Skip to main content
Log in

Antifungals in Systemic Neonatal Candidiasis

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Fungal infections are common in the newborn period, especially among premature neonates, and are responsible for considerable morbidity and mortality. Currently, three classes of antifungals are commonly used in the treatment of systemic fungal infections in neonates: the polyene macrolides (e.g. amphotericin B [deoxycholate and lipid preparations]); the azoles (e.g. fluconazole); and the fluorinated pyrimidines (e.g. flucytosine). The echinocandins (e.g. caspofungin and micafungin) are a newer class of antifungals which shows promise in this population.

The available kinetic data on amphotericin B deoxycholate in neonates are derived from very small studies and exhibit considerable variability. There are no kinetic data available for the use of lipid preparations in this population and, again, much has been inferred from adult studies. The information available for flucytosine is also limited but appears similar to what is observed in adults. Fluconazole has the most neonatal pharmacokinetic data, which show slightly less variability than the other antifungals. Genomic factors which affect the metabolism of amphotericin B and fluconazole may explain some of the observed variability.

Most of the data for the efficacy of antifungal drugs in neonates are derived from retrospective studies and case reports. The data for amphotericin B deoxycholate and flucytosine are limited. There are more data for the liposomal and lipid complex preparations of amphotericin B and for fluconazole in this population. These support the use of these drugs in neonates, but because of their largely noncomparative nature they can not define the optimal dosage or duration of therapy.

Amphotericin B deoxycholate is primarily nephrotoxic. It also induces electrolyte abnormalities and is to a lesser degree cardiotoxic. This toxicity in neonates appears similar to published data in older children and adults. While the lipid preparations of amphotericin B owe their existence to a presumed decrease in toxicity, the observed toxicity in neonates appears to be equal to that seen with the deoxycholate, although it should be noted that the lipid preparations are usually given at much higher dosages. Fluconazole toxicity appears to be milder and less frequent in this population than is seen with amphotericin B.

In the final analysis, we do not have sufficient data to define the pharmacokinetic profiles, optimal dose or duration of therapy, or toxicity for any of these compounds in neonates. Further studies are necessary if the optimisation of antifungal therapy in this population is to continue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Table III
Table IV
Table V
Table VI
Table VII
Table VIII
Table IX
Table X
Table XI
Table XII
Table XIII
Table XIV
Table XV

Similar content being viewed by others

References

  1. Baley JE, Kliegman RM, Fanaroff AA. Disseminated fungal infections in very low-birth-weight infants: clinical manifestations and epidemiology. Pediatrics 1984; 73: 144–52

    PubMed  CAS  Google Scholar 

  2. Baley JE, Silverman A. Systemic candidiasis: cutaneous manifestations in low birth-weight infants. Pediatrics 1988; 82: 211–5

    PubMed  CAS  Google Scholar 

  3. Faix RG, Kovarik SM, Shaw TR, et al. Mucocutaneous and invasive candidiasis among very low birth weight (less than 1500 grams) infants in intensive care nurseries: a prospective study. Pediatrics 1989; 83(1): 101–7

    PubMed  CAS  Google Scholar 

  4. Johnson DE, Thompson TR, Green TP, et al. Systemic candidiasis in very low-birth-weight infants (less than 1500 grams). Pediatrics 1984 Feb; 73(2): 138–43

    PubMed  CAS  Google Scholar 

  5. Weitkamp JH, Poets CF, Sievers R, et al. Candida infection in very low birth-weight infants: outcome and nephrotoxicity of treatment with liposomal amphotericin B (AmBisome®). Infection 1998; 26: 11–5

    Article  PubMed  CAS  Google Scholar 

  6. Edwards MS. Fungal and protozoal infections. In: Fanaroff AA, Martin RJ, editors. Neonatal-perinatal medicine: diseases of the fetus and Infant. St Louis (MO): Mosby-Year Book Inc., 2002: 745–51

    Google Scholar 

  7. Weese-Mayer DE, Fondriest DW, Brouillette RT, et al. Risk factors associated with candidemia in the neonatal intensive care unit: a case-control study. Pediatr Infect Dis J 1987; 6: 190–6

    Article  PubMed  CAS  Google Scholar 

  8. Rowen JL, Tate JM. Management of neonatal candidiasis: Neonatal Candidiasis Study Group. Pediatr Infect Dis J 1998; 17(11): 1007–11

    Article  PubMed  CAS  Google Scholar 

  9. Stoll BJ, Gordon T, Korones SB, et al. Early-onset sepsis in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network. J Pediatr 1996 Jul; 129(1): 72–80

    Article  PubMed  CAS  Google Scholar 

  10. Leibovitz E. Neonatal candidosis: clinical picture, management controversies and consensus, and new therapeutic options. J Antimicrob Chemother 2002; 49 Suppl. 1: 69–73

    Article  Google Scholar 

  11. Saiman L, Ludington E, Dawson JD, et al. The National Epidemiology of Mycoses Study Group. Risk factors for Candida species colonization of neonatal intensive care unit patients. Pediatr Infect Dis J 2001; 20(12): 1119–24

    CAS  Google Scholar 

  12. Saiman L, Ludington E, Pfaller M, et al. Risk factors for candidemia in neonatal intensive care unit patients: the National Epidemiology of Mycosis Survey Study Group. Pediatr Infect Dis J 2000; 19(4): 319–24

    Article  PubMed  CAS  Google Scholar 

  13. Ng PC. Systemic fungal infections in neonates. Arch Dis Child 1994; 71: F130–5

    PubMed  CAS  Google Scholar 

  14. Evdoridou J, Roilides E, Bibashi E, et al. Multifocal osteoarthritis due to Candida albicans in a neonate: serum level monitoring of liposomal amphotericin B and literature review. Infection 1997; 25(2): 112–6

    Article  PubMed  CAS  Google Scholar 

  15. Anderson DC, Pickering LK, Feigin RD. Leukocyte function in normal and infected neonates. J Pediatr 1974; 85(3): 420–5

    Article  PubMed  CAS  Google Scholar 

  16. Shigeoka AO, Charette RP, Wyman ML, et al. Defective oxidative metabolic responses of neutrophils from stressed neonates. J Pediatr 1981; 98(3): 392–8

    Article  PubMed  CAS  Google Scholar 

  17. Cairo MS. Neonatal neutrophil host defense: prospects for immunologic enhancement during neonatal sepsis. Am J Dis Child 1989; 143(1): 40–6

    PubMed  CAS  Google Scholar 

  18. Baley JE, Kliegman RM, Boxerbaum B, et al. Fungal colonization in the very low birth weight infant. Pediatrics 1986; 78: 225–32

    PubMed  CAS  Google Scholar 

  19. Welbel SF, McNeil MM, Kuykendall RJ, et al. Candida parapsilosis bloodstream infections in neonatal intensive care unit patients: epidemiologic and laboratory confirmation of a common source outbreak. Pediatr Infect Dis J 1996; 15(11): 998–1002

    Article  PubMed  CAS  Google Scholar 

  20. Donovick R, Gold W, Pagano JF, et al. Amphotericins A and B, antifungal antibiotics produced by a streptomycete. I: in vitro studies. Antibiotic Annu 1955–1956; 3: 579–86

  21. Bennett JE. Antifungal agents. In: Hardman GE, Limbird LE, editors. Goodman and Gilman’s the pharmacological basis of therapeutics. 10th ed. New York: McGraw-Hill, 2001: 1295–312

    Google Scholar 

  22. Raasch RH, Hopfer RL. Antifungal agents. In: Munson PL, editor. Principles of pharmacology: basic concepts and clinical applications, revised reprint. New York: Chapman and Hall, 1996: 1401–11

    Google Scholar 

  23. Collette N, van der Auwera P, Pascual Lopez A, et al. Tissue concentrations and bioactivity of amphotericin B in cancer patients treated with amphotericin B deoxycholate. Antimicrob Agents Chemother 1989; 33(3): 362–8

    Article  PubMed  CAS  Google Scholar 

  24. Atkinson AJ, Bennett JE. Amphotericin B pharmacokinetics in humans. Antimicrob Agents Chemother 1978; 13: 271–6

    Article  PubMed  Google Scholar 

  25. Starke JR, Mason Jr EO, Kramer WG, et al. Pharmacokinetics of amphotericin B in infants and children. J Infect Dis 1987; 155(4): 766–74

    Article  PubMed  CAS  Google Scholar 

  26. Baley JE, Meyers C, Kliegman RM, et al. Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates. J Pediatr 1990; 116(5): 791–7

    Article  PubMed  CAS  Google Scholar 

  27. Inselmann G, Volkmann A, Heidemann HT. Comparison of the effects of liposomal amphotericin B and conventional amphotericin B on propafenone metabolism and hepatic cytochrome P-450 in rats. Antimicrob Agents Chemother 2000; 44(1): 131–3

    Article  PubMed  CAS  Google Scholar 

  28. Botsch S, Gautier JC, Beaune P, et al. Identification and characterization of the cytochrome P450 enzymes involved in N-dealkylation of propafenone: molecular base for interaction potential and variable disposition of active metabolites. Mol Pharmacol 1993; 43(1): 120–6

    PubMed  CAS  Google Scholar 

  29. AmBisome. In: Physician’s desk reference. 54th ed. Montvale (NJ): Medical Economics Co. Inc., 2000: 1090–2

    Google Scholar 

  30. Adler-Moore J, Proffitt RJ. Development, characterization, efficacy, and mode of action of AmBisome, a unilamellar liposomal preparation of amphotericin B. J Liposome Res 1993; 3: 429–50

    Article  CAS  Google Scholar 

  31. Abelcet. In: Physician’s desk reference. 54th ed. Montvale (NJ): Medical Economics Co. Inc., 2000: 1653–5

    Google Scholar 

  32. Dodds ES, Drew RH, Perfect JR. Antifungal pharmacodynamics: review of the literature and clinical applications. Pharmacotherapy 2000; 20(11): 1335–55

    Article  PubMed  CAS  Google Scholar 

  33. Boswell GW, Buell D, Bekersky I. AmBisome (liposomal amphotericin B): a comparative review. J Clin Pharmacol 1998; 38(7): 583–92

    PubMed  CAS  Google Scholar 

  34. Wong-Beringer A, Jacobs RA, Guglielmo BJ. Lipid formulations of amphotericin B: clinical efficacy and toxicities. Clin Infect Dis 1998; 27(3): 603–18

    Article  PubMed  CAS  Google Scholar 

  35. Juliano RL, Grant CW, Barber KR, et al. Mechanism of the selective toxicity of amphotericin B incorporated into liposomes. Mol Pharmacol 1987; 31(1): 1–11

    PubMed  CAS  Google Scholar 

  36. Swenson CE, Perkins WR, Roberts P, et al. In vitro and in vivo antifungal activity of amphotericin B lipid complex: are phospholipases important? Antimicrob Agents Chemother 1998; 42(4): 767–71

    PubMed  CAS  Google Scholar 

  37. Hann IM, Prentice HG. Lipid-based amphotericin B: a review of the last 10 years of use. Int J Antimicrob Agents 2001; 17(3): 161–9

    Article  PubMed  CAS  Google Scholar 

  38. Ghannoum MA, Rice LB. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin Microbiol Rev 1999; 12(4): 501–17

    PubMed  CAS  Google Scholar 

  39. Vandevelde AG, Mauceri AA, Johnson III JE. 5-Fluorocytosine in the treatment of mycotic infections. Ann Intern Med 1972; 77(1): 43–51

    PubMed  CAS  Google Scholar 

  40. Hill HR, Mitchell TG, Matsen JM, et al. Recovery from disseminated candidiasis in a premature neonate. Pediatrics 1974; 53(5): 748–52

    PubMed  CAS  Google Scholar 

  41. Marichal P, Koymans L, Willemsens S, et al. Contribution of mutations in the cytochrome P450 14alpha-demethylase (Erg11p, Cyp51p) to azole resistance in Candida albicans. Microbiology 1999; 145 (Pt 10): 2701–13

    PubMed  CAS  Google Scholar 

  42. Sanglard D. Clinical relevance of mechanisms of antifungal drug resistance in yeasts. Enferm Infecc Microbiol Clin 2002; 20(9): 462–9

    PubMed  Google Scholar 

  43. Samaranayake YH, Samaranayake LP. Candida krusei: biology, epidemiology, pathogenicity and clinical manifestations of an emerging pathogen. J Med Microbiol 1994; 41(5): 295–310

    Article  PubMed  CAS  Google Scholar 

  44. Pelletier R, Loranger L, Marcotte H, et al. Voriconazole and fluconazole susceptibility of Candida isolates. J Med Microbiol 2002; 51(6): 479–83

    PubMed  CAS  Google Scholar 

  45. Rex JH, Pfaller MA, Barry AL, et al. Antifungal susceptibility testing of isolates from a randomized, multicenter trial of fluconazole versus amphotericin B as treatment of nonneutropenic patients with candidemia: NIAID Mycoses Study Group and the Candidemia Study Group. Antimicrob Agents Chemother 1995; 39(1): 40–4

    Article  PubMed  CAS  Google Scholar 

  46. Klepser ME, Wolfe EJ, Jones RN, et al. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob Agents Chemother 1997; 41(6): 1392–5

    PubMed  CAS  Google Scholar 

  47. Marr B, Gross S, Cunningham C, et al. Candidal sepsis and meningitis in a very-low-birth-weight infant successfully treated with fluconazole and flucytosine. Clin Infect Dis 1994; 19(4): 795–6

    Article  PubMed  CAS  Google Scholar 

  48. Wyble LE, Gal P, Ransom JL, et al. Fluconazole use and pharmacokinetics in three premature neonates. Pharmacotherapy 1991; 11: 269–70

    Google Scholar 

  49. Wong SF, Leung MP, Chan MY. Pharmacokinetics of fluconazole in children requiring peritoneal dialysis. Clin Ther 1997; 19(5): 1039–47

    Article  PubMed  CAS  Google Scholar 

  50. Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996; 82(3): 511–6

    PubMed  CAS  Google Scholar 

  51. Varhe A, Olkkola KT, Neuvonen PJ. Effect of fluconazole dose on the extent of fluconazole-triazolam interaction. Br J Clin Pharmacol 1996; 42(4): 465–70

    Article  PubMed  CAS  Google Scholar 

  52. Blum RA, Wilton JH, Hilligoss DM, et al. Effect of fluconazole on the disposition of phenytoin. Clin Pharmacol Ther 1991; 49(4): 420–5

    Article  PubMed  CAS  Google Scholar 

  53. Wiest DB, Fowler SL, Garner SS, et al. Fluconazole in neonatal disseminated candidiasis [letter]. Arch Dis Child 1991; 66(8): 1002

    Article  PubMed  CAS  Google Scholar 

  54. Krzeska I, Yeats RA, Pfaff G. Single dose intravenous pharmacokinetics of fluconazole in infants. Drugs Exp Clin Res 1993; 19(6): 267–71

    PubMed  CAS  Google Scholar 

  55. Saxén H, Hoppu K, Pohjavuori M. Pharmacokinetics of fluconazole in very low birth weight infants during the first two weeks of life. Clin Pharmacol Ther 1993; 54(3): 269–77

    Article  PubMed  Google Scholar 

  56. Wenzl TG, Schefels J, Hornchen H, et al. Pharmacokinetics of oral fluconazole in premature infants. Eur J Pediatr 1998; 157(8): 661–2

    Article  PubMed  CAS  Google Scholar 

  57. Graybill JR. The echinocandins, first novel class of antifungals in two decades: will they live up to their promise? Int J Clin Pract 2001; 55: 633–8

    PubMed  CAS  Google Scholar 

  58. Groll AH, Piscitelli SC, Walsh TJ. Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol 1998; 44: 343–500

    Article  PubMed  CAS  Google Scholar 

  59. Neely MN, Ghannoum MA. The exciting future of antifungal therapy. Eur J Clin Microbiol Infect Dis 2000; 19: 897–914

    Article  PubMed  CAS  Google Scholar 

  60. Petraitis V, Petraitiene R, Groll AH, et al. Antifungal efficacy, safety, and single-dose phamacokinetics of LY 30336, a novel echinocandin B, in experimental pulmonary aspergillosis in persistently neutropenic rabbits. Antimicrob Agents Chemother 1998; 42: 2898–905

    PubMed  CAS  Google Scholar 

  61. Stone J, Holland S, Li S, et al. Effect of hepatic insufficiency on the pharmacokinetics of caspofungin [abstract no. A-14]. 41st Interscience Conference on Antimicrobial Agents and Chemotherapy; 2001 Dec 16–19; Chicago

  62. Nelly M, Blumer J. Caspofungin pharmacokinetics in two pediatric liver transplant patients. Clin Ther Res 2003; 64: 127–36

    Article  Google Scholar 

  63. Mukai T, Ohkuma T, Nakahara K, et al. Pharmacokinetics of FK463, a novel echinocandin analogue, in elderly and non-elderly subjects [abstract no. A-30]. 41st Interscience Conference on Antimicrobial Agents and Chemotherapy; 2001 Dec 16–19; Chicago

  64. Driessen M, Ellis J, Cooper P, et al. Fluconazole vs amphotericin B for the treatment of neonatal fungal septicemia: a prospective randomized trial. Pediatr Infect Dis J 1996; 15: 1107–12

    Article  PubMed  CAS  Google Scholar 

  65. Faix RG. Systemic Candida infections in infants in intensive care nurseries: high incidence of central nervous system involvement. J Pediatr 1984; 105: 616–22

    Article  PubMed  CAS  Google Scholar 

  66. Smego R, Perfect J. Combined therapy with amphotericin B and 5-fluorocytosine for Candida meningitis. Rev Infect Dis 1984; 6: 791–801

    Article  PubMed  Google Scholar 

  67. Hall JE, Cox F, Karlson K, et al. Amphotericin B dosage for disseminated candidiasis in premature infants. J Perinatol 1987; 7(3): 194–8

    PubMed  CAS  Google Scholar 

  68. Loke HL, Verber I, Szymonowicz W, et al. Systemic candidiasis and pneumonia in preterm infants. Aust Paediatr J 1988; 24(2): 138–42

    PubMed  CAS  Google Scholar 

  69. Butler K, Rench M, Baker C. Amphotericin B as a single agent in the treatment of systemic candidiasis in neonates. Pediatr Infect Dis J 1990; 9: 51–6

    Article  PubMed  CAS  Google Scholar 

  70. Leibovitz E, Iuster-Reicher A, Amitai M, et al. Systemic candidal infections associated with use of peripheral venous catheters in neonates: a 9-year experience. Clin Infect Dis 1992; 14: 485–91

    Article  PubMed  CAS  Google Scholar 

  71. Glick C, Graves G, Feldman S. Neonatal fungemia and amphotericin B. South Med J 1993; 86: 1368–71

    Article  PubMed  CAS  Google Scholar 

  72. Donowitz L, Hendley J. Short-course amphotericin B therapy for candidemia in pediatric patients. Pediatrics 1995; 95: 888–91

    PubMed  CAS  Google Scholar 

  73. Fernandez M, Moylett EH, Noyola DE, et al. Candidal meningitis in neonates: a 10-year review. Clin Infect Dis 2000; 31: 458–63

    Article  PubMed  CAS  Google Scholar 

  74. Zenker PN, Rosenberg EM, Van Dyke RB, et al. Successful medical treatment of presumed Candida endocarditis in critically ill infants. J Pediatr 1991; 119(3): 472–7

    Article  PubMed  CAS  Google Scholar 

  75. Sanchez PJ, Siegel JD, Fishbein J. Candida endocarditis: successful medical management in three preterm infants and review of the literature. Pediatr Infect Dis J 1991 Mar; 10(3): 239–43

    Article  PubMed  CAS  Google Scholar 

  76. Chesney PJ, Justman RA, Bogdanowicz WM, et al. Candida meningitis in newborn infants: a review and report of combined amphotericin b-flucytosine therapy. Johns Hopkins Med J 1978; 142(5): 155–60

    PubMed  CAS  Google Scholar 

  77. Lilien LD, Ramamurthy RS, Pildes RS. Candida albicans meningitis in a premature neonate successfully treated with 5-fluorocytosine and amphotericin B: a case report and review of the literature. Pediatrics 1978; 61(1): 57–61

    PubMed  CAS  Google Scholar 

  78. Dennis D, Miller MJ, Peterson CG. Candida septicemia. Surg Gynecol Obstet 1969; 119: 520–30

    Google Scholar 

  79. Kozinn PJ. Candida meningitis successfully treated with amphotericin B. N Engl J Med 1963; 268: 881–4

    Article  PubMed  CAS  Google Scholar 

  80. Klein JD, Yamachi T, Horlick SP. Neonatal candidiasis, meningitis, and arthritis: observations and a review of the literature. J Pediatr 1972; 81(1): 31–4

    Article  PubMed  CAS  Google Scholar 

  81. Adler S, Randall J, Plotkin SA. Candidal osteomyelitis and arthritis in a neonate. Am J Dis Child 1972; 123(6): 595–6

    PubMed  CAS  Google Scholar 

  82. Mahboubi S, Kaufmann HJ, Schut L. Two instances of inflammatory aqueductal occlusion in prematures after neonatal candidal septicemia. Clin Pediatr (Phila) 1976; 15(7): 651–3

    Article  CAS  Google Scholar 

  83. Ingomar CJ, Terslev E. Candida albicans meningitis hos en nyft: tilfaelde kompliceret med hydrocephalus. Ugeskr Laeger 1964; 126: 1110–2

    PubMed  CAS  Google Scholar 

  84. Nezelof C, Sarrut S. Infections mortelles à Candida chez le nouveau-né et le nourisson: six observations anatomohistologiques. Ann Pediatr 1957; 33: 2949–58

    Google Scholar 

  85. Bayer AS, Edwards Jr JE, Seidel JS, et al. Candida meningitis: report of seven cases and review of the English literature. Medicine (Baltimore) 1976; 55(6): 477–86

    Article  CAS  Google Scholar 

  86. Michelson PE, Rupp R, Efthimiadis B. Endogenous Candida endophthalmitis leading to bilateral corneal perforation. Am J Ophthalmol 1975; 80(5): 800–3

    PubMed  CAS  Google Scholar 

  87. Pittard III WB, Thullen JD, Fanaroff AA. Neonatal septic arthritis. J Pediatr 1976; 88 (4 Pt 1): 621–4

    Article  PubMed  Google Scholar 

  88. Svirsky-Fein S, Langer L, Milbauer B, et al. Neonatal osteomyelitis caused by Candida tropicalis: report of two cases and review of the literature. J Bone Joint Surg Am 1979; 61(3): 455–9

    PubMed  CAS  Google Scholar 

  89. Oleinik EM, Della-Latta P, Rinaldi MG, et al. Candida lusitaniae osteomyelitis in a premature infant. Am J Perinatol 1993; 10(4): 313–5

    Article  PubMed  CAS  Google Scholar 

  90. Ward RM, Sattler FR, Dalton Jr AS. Assessment of antifungal therapy in an 800-gram infant with candidal arthritis and osteomyelitis. Pediatrics 1983; 72(2): 234–8

    PubMed  CAS  Google Scholar 

  91. Pruitt AW, Achord JL, Fales FW, et al. Glucose-galactose malabsorption complicated by monilial arthritis. Pediatrics 1969; 43(1): 106–10

    PubMed  CAS  Google Scholar 

  92. Omene JA, Odita JC, Okolo AA. Neonatal osteomyelitis in Nigerian infants. Pediatr Radiol 1984; 14(5): 318–22

    Article  PubMed  CAS  Google Scholar 

  93. Pfaller MA, Bale M, Buschelman B, et al. Quality control guidelines for National Committee for Clinical Laboratory Standards recommended broth macrodilution testing of amphotericin B, fluconazole, and flucytosine. J Clin Microbiol 1995; 33(5): 1104–7

    PubMed  CAS  Google Scholar 

  94. Huang YC, Kao HT, Lin TY, et al. Antifungal susceptibility testing and the correlation with clinical outcome in neonatal candidemia. Am J Perinatol 2001; 18(3): 141–6

    Article  PubMed  CAS  Google Scholar 

  95. National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts: approved standard. NCCLS document M27-A. Wayne (PA): NCCLS, 1997

    Google Scholar 

  96. van den Anker JN, van Popele NM, Sauer PJ. Antifungal agents in neonatal systemic candidiasis. Antimicrob Agents Chemother 1995; 39(7): 1391–7

    Article  PubMed  Google Scholar 

  97. Rex JH, Walsh TJ, Sobel JD, et al. Practice guidelines for the treatment of candidiasis: Infectious Diseases Society of America. Clin Infect Dis 2000 Apr; 30(4): 662–78

    Article  PubMed  CAS  Google Scholar 

  98. Adler-Shohet F, Waskin H, Lieberman JM. Amphotericin B lipid complex for neonatal invasive candidiasis. Arch Dis Child Fetal Neonatal Ed 2001; 84(2): F131–3

    Article  PubMed  CAS  Google Scholar 

  99. López Sastre JB, Coto Cotallo GD, Fernández Colomer B; Grupo de Hospitales Castrillo. Neonatal invasive candidiasis: a prospective multicenter study of 118 cases. Am J Perinatol. 2003; 20(3): 153–63

    Article  PubMed  Google Scholar 

  100. da Silva LP, Amaral JM, Ferreira NC. Which is the most appropriate dosage of liposomal Amphotericin-B (AmBisome) for the treatment of fungal infections in infants of very low birth weight? Pediatrics 1993; 91(6): 1217–8

    PubMed  Google Scholar 

  101. al Arishi H, Frayha HH, Kalloghlian A, et al. Liposomal amphotericin B in neonates with invasive candidiasis. Am J Perinatol 1997; 14(9): 573–6

    Article  PubMed  CAS  Google Scholar 

  102. al Arishi H, Frayha HH, Kalloghlian A, et al. Liposomal amphotericin B in neonates with invasive candidiasis. Am J Perinatol 1998; 15(11): 643–8

    Article  PubMed  Google Scholar 

  103. Scarcella A, Pasquariello MB, Giugliano B, et al. Liposomal amphotericin B treatment for neonatal fungal infections. Pediatr Infect Dis J 1998; 17(2): 146–8

    Article  PubMed  CAS  Google Scholar 

  104. Juster-Reicher A, Leibovitz E, Linder N, et al. Liposomal amphotericin B (AmBisome) in the treatment of neonatal candidiasis in very low birth weight infants. Infection 2000; 28(4): 223–6

    Article  PubMed  CAS  Google Scholar 

  105. Bekersky I, Fielding RM, Dressler DE, et al. Plasma protein binding of amphotericin B and pharmacokinetics of bound versus unbound amphotericin B after administration of intravenous liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate. Antimicrob Agents Chemother 2002; 46(3): 834–40

    Article  PubMed  CAS  Google Scholar 

  106. Cannon JP, Garey KW, Danziger LH. A prospective and retrospective analysis of the nephrotoxicity and efficacy of lipid-based amphotericin B formulations. Pharmacotherapy 2001; 21(9): 1107–14

    Article  PubMed  CAS  Google Scholar 

  107. Rao HKM, Myers GJ. Candida meningitis in the newborn. South Med J 1979; 72(11): 1468–71

    Article  PubMed  CAS  Google Scholar 

  108. Bennett JE. Flucytosine: diagnosis and treatment, drugs five years later. Ann Intern Med 1997; 86: 319–22

    Google Scholar 

  109. Isacson M, Faber NJ, Herishano Y, et al. Use of 5-flurocytosine in systemic candidiasis in infancy. Arch Dis Child 1972; 47: 954–9

    Article  PubMed  CAS  Google Scholar 

  110. Holt RJ, Newman RL. The treatment of urinary candidiasis with the oral antifungal drugs 5-fluorocytosine and ‘clotrimazole’. Dev Med Child Neurol 1972; 14(27): 70–9

    Google Scholar 

  111. Smith H, Congdon P. Neonatal systemic candidiasis. Arch Dis Child 1985; 60: 365–9

    Article  PubMed  CAS  Google Scholar 

  112. Fasano C, O’Keeffe J, Gibbs D. Fluconazole treatment of neonates and infants with severe fungal infections not treatable with conventional agents. Eur J Clin Microbiol Infect Dis 1994; 13(4): 351–4

    Article  PubMed  CAS  Google Scholar 

  113. Bilgen H, Ozek E, Korten V, et al. Treatment of systemic neonatal candidiasis with fluconazole [letter]. Infection 1995; 23(6): 394

    Article  PubMed  CAS  Google Scholar 

  114. Narang A, Agrawal P, Chakraborti A, et al. Fluconazole in the management of neonatal systemic candidiasis. Indian Pediatr 1996; 33(10): 823–6

    PubMed  CAS  Google Scholar 

  115. Merchant RH, Sanghvi KP, Sridhar N, et al. Nursery outbreak of neonatal fungal arthritis treated with fluconazole. J Trop Pediatr 1997; 43(2): 106–8

    Article  PubMed  CAS  Google Scholar 

  116. Wainer S, Cooper PA, Gouws H, et al. Prospective study of fluconazole therapy in systemic neonatal fungal infection. Pediatr Infect Dis J 1997; 16(8): 763–7

    Article  PubMed  CAS  Google Scholar 

  117. Driessen M, Ellis JB, Muwazi F, et al. The treatment of systemic candidiasis in neonates with oral fluconazole. Ann Trop Paediatr 1997; 17(3): 263–71

    PubMed  CAS  Google Scholar 

  118. Huttova M, Hartmanova I, Kralinsky K, et al. Candida fungemia in neonates treated with fluconazole: report of forty cases, including eight with meningitis. Pediatr Infect Dis J 1998; 17(11): 1012–5

    Article  PubMed  CAS  Google Scholar 

  119. Kaufman D, Boyle R, Hazen KC, et al. Fluconazole prophylaxis against fungal colonization and infection in preterm infants. N Engl J Med 2001; 345(23): 1660–6

    Article  PubMed  CAS  Google Scholar 

  120. Tollins JP, Raij L. Adverse effects of amphotericin B administration on renal hemodynamics in the rat: neurohumoral mechanisms and influence of calcium channel blockade. J Pharmacol Exp Ther 1998; 245: 594–9

    Google Scholar 

  121. Steinmetz PR, Hustead RF. Amphotericin B toxicity of epithelial cells. In: Porter GA, editor. Nephrotoxic mechanisms of drugs and environmental toxins. New York (NY): Kluwer Academic/Plenum Publishers, 1982: 95–8

    Google Scholar 

  122. Ramos KS, Chacon E, Acosta D. Toxic responses of the heart and vascular systems. In: Klassen CD, editor. Casarett and Doul’s toxicology: the basic science of poisons. 5th ed. New York: McGraw-Hill, 1996: 498–501

    Google Scholar 

  123. Graybill JR. Is there a correlation between serum antifungal drug concentration and clinical outcome? J Infect 1994; 28 Suppl. 1: 17–24

    Article  PubMed  Google Scholar 

  124. Baley JE, Kliegman RM, Fanaroff AA. Disseminated fungal infections in very low-birth-weight infants: therapeutic toxicity. Pediatrics 1984; 73: 153–7

    PubMed  CAS  Google Scholar 

  125. Turner RB, Donowitz LG, Hendley JO. Consequences of candidemia for pediatric patients. Am J Dis Child 1985; 139: 178–80

    PubMed  CAS  Google Scholar 

  126. Kingo A, Smith J, Waisman D. Lack of evidence of amphotericin B toxicity in very low birth weight infants treated for systemic candidiasis. Pediatr Infect Dis J 1997; 16: 1002–3

    Article  PubMed  CAS  Google Scholar 

  127. Lackner H, Schwinger W, Urban C, et al. Liposomal ampho-tericin-B (AmBisome) for treatment of disseminated fungal infections in two infants of very low birth weight. Pediatrics 1992; 89 (6 Pt 2): 1259–61

    PubMed  CAS  Google Scholar 

  128. Stamm AM, Diasio RB, Dismukes WE, et al. Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med 1987; 83(2): 236–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Dr Reed receives or has received in the past grant support and honoraria for speaking from Enzon, Pfizer, Merck and Fujisawa. The authors have no conflicts of interest directly relevant to the content of this review. The opinions expressed in this article are not those of the NICHD/NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel A. C. Frattarelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frattarelli, D.A.C., Reed, M.D., Giacoia, G.P. et al. Antifungals in Systemic Neonatal Candidiasis. Drugs 64, 949–968 (2004). https://doi.org/10.2165/00003495-200464090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200464090-00003

Keywords

Navigation