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996; 347(9005): 849–53

    Article  PubMed  CAS  Google Scholar 

  93. Bunte T, Hahmann HW, Hellwig N, et al. Effects of fenofibrate on angiographically examined coronary atherosclerosis and left ventricular function in hypercholesterolemic patients. Atherosclerosis 1993; 98(2): 127–38

    Article  PubMed  CAS  Google Scholar 

  94. Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: the Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet 2001; 357 (9260): 905–10

  95. Delerive P, Martin-Nizard F, Chinetti G, et al. Peroxisome proliferator-activated receptor activators inhibit thrombin-induced endothelin-1 production in human vascular endothelial cells by inhibiting the activator protein-1 signaling pathway. Circ Res 1999; 85(5): 394–402

    Article  PubMed  CAS  Google Scholar 

  96. Inoue I, Shino K, Noji S, et al. Expression of peroxisome proliferator-activated receptor alpha (PPAR alpha) in primary cultures of human vascular endothelial cells. Biochem Biophys Res Commun 1998; 246(2): 370–4

    Article  PubMed  CAS  Google Scholar 

  97. Staels B, Koenig W, Habib A, et al. Activation of human aortic smooth-muscle cells is inhibited by PPARalpha but not by PPARgamma activators. Nature 1998; 393: 790–3

    Article  PubMed  CAS  Google Scholar 

  98. Iijima K, Yoshizumi M, Ako J, et al. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in rat aortic smooth muscle cells. Biochem Biophys Res Commun 1998; 247(2): 353–6

    Article  PubMed  CAS  Google Scholar 

  99. Chinetti G, Griglio S, Antonucci M, et al. Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 1998; 273(40): 25573–80

    Article  PubMed  CAS  Google Scholar 

  100. Ricote M, Huang J, Fajas L, et al. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci U S A 1998; 95(13): 7614–9

    Article  PubMed  CAS  Google Scholar 

  101. Ricote M, Li AC, Willson TM, et al. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998; 391(6662): 79–82

    Article  PubMed  CAS  Google Scholar 

  102. Calabresi L, Gomaraschi M, Villa B, et al. Elevated soluble cellular adhesion molecules in subjects with low HDL-cholesterol. Arterioscler Thromb Vasc Biol 2002; 22(4): 656–61

    Article  PubMed  CAS  Google Scholar 

  103. Marx N, Sukhova GK, Collins T, et al. PPARalpha activators inhibit cytokine-induced vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation 1999; 99(24): 3125–31

    Article  PubMed  CAS  Google Scholar 

  104. Després JP, Lemieux I, Pascot A, et al. Gemfibrozil reduces plasma C-reactive protein levels in abdominally obese men with the atherogenic dyslipidemia of the metabolic syndrome. Arterioscler Thromb Vasc Biol 2003; 23: 702–3

    Article  PubMed  CAS  Google Scholar 

  105. Ridker PM, Rifai N, Rose L, et al. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. N Engl J Med 2002; 347(20): 1557–65

    Article  PubMed  CAS  Google Scholar 

  106. Branchi A, Rovellini A, Sommariva D, et al. Effect of three fibrate derivatives and of two HMG-CoA reductase inhibitors on plasma fibrinogen level in patients with primary hypercholesterolemia. Thromb Haemost 1993; 70(2): 241–3

    PubMed  CAS  Google Scholar 

  107. de la Serna G, Cadarso C. Fenofibrate decreases plasma fibrinogen, improves lipid profile, and reduces uricemia. Clin Pharmacol Ther 1999; 66(2): 166–72

    PubMed  Google Scholar 

  108. Maison P, Mennen L, Sapinho D, et al. A pharmacoepidemiological assessment of the effect of statins and fibrates on fibrinogen concentration. Atherosclerosis 2002; 160(1): 155–60

    Article  PubMed  CAS  Google Scholar 

  109. Nilsson L, Takemura T, Eriksson P, et al. Effects of fibrate compounds on expression of plasminogen activator inhibitor-1 by cultured endothelial cells. Arterioscler Thromb Vasc Biol 1999; 19(6): 1577–81

    Article  PubMed  CAS  Google Scholar 

  110. Kaneko T, Fujii S, Matsumoto A, et al. Induction of plasminogen activator inhibitor-1 in endothelial cells by basic fibroblast growth factor and its modulation by fibric acid. Arterioscler Thromb Vasc Biol 2002; 22(5): 855–60

    Article  PubMed  CAS  Google Scholar 

  111. Iglarz M, Touyz RM, Amiri F, et al. Effect of peroxisome proliferator-activated receptor-alpha and -gamma activators on vascular remodeling in endothelin-dependent hypertension. Arterioscler Thromb Vasc Biol 2003; 23(1): 45–51

    Article  PubMed  CAS  Google Scholar 

  112. Malik J, Melenovsky V, Wichterle D, et al. Both fenofibrate and atorvastatin improve vascular reactivity in combined hyper-lipidaemia (fenofibrate versus atorvastatin trial: FAT). Cardiovasc Res 2001; 52(2): 290–8

    Article  PubMed  CAS  Google Scholar 

  113. Playford DA, Watts GF, Best JD, et al. Effect of fenofibrate on brachial artery flow-mediated dilatation in type 2 diabetes mellitus. Am J Cardiol 2002; 90(11): 1254–7

    Article  PubMed  CAS  Google Scholar 

  114. Trial of clofibrate in the treatment of ischaemic heart disease. Five-year study by a group of physicians of the Newcastle upon Tyne region. BMJ 1971; 4(5790): 767–75

    Article  Google Scholar 

  115. Ischaemic heart disease: a secondary prevention trial using clofibrate. Report by a research committee of the Scottish Society of Physicians. BMJ 1971; 4(5790): 775–84

    Article  Google Scholar 

  116. A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. Report from the Committee of Principal Investigators. Br Heart J 1978; 40(10): 1069–118

    Article  Google Scholar 

  117. Clofibrate and niacin in coronary heart disease. JAMA 1975; 231(4): 360–81

    Article  Google Scholar 

  118. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary prevention trial with gemfibrozil in middle-aged men with dyslipidemia: safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–45

    Article  PubMed  CAS  Google Scholar 

  119. Carlson LA, Rosenhamer G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med Scand 1988; 223(5): 405–18

    Article  PubMed  CAS  Google Scholar 

  120. Rubins HB, Robins SJ, Collins D, et al. Gemfibrozil for the secondary prevention of coronary heart disease in men with low levels of high-density lipoprotein cholesterol: Veterans Affairs High-Density Lipoprotein Cholesterol Intervention Trial Study Group. N Engl J Med 1999; 341(6): 410–8

    Article  PubMed  CAS  Google Scholar 

  121. Secondary prevention by raising HDL cholesterol and reducing triglycerides in patients with coronary artery disease: the Bezafibrate Infarction Prevention (BIP) study. Circulation 2000; 102 (1): 21–27

  122. Meade T, Zuhrie R, Cook C, et al. Bezafibrate in men with lower extremity arterial disease: randomised controlled trial. BMJ 2002; 325(7373): 1139

    Article  PubMed  CAS  Google Scholar 

  123. Heady JA, Morris JN, Oliver MF. WHO clofibrate/cholesterol trial: clarifications. Lancet 1992; 340(8832): 1405–6

    Article  PubMed  CAS  Google Scholar 

  124. Manninen V, Elo MO, Frick MH, et al. Lipid alterations and decline in the incidence of coronary heart disease in the Helsinki Heart Study. JAMA 1988; 260(5): 641–51

    Article  PubMed  CAS  Google Scholar 

  125. Tenkanen L, Manttari M, Manninen V. Some coronary risk factors related to the insulin resistance syndrome and treatment with gemfibrozil: experience from the Helsinki Heart Study. Circulation 1995; 92(7): 1779–85

    Article  PubMed  CAS  Google Scholar 

  126. Syvanne M, Nieminen MS, Frick MH, et al. Associations between lipoproteins and the progression of coronary and vein-graft atherosclerosis in a controlled trial with gemfibrozil in men with low baseline levels of HDL cholesterol. Circulation 1998; 98(19): 1993–9

    Article  PubMed  CAS  Google Scholar 

  127. Robins SJ, Collins D, Rubins HB. Diabetes, hyperinsulinemia and recurrent coronary events in the VA-High Density Lipoprotein Intervention Trial (VA-HIT) [abstract no. 4069]. Circulation 2000; 102 Suppl. II: II–847

    Google Scholar 

  128. Rubins HB, Robins SJ, Collins D, et al. Diabetes, plasma insulin, and cardiovascular disease: subgroup analysis from the Department of Veterans Affairs high-density lipoprotein intervention trial (VA-HIT). Arch Intern Med 2002; 162: 2597–604

    Article  PubMed  CAS  Google Scholar 

  129. Robins SJ, Rubins HB, Faas FH, et al. Insulin resistance and cardiovascular events with low HDL cholesterol: the Veterans Affairs HDL Intervention Trial (VA-HIT). Diabetes Care 2003; 26: 1513–7

    Article  PubMed  CAS  Google Scholar 

  130. Shepherd J, Blauw GJ, Murphy MB, et al. Pravastatin in elderly individuals at risk of vascular disease (PROSPER): a randomised controlled trial. Lancet 2002; 360(9346): 1623–30

    Article  PubMed  CAS  Google Scholar 

  131. Elkeles RS, Diamond JR, Poulter C, et al. Cardiovascular outcomes in type 2 diabetes: a double-blind placebo-controlled study of bezafibrate: the St. Mary’s, Ealing, Northwick Park Diabetes Cardiovascular Disease Prevention (SENDCAP) Study. Diabetes Care 1998; 21(4): 641–8

    CAS  Google Scholar 

  132. Ruotolo G, Ericsson CG, Tettamanti C, et al. Treatment effects on serum lipoprotein lipids, apolipoproteins and low density lipoprotein particle size and relationships of lipoprotein variables to progression of coronary artery disease in the Bezafibrate Coronary Atherosclerosis Intervention Trial (BE-CAIT). J Am Coll Cardiol 1998; 32(6): 1648–56

    Article  PubMed  CAS  Google Scholar 

  133. Vakkilainen J, Steiner G, Ansquer JC, et al. Relationships between low-density lipoprotein particle size, plasma lipoproteins, and progression of coronary artery disease: the Diabetes Atherosclerosis Intervention Study (DAIS). Circulation 2003; 107(13): 1733–7

    Article  PubMed  Google Scholar 

  134. Collins R, Armitage J, Parish S, et al. MRC/BHF Heart Protection Study of cholesterol-lowering with simvastatin in 5963 people with diabetes: a randomized placebo-controlled trial. Lancet 2003; 361: 2005–16

    Article  PubMed  Google Scholar 

  135. Thompson PD, Clarkson P, Karas RH. Statin-associated myopathy. JAMA 2003; 289(13): 1681–90

    Article  PubMed  CAS  Google Scholar 

  136. Prueksaritanont T, Zhao JJ, Ma B, et al. Mechanistic studies on metabolic interactions between gemfibrozil and statins. J Pharmacol Exp Ther 2002; 301(3): 1042–51

    Article  PubMed  CAS  Google Scholar 

  137. Spencer GA, Wirebaugh S, Whitney EJ. Effect of a combination of gemfibrozil and niacin on lipid levels. J Clin Pharmacol 1996; 36(8): 696–700

    PubMed  CAS  Google Scholar 

  138. Garg A, Grundy SM. Nicotinic acid as therapy for dyslipidemia in non-insulin-dependent diabetes mellitus. JAMA 1990; 264(6): 723–6

    Article  PubMed  CAS  Google Scholar 

  139. Kahn SE, Beard JC, Schwartz MW, et al. Increased beta-cell secretory capacity as mechanism for islet adaptation to nicotinic acid-induced insulin resistance. Diabetes 1989; 38(5): 562–8

    Article  PubMed  CAS  Google Scholar 

  140. East C, Bilheimer DW, Grundy SM. Combination drug therapy for familial combined hyperlipidemia. Ann Intern Med 1988; 109(1): 25–32

    PubMed  CAS  Google Scholar 

  141. Kosoglou T, Guillaume M, Sun S, et al. Pharmacodynamic interaction between fenofibrate and the cholesterol absorption inhibitor ezetimibe [abstract]. Atherosclerosis 2001; 2 Suppl. 2: 38

    Google Scholar 

Download references

Acknowledgements

Jean-Pierre Després is Chair Professor of Human Nutrition, Lipidology and Prevention of Cardiovascular Diseases, which is supported by Pfizer, Provigo and the Foundation of the Québec Heart Institute. Dr Després has received honoraria from the following pharmaceutical companies as a consultant or a lecturer: Abbott Laboratories, Merck, Fournier Pharma Inc., GlaxoSmithKline, Pfizer Canada Inc., Pharmacia Corporation, Roche Pharma and Sanofi Synthelabo. Furthermore, Dr Després’ laboratory has received research grants from some of the above companies. Dr Robins has received honoraria as a consultant or lecturer from Fournier, Abbott, Hoffman-LaRoche, Bayer, Pfizer and Merck.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Després.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Després, JP., Lemieux, I. & Robins, S.J. Role of Fibric Acid Derivatives in the Management of Risk Factors for Coronary Heart Disease. Drugs 64, 2177–2198 (2004). https://doi.org/10.2165/00003495-200464190-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200464190-00003

Keywords

Navigation