Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of Antibacterials, Antifungals, and Antivirals Used Most Frequently in Neonates and Infants

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Antimicrobials and antivirals are widely used in young infants and neonates. These patients have historically been largely excluded from clinical trials and, as a consequence, the pharmacokinetics and pharmacodynamics of commonly used antibacterials, antifungals, and antivirals are incompletely understood in this population. This review summarizes the current literature specific to neonates and infants regarding pharmacokinetic parameters and changes in neonatal development that affect antimicrobial and antiviral pharmacodynamics. Specific drug classes addressed include aminoglycosides, aminopenicillins, cephalosporins, glycopeptides, azole antifungals, echinocandins, polyenes, and guanosine analogs. Within each drug class, the pharmacodynamics, pharmacokinetics, and clinical implications and future directions for prototypical agents are discussed. β-Lactam antibacterial activity is maximized when the plasma concentration exceeds the minimum inhibitory concentration for a prolonged period, suggesting that more frequent dosing may optimize β-lactam therapy. Aminoglycosides are typically administered at longer intervals with larger doses in order to maximize exposure (i.e., area under the plasma concentration–time curve) with gestational age and weight strongly influencing the pharmacokinetic profile. Nonetheless, safety concerns necessitate therapeutic drug monitoring across the entire neonatal and young infant spectrum. Vancomycin, representing the glycopeptide class of antibacterials, has a long history of clinical utility, yet there is still uncertainty about the optimal pharmacodynamic index in neonates and young infants. The high degree of pharmacokinetic variability in this population makes therapeutic drug monitoring essential to ensure adequate therapeutic exposure. Among neonates treated with the triazole agent fluconazole, it has been speculated that loading doses may improve pharmacodynamic target attainment rates. The use of voriconazole necessitates therapeutic drug monitoring and dose adjustments for patients with hepatic dysfunction. Neonates treated with lipid-based formulations of the polyene amphotericin B may be at an increased risk of death, such that alternative antifungal agents should be considered for neonates with invasive fungal infections. Alternative antifungal agents such as micafungin and caspofungin also exhibit unique pharmacokinetic considerations in this population. Neonates rapidly eliminate micafungin and require nearly three times the normal adult dose to achieve comparable levels of systemic exposure. Conversely, peak caspofungin concentrations have been reported to be similar among neonates and adults. However, both of these drugs feature favorable safety profiles. Recent studies with acyclovir have suggested that current dosing regimens may not result in therapeutic central nervous system concentrations and more frequent dosing may be required for neonates at later postmenstrual ages. Though ganciclovir and valganciclovir demonstrate excellent activity against cytomegalovirus, they are associated with significant neutropenia. In summary, many pharmacokinetic and pharmacodynamic studies have been conducted in this vulnerable population; however, there are also substantial gaps in our knowledge that require further investigation. These studies will be invaluable in determining optimal neonatal dosing regimens that have the potential to improve clinical outcomes and decrease adverse effects associated with antimicrobial and antiviral treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laughon MM, Avant D, Tripathi N, Hornik CP, Cohen-Wolkowiez M, Clark RH, et al. Drug labeling and exposure in neonates. JAMA Pediatr. 2014;168:130–6.

    PubMed  Google Scholar 

  2. Ward RM, Kern SE. Clinical trials in neonates: a therapeutic imperative. Clin Pharmacol Ther. 2009;86(6):585–7.

    CAS  PubMed  Google Scholar 

  3. Food and Drug Administration Safety and Innovation Act. Public Law No. 112–144, Session No. 112. 2012;933.

  4. Bizzarro MJ, Raskind C, Baltimore RS, Gallagher PG. Seventy-five years of neonatal sepsis at Yale: 1928–2003. Pediatrics. 2005;116(3):595–602.

    PubMed  Google Scholar 

  5. Stoll BJ, Hansen NI, Adams-Chapman I, Fanaroff AA, Hintz SR, Vohr B, et al. Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA. 2004;292(19):2357–65.

    CAS  PubMed  Google Scholar 

  6. Camacho-Gonzalez A, Spearman PW, Stoll BJ. Neonatal infectious diseases: evaluation of neonatal sepsis. Pediatr Clin North Am. 2013;60(2):367–89.

    PubMed  Google Scholar 

  7. Ward RM, Lugo RA. Drug therapy in the newborn. In: MacDonald MG, Seshia MM, Mullett MD, editors. Avery’s neonatology: pathophysiology and management of the newborn. 6th ed. Philadelphia: Lippincott Williams and Wilkins; 2005. p. 1507–56.

    Google Scholar 

  8. Gardner P. Antimicrobial drug therapy in pediatric practice. Pediatr Clin North Am. 1974;21(3):617–48.

    CAS  PubMed  Google Scholar 

  9. Patterson JE, Zervos MJ. High-level gentamicin resistance in Enterococcus: microbiology, genetic basis, and epidemiology. Rev Infect Dis. 1990;12(4):644–52.

    CAS  PubMed  Google Scholar 

  10. Aurangzeb B, Hameed A. Neonatal sepsis in hospital-born babies: bacterial isolates and antibiotic susceptibility patterns. J Coll Physicians Surg Pak. 2003;13(11):629–32.

    PubMed  Google Scholar 

  11. Bryan CS, John JF Jr, Pai MS, Austin TL. Gentamicin vs cefotaxime for therapy of neonatal sepsis. Relationship to drug resistance. Am J Dis Child. 1985;139(11):1086–9.

    CAS  PubMed  Google Scholar 

  12. Cordero L, Sananes M, Ayers LW. Bloodstream infections in a neonatal intensive-care unit: 12 years’ experience with an antibiotic control program. Infect Control Hosp Epidemiol. 1999;20(4):242–6.

    CAS  PubMed  Google Scholar 

  13. D’Angio CT, McGowan KL, Baumgart S, St Geme J, Harris MC. Surface colonization with coagulase-negative staphylococci in premature neonates. J Pediatr. 1989;114(6):1029–34.

    PubMed  Google Scholar 

  14. Friedman S, Shah V, Ohlsson A, Matlow AG. Neonatal escherichia coli infections: concerns regarding resistance to current therapy. Acta Paediatr. 2000;89(6):686–9.

    CAS  PubMed  Google Scholar 

  15. Toltzis P, Dul MJ, Hoyen C, Salvator A, Walsh M, Zetts L, et al. The effect of antibiotic rotation on colonization with antibiotic-resistant bacilli in a neonatal intensive care unit. Pediatrics. 2002;110(4):707–11.

    PubMed  Google Scholar 

  16. Singh N, Patel KM, Leger MM, Short B, Sprague BM, Kalu N, et al. Risk of resistant infections with Enterobacteriaceae in hospitalized neonates. Pediatr Infect Dis J. 2002;21(11):1029–33.

    PubMed  Google Scholar 

  17. Phillips AM, Milner RD. Tissue concentrations of netilmicin and gentamicin in neonates. J Infect Dis. 1984;149(3):474.

    CAS  PubMed  Google Scholar 

  18. Fisk KL. A review of gentamicin use in neonates. Neonatal Netw. 1993;12(7):19–23 (quiz 4-8).

    CAS  PubMed  Google Scholar 

  19. de Cos MA, Gomez-Ullate J, Gomez F, Armijo JA. Time course of trough serum gentamicin concentrations in preterm and term neonates. Clin Pharmacokinet. 1992;23(5):391–401.

    PubMed  Google Scholar 

  20. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10 quiz 1-2.

    CAS  PubMed  Google Scholar 

  21. McCracken GH Jr. Clinical pharmacology of gentamicin in infants 2 to 24 months of age. Am J Dis Child. 1972;124(6):884–7.

    PubMed  Google Scholar 

  22. McCracken GH Jr, Jones LG. Gentamicin in the neonatal period. Am J Dis Child. 1970;120(6):524–33.

    CAS  PubMed  Google Scholar 

  23. McCracken GH, West NR, Horton LJ. Urinary excretion of gentamicin in the neonatal period. J Infect Dis. 1971;123(3):257–62.

    CAS  PubMed  Google Scholar 

  24. Koren G, James A, Perlman M. A simple method for the estimation of glomerular filtration rate by gentamicin pharmacokinetics during routine drug monitoring in the newborn. Clin Pharmacol Ther. 1985;38(6):680–5.

    CAS  PubMed  Google Scholar 

  25. Assael BM, Gianni V, Marini A, Peneff P, Sereni F. Gentamicin dosage in preterm and term neonates. Arch Dis Child. 1977;52(11):883–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Rameis H, Popow C, Graninger W. Gentamicin monitoring in low-birth-weight newborns. Biol Res Pregnancy Perinatol. 1983;4(3):123–6.

    CAS  PubMed  Google Scholar 

  27. Koren G, Leeder S, Harding E, Jacques D, MacLeod SM. Optimization of gentamicin therapy in very low birth weight infants. Pediatr Pharmacol (New York). 1985;5(1):79–87.

    CAS  Google Scholar 

  28. Pons G, d’Athis P, Rey E, de Lauture D, Richard MO, Badoual J, et al. Gentamicin monitoring in neonates. Ther Drug Monit. 1988;10(4):421–7.

    CAS  PubMed  Google Scholar 

  29. Nakae S, Yamada M, Ito T, Chiba Y, Sasaki E, Sakamoto M, et al. Gentamicin dosing and pharmacokinetics in low birth weight infants. Tohoku J Exp Med. 1988;155(3):213–23.

    CAS  PubMed  Google Scholar 

  30. Shahidullah M, Talukder MQ, Chowdhury AK, Ali S, Rashid A. Serum levels of gentamicin at peak and trough in neonates and infants. Indian J Pediatr. 1991;58(2):217–21.

    CAS  PubMed  Google Scholar 

  31. Faura CC, Garcia MR, Horga JF. Changes in gentamicin serum levels and pharmacokinetic parameters in the newborn in the course of treatment with aminoglycoside. Ther Drug Monit. 1991;13(3):277–80.

    CAS  PubMed  Google Scholar 

  32. Dodge WF, Jelliffe RW, Richardson CJ, McCleery RA, Hokanson JA, Snodgrass WR. Gentamicin population pharmacokinetic models for low birth weight infants using a new nonparametric method. Clin Pharmacol Ther. 1991;50(1):25–31.

    CAS  PubMed  Google Scholar 

  33. Faura CC, Feret MA, Horga JF. Monitoring serum levels of gentamicin to develop a new regimen for gentamicin dosage in newborns. Ther Drug Monit. 1991;13(3):268–76.

    CAS  PubMed  Google Scholar 

  34. Brion LP, Fleischman AR, Schwartz GJ. Gentamicin interval in newborn infants as determined by renal function and postconceptional age. Pediatr Nephrol. 1991;5(6):675–9.

    CAS  PubMed  Google Scholar 

  35. Skopnik H, Wallraf R, Nies B, Troster K, Heimann G. Pharmacokinetics and antibacterial activity of daily gentamicin. Arch Dis Child. 1992;67(1 Spec No):57–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  36. Sirinavin S, McCracken GH Jr, Nelson JD. Determining gentamicin dosage in infants and children with renal failure. J Pediatr. 1980;96(2):331–4.

    CAS  PubMed  Google Scholar 

  37. Reimche LD, Rooney ME, Hindmarsh KW, Gorecki DK, Remillard AJ, Sankaran K. An evaluation of gentamicin dosing according to renal function in neonates with suspected sepsis. Am J Perinatol. 1987;4(3):262–5.

    CAS  PubMed  Google Scholar 

  38. Kanthawatana S, Uruwannakul K, Chotinarumon S. Gentamicin pharmacokinetics in Thai neonates: recommendation for a dosing guideline. J Med Assoc Thai. 1998;81(2):136–40.

    CAS  PubMed  Google Scholar 

  39. Rocha MJ, Almeida AM, Afonso E, Martins V, Santos J, Leitao F, et al. The kinetic profile of gentamicin in premature neonates. J Pharm Pharmacol. 2000;52(9):1091–7.

    CAS  PubMed  Google Scholar 

  40. Tugay S, Bircan Z, Caglayan C, Arisoy AE, Gokalp AS. Acute effects of gentamicin on glomerular and tubular functions in preterm neonates. Pediatr Nephrol. 2006;21(10):1389–92.

    PubMed  Google Scholar 

  41. Edgren B, Karna P, Sciamanna D, Dolanski E. Gentamicin dosing in the newborn. Use of a one-compartment open pharmacokinetic model to individualize dosing. Dev Pharmacol Ther. 1984;7(4):263–72.

    CAS  PubMed  Google Scholar 

  42. Jensen PD, Edgren BE, Brundage RC. Population pharmacokinetics of gentamicin in neonates using a nonlinear, mixed-effects model. Pharmacotherapy. 1992;12(3):178–82.

    CAS  PubMed  Google Scholar 

  43. Weber W, Kewitz G, Rost KL, Looby M, Nitz M, Harnisch L. Population kinetics of gentamicin in neonates. Eur J Clin Pharmacol. 1993;44(Suppl 1):S23–5.

    PubMed  Google Scholar 

  44. Garcia B, Barcia E, Perez F, Molina IT. Population pharmacokinetics of gentamicin in premature newborns. J Antimicrob Chemother. 2006;58(2):372–9.

    CAS  PubMed  Google Scholar 

  45. Stolk LM, Degraeuwe PL, Nieman FH, de Wolf MC, de Boer A. Population pharmacokinetics and relationship between demographic and clinical variables and pharmacokinetics of gentamicin in neonates. Ther Drug Monit. 2002;24(4):527–31.

    CAS  PubMed  Google Scholar 

  46. Kasik JW, Jenkins S, Leuschen MP, Nelson RM Jr. Postconceptional age and gentamicin elimination half-life. J Pediatr. 1985;106(3):502–5.

    CAS  PubMed  Google Scholar 

  47. Thomson AH, Way S, Bryson SM, McGovern EM, Kelman AW, Whiting B. Population pharmacokinetics of gentamicin in neonates. Dev Pharmacol Ther. 1988;11(3):173–9.

    CAS  PubMed  Google Scholar 

  48. Botha JH, du Preez MJ, Adhikari M. Population pharmacokinetics of gentamicin in South African newborns. Eur J Clin Pharmacol. 2003;59(10):755–9.

    CAS  PubMed  Google Scholar 

  49. Szefler SJ, Wynn RJ, Clarke DF, Buckwald S, Shen D, Schentag JJ. Relationship of gentamicin serum concentrations to gestational age in preterm and term neonates. J Pediatr. 1980;97(2):312–5.

    CAS  PubMed  Google Scholar 

  50. Hindmarsh KW, Nation RL, Williams GL, John E, French JN. Pharmacokinetics of gentamicin in very low birth weight preterm infants. Eur J Clin Pharmacol. 1983;24(5):649–53.

    CAS  PubMed  Google Scholar 

  51. Kildoo C, Modanlou HD, Komatsu G, Harralson A, Hodding J. Developmental pattern of gentamicin kinetics in very low birth weight (VLBW) sick infants. Dev Pharmacol Ther. 1984;7(6):345–56.

    CAS  PubMed  Google Scholar 

  52. Hayani KC, Hatzopoulos FK, Frank AL, Thummala MR, Hantsch MJ, Schatz BM, et al. Pharmacokinetics of once-daily dosing of gentamicin in neonates. J Pediatr. 1997;131(1 Pt 1):76–80.

    CAS  PubMed  Google Scholar 

  53. Krishnan L, George SA. Gentamicin therapy in preterms: a comparison of two dosage regimens. Indian Pediatr. 1997;34(12):1075–80.

    CAS  PubMed  Google Scholar 

  54. Davies MW, Cartwright DW. Gentamicin dosage intervals in neonates: longer dosage interval–less toxicity. J Paediatr Child Health. 1998;34(6):577–80.

    CAS  PubMed  Google Scholar 

  55. Stickland MD, Kirkpatrick CM, Begg EJ, Duffull SB, Oddie SJ, Darlow BA. An extended interval dosing method for gentamicin in neonates. J Antimicrob Chemother. 2001;48(6):887–93.

    CAS  PubMed  Google Scholar 

  56. Chotigeat U, Narongsanti A, Ayudhya DP. Gentamicin in neonatal infection: once versus twice daily dosage. J Med Assoc Thai. 2001;84(8):1109–15.

    CAS  PubMed  Google Scholar 

  57. Rastogi A, Agarwal G, Pyati S, Pildes RS. Comparison of two gentamicin dosing schedules in very low birth weight infants. Pediatr Infect Dis J. 2002;21(3):234–40.

    PubMed  Google Scholar 

  58. Agarwal G, Rastogi A, Pyati S, Wilks A, Pildes RS. Comparison of once-daily versus twice-daily gentamicin dosing regimens in infants > or = 2500 g. J Perinatol. 2002;22(4):268–74.

    PubMed  Google Scholar 

  59. Alsaedi SA. Once daily gentamicin dosing in full term neonates. Saudi Med J. 2003;24(9):978–81.

    PubMed  Google Scholar 

  60. Mercado MC, Brodsky NL, McGuire MK, Hurt H. Extended interval dosing of gentamicin in preterm infants. Am J Perinatol. 2004;21(2):73–7.

    PubMed  Google Scholar 

  61. Lanao JM, Calvo MV, Mesa JA, Martin-Suarez A, Carbajosa MT, Miguelez F, et al. Pharmacokinetic basis for the use of extended interval dosage regimens of gentamicin in neonates. J Antimicrob Chemother. 2004;54(1):193–8.

    CAS  PubMed  Google Scholar 

  62. Kosalaraksa P, Janthep P, Jirapradittha J, Taksaphan S, Kiatchoosakun P. Once versus twice daily dose of gentamicin therapy in Thai neonates. J Med Assoc Thai. 2004;87(4):372–6.

    PubMed  Google Scholar 

  63. Rao SC, Ahmed M, Hagan R. One dose per day compared to multiple doses per day of gentamicin for treatment of suspected or proven sepsis in neonates. Cochrane Database Syst Rev. 2006;(1):CD005091.

  64. Darmstadt GL, Hossain MM, Jana AK, Saha SK, Choi Y, Sridhar S, et al. Determination of extended-interval gentamicin dosing for neonatal patients in developing countries. Pediatr Infect Dis J. 2007;26(6):501–7.

    PubMed  Google Scholar 

  65. Miranda JC, Schimmel MM, James LS, Spinelli W, Rosen TS. Gentamicin kinetics in the neonate. Pediatr Pharmacol (New York). 1985;5(1):57–61.

    CAS  Google Scholar 

  66. Zarowitz BJ, Wynn RJ, Buckwald S, Szefler SJ. High gentamicin trough concentrations in neonates of less than 28 weeks gestational age. Dev Pharmacol Ther. 1982;5(1–2):68–75.

    CAS  PubMed  Google Scholar 

  67. Alshaikh B, Dersch-Mills D, Taylor R, Akierman AR, Yusuf K. Extended interval dosing of gentamicin in premature neonates </= 28-week gestation. Acta Paediatr. 2012;101(11):1134–9.

    CAS  PubMed  Google Scholar 

  68. Mohamed AF, Nielsen EI, Cars O, Friberg LE. Pharmacokinetic-pharmacodynamic model for gentamicin and its adaptive resistance with predictions of dosing schedules in newborn infants. Antimicrob Agents Chemother. 2012;56(1):179–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Hossain MM, Chowdhury NA, Shirin M, Saha SK, Miller-Bell M, Edwards D, et al. Simplified dosing of gentamicin for treatment of sepsis in Bangladeshi neonates. J Health Popul Nutr. 2009;27(5):640–5.

    PubMed Central  PubMed  Google Scholar 

  70. Hoff DS, Wilcox RA, Tollefson LM, Lipnik PG, Commers AR, Liu M. Pharmacokinetic outcomes of a simplified, weight-based, extended-interval gentamicin dosing protocol in critically ill neonates. Pharmacotherapy. 2009;29(11):1297–305.

    CAS  PubMed  Google Scholar 

  71. DiCenzo R, Forrest A, Slish JC, Cole C, Guillet R. A gentamicin pharmacokinetic population model and once-daily dosing algorithm for neonates. Pharmacotherapy. 2003;23(5):585–91.

    CAS  PubMed  Google Scholar 

  72. Lopez SA, Mulla H, Durward A, Tibby SM. Extended-interval gentamicin: population pharmacokinetics in pediatric critical illness. Pediatr Crit Care Med. 2010;11(2):267–74.

    PubMed  Google Scholar 

  73. Tiwari S, Rehan HS, Chandra J, Mathur NN, Singh V. Efficacy and safety of a single daily dose of gentamicin in hospitalized Indian children: a quasi-randomized trial. J Antimicrob Chemother. 2009;64(5):1096–101.

    CAS  PubMed  Google Scholar 

  74. Thingvoll ES, Guillet R, Caserta M, Dicenzo R. Observational trial of a 48-hour gentamicin dosing regimen derived from Monte Carlo simulations in infants born at less than 28 weeks’ gestation. J Pediatr. 2008;153(4):530–4.

    CAS  PubMed  Google Scholar 

  75. Knight JA, Davis EM, Manouilov K, Hoie EB. The effect of postnatal age on gentamicin pharmacokinetics in neonates. Pharmacotherapy. 2003;23(8):992–6.

    CAS  PubMed  Google Scholar 

  76. Thomson AH, Kokwaro GO, Muchohi SN, English M, Mohammed S, Edwards G. Population pharmacokinetics of intramuscular gentamicin administered to young infants with suspected severe sepsis in Kenya. Br J Clin Pharmacol. 2003;56(1):25–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  77. Vervelde ML, Rademaker CM, Krediet TG, Fleer A, van Asten P, van Dijk A. Population pharmacokinetics of gentamicin in preterm neonates: evaluation of a once-daily dosage regimen. Ther Drug Monit. 1999;21(5):514–9.

    CAS  PubMed  Google Scholar 

  78. Izquierdo M, Lanao JM, Cervero L, Jimenez NV, Dominguez-Gil A. Population pharmacokinetics of gentamicin in premature infants. Ther Drug Monit. 1992;14(3):177–83.

    CAS  PubMed  Google Scholar 

  79. Paisley JW, Smith AL, Smith DH. Gentamicin in newborn infants. Comparison of intramuscular and intravenous administration. Am J Dis Child. 1973;126(4):473–7.

    CAS  PubMed  Google Scholar 

  80. Mulhall A. Antibiotic treatment of neonates—does route of administration matter? Dev Pharmacol Ther. 1985;8(1):1–8.

    CAS  PubMed  Google Scholar 

  81. McCracken GH Jr, Threlkeld N, Thomas ML. Intravenous administration of kanamycin and gentamicin in newborn infants. Pediatrics. 1977;60(4):463–6.

    CAS  PubMed  Google Scholar 

  82. Watterberg KL, Kelly HW, Angelus P, Backstrom C. The need for a loading dose of gentamicin in neonates. Ther Drug Monit. 1989;11(1):16–20.

    CAS  PubMed  Google Scholar 

  83. Semchuk W, Borgmann J, Bowman L. Determination of a gentamicin loading dose in neonates and infants. Ther Drug Monit. 1993;15(1):47–51.

    CAS  PubMed  Google Scholar 

  84. Gal P, Ransom JL, Weaver RL. Gentamicin in neonates: the need for loading doses. Am J Perinatol. 1990;7(3):254–7.

    CAS  PubMed  Google Scholar 

  85. Nielsen EI, Sandstrom M, Honore PH, Ewald U, Friberg LE. Developmental pharmacokinetics of gentamicin in preterm and term neonates: population modelling of a prospective study. Clin Pharmacokinet. 2009;48(4):253–63.

    CAS  PubMed  Google Scholar 

  86. Isemann BT, Kotagal UR, Mashni SM, Luckhaupt EJ, Johnson CJ. Optimal gentamicin therapy in preterm neonates includes loading doses and early monitoring. Ther Drug Monit. 1996;18(5):549–55.

    CAS  PubMed  Google Scholar 

  87. Giacoia GP, Schentag JJ. Pharmacokinetics and nephrotoxicity of continuous intravenous infusion of gentamicin in low birth weight infants. J Pediatr. 1986;109(4):715–9.

    CAS  PubMed  Google Scholar 

  88. Sherwin CM, McCaffrey F, Broadbent RS, Reith DM, Medlicott NJ. Discrepancies between predicted and observed rates of intravenous gentamicin delivery for neonates. J Pharm Pharmacol. 2009;61(4):465–71.

    CAS  PubMed  Google Scholar 

  89. Haughey DB, Hilligoss DM, Grassi A, Schentag JJ. Two-compartment gentamicin pharmacokinetics in premature neonates: a comparison to adults with decreased glomerular filtration rates. J Pediatr. 1980;96(2):325–30.

    CAS  PubMed  Google Scholar 

  90. De Cock RF, Allegaert K, Schreuder MF, Sherwin CM, de Hoog M, van den Anker JN, et al. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51(2):105–17.

    PubMed  Google Scholar 

  91. Landers S, Berry PL, Kearns GL, Kaplan SL, Rudolph AJ. Gentamicin disposition and effect on development of renal function in the very low birth weight infant. Dev Pharmacol Ther. 1984;7(5):285–302.

    CAS  PubMed  Google Scholar 

  92. Friedman CA, Parks BR, Rawson JE. Gentamicin disposition in asphyxiated newborns: relationship to mean arterial blood pressure and urine output. Pediatr Pharmacol (New York). 1982;2(3):189–97.

    CAS  Google Scholar 

  93. Bravo ME, Arancibia A, Jarpa S, Carpentier PM, Jahn AN. Pharmacokinetics of gentamicin in malnourished infants. Eur J Clin Pharmacol. 1982;21(6):499–504.

    CAS  PubMed  Google Scholar 

  94. Watterberg KL, Kelly HW, Johnson JD, Aldrich M, Angelus P. Effect of patent ductus arteriosus on gentamicin pharmacokinetics in very low birth weight (less than 1,500 g) babies. Dev Pharmacol Ther. 1987;10(2):107–17.

    CAS  PubMed  Google Scholar 

  95. Williams BS, Ransom JL, Gal P, Carlos RQ, Smith M, Schall SA. Gentamicin pharmacokinetics in neonates with patent ductus arteriosus. Crit Care Med. 1997;25(2):273–5.

    CAS  PubMed  Google Scholar 

  96. Touw DJ, Proost JH, Stevens R, Lafeber HN, van Weissenbruch MM. Gentamicin pharmacokinetics in preterm infants with a patent and a closed ductus arteriosus. Pharm World Sci. 2001;23(5):200–4.

    CAS  PubMed  Google Scholar 

  97. Southgate WM, DiPiro JT, Robertson AF. Pharmacokinetics of gentamicin in neonates on extracorporeal membrane oxygenation. Antimicrob Agents Chemother. 1989;33(6):817–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Cohen P, Collart L, Prober CG, Fischer AF, Blaschke TF. Gentamicin pharmacokinetics in neonates undergoing extracorporal membrane oxygenation. Pediatr Infect Dis J. 1990;9(8):562–6.

    CAS  PubMed  Google Scholar 

  99. Dodge WF, Jelliffe RW, Zwischenberger JB, Bellanger RA, Hokanson JA, Snodgrass WR. Population pharmacokinetic models: effect of explicit versus assumed constant serum concentration assay error patterns upon parameter values of gentamicin in infants on and off extracorporeal membrane oxygenation. Ther Drug Monit. 1994;16(6):552–9.

    CAS  PubMed  Google Scholar 

  100. Munzenberger PJ, Massoud N. Pharmacokinetics of gentamicin in neonatal patients supported with extracorporeal membrane oxygenation. ASAIO Trans. 1991;37(1):16–8.

    CAS  PubMed  Google Scholar 

  101. Bhatt-Mehta V, Johnson CE, Schumacher RE. Gentamicin pharmacokinetics in term neonates receiving extracorporeal membrane oxygenation. Pharmacotherapy. 1992;12(1):28–32.

    CAS  PubMed  Google Scholar 

  102. Lingvall M, Reith D, Broadbent R. The effect of sepsis upon gentamicin pharmacokinetics in neonates. Br J Clin Pharmacol. 2005;59(1):54–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  103. Sherwin CM, Kostan E, Broadbent RS, Medlicott NJ, Reith DM. Evaluation of the effect of intravenous volume expanders upon the volume of distribution of gentamicin in septic neonates. Biopharm Drug Dispos. 2009;30(5):276–80.

    CAS  PubMed  Google Scholar 

  104. Papadatos J, Kafetzis D, Papadatos C. Influence of phototherapy on the pharmacokinetics of gentamicin. J Infect Dis. 1982;146(4):567.

    CAS  PubMed  Google Scholar 

  105. Zenk KE, Miwa L, Cohen JL, Waffarn F, Huxtable RF. Effect of body weight on gentamicin pharmacokinetics in neonates. Clin Pharm. 1984;3(2):170–3.

    CAS  PubMed  Google Scholar 

  106. Pacifici G. Clinical pharmacokinetics of penicillins, cephalosporins, and aminoglycosides in the neonate: a review. Pharmaceuticals. 2010;3:2568–91.

    CAS  PubMed Central  Google Scholar 

  107. Skopnik H, Wallraf R, Nies B, Troster K, Heimann G. Pharmacokinetics and antibacterial activity of daily gentamicin. Arch Dis Child. 1992;67(1 Spec No):57–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Dahlgren JG, Anderson ET, Hewitt WL. Gentamicin blood levels: a guide to nephrotoxicity. Antimicrob Agents Chemother. 1975;8(1):58–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Red Book. 2012 Report of the committee on infectious diseases. Elk Grove: American Academy of Pediatrics; 2012.

    Google Scholar 

  110. Rao SC, Srinivasjois R, Hagan R, Ahmed M. One dose per day compared to multiple doses per day of gentamicin for treatment of suspected or proven sepsis in neonates. Cochrane Database Syst Rev. 2011;(11):CD005091.

  111. Mohamed AF, Nielsen EI, Cars O, Friberg LE. Pharmacokinetic-pharmacodynamic model for gentamicin and its adaptive resistance with predictions of dosing schedules in newborn infants. Antimicrob Agents Chemother. 2012;56(1):179–88.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Schauf V, Deveikis A, Riff L, Serota A. Antibiotic-killing kinetics of group B streptococci. J Pediatr. 1976;89(2):194–8.

    CAS  PubMed  Google Scholar 

  113. Danelon C, Nestorovich EM, Winterhalter M, Ceccarelli M, Bezrukov SM. Interaction of zwitterionic penicillins with the OmpF channel facilitates their translocation. Biophys J. 2006;90(5):1617–27.

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Izaki K, Matsuhashi M, Strominger JL. Glycopeptide transpeptidase and d-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Proc Natl Acad Sci U S A. 1966;55(3):656–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  115. de Hoog M, Mouton JW, van den Anker JN. New dosing strategies for antibacterial agents in the neonate. Semin Fetal Neonatal Med. 2005;10(2):185–94.

    PubMed  Google Scholar 

  116. Tessin I, Trollfors B, Thiringer K, Larsson P. Ampicillin-aminoglycoside combinations as initial treatment for neonatal septicaemia or meningitis. A retrospective evaluation of 12 years’ experience. Acta Paediatrica Scandinavica. 1991;80(10):911–6.

    CAS  PubMed  Google Scholar 

  117. Cars O. The hidden impact of antibacterial resistance in respiratory tract infection. Steering an appropriate course: principles to guide antibiotic choice. Respir Med. 2001;95(Suppl A):S20–5 discussion S6-7.

    PubMed  Google Scholar 

  118. Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F, Levin BR. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemother. 2004;48(10):3670–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Craig WA. The hidden impact of antibacterial resistance in respiratory tract infection. Re-evaluating current antibiotic therapy. Respir Med. 2001;95(Suppl A):S12–9 (discussion S26-7).

    PubMed  Google Scholar 

  120. Carder KR. Hypersensitivity reactions in neonates and infants. Dermatol Ther. 2005;18(2):160–75.

    PubMed  Google Scholar 

  121. Marshall BC, Koch WC. Antivirals for cytomegalovirus infection in neonates and infants: focus on pharmacokinetics, formulations, dosing, and adverse events. Paediatr Drugs. 2009;11(5):309–21.

    PubMed  Google Scholar 

  122. Shin HT, Chang MW. Drug eruptions in children. Curr Probl Pediatr. 2001;31(7):207–34.

    CAS  PubMed  Google Scholar 

  123. Polin RA. Management of neonates with suspected or proven early-onset bacterial sepsis. Pediatrics. 2012;129(5):1006–15.

    PubMed  Google Scholar 

  124. Boe RW, Williams CP, Bennett JV, Oliver TK Jr. Serum levels of methicillin and ampicillin in newborn and premature infants in relation to postnatal age. Pediatrics. 1967;39(2):194–201.

    CAS  PubMed  Google Scholar 

  125. Axline SG, Yaffe SJ, Simon HJ. Clinical pharmacology of antimicrobials in premature infants. II. Ampicillin, methicillin, oxacillin, neomycin, and colistin. Pediatrics. 1967;39(1):97–107.

    CAS  PubMed  Google Scholar 

  126. Silverio J, Poole JW. Serum concentrations of ampicillin in newborn infants after oral administration. Pediatrics. 1973;51(3):578–80.

    CAS  PubMed  Google Scholar 

  127. Kaplan JM, McCracken GH Jr, Horton LJ, Thomas ML, Davis N. Pharmacologic studies in neonates given large dosages of ampicillin. J Pediatr. 1974;84(4):571–7.

    CAS  PubMed  Google Scholar 

  128. Yoshioka H, Takimoto M, Riley HD Jr. Pharmacokinetics of ampicillin in the newborn infant. J Infect Dis. 1974;129(4):461–4.

    CAS  PubMed  Google Scholar 

  129. Colburn WA, Gilbaldi M, Yoshioka H, Takimoto M, Riley HD Jr. Pharmacokinetic model for serum concentrations of ampicillin in the newborn infant. J Infect Dis. 1976;134(1):67–9.

    CAS  PubMed  Google Scholar 

  130. Driessen OM, Sorgedrager N, Michel MF, Kerrebijn KF, Hermans J. Pharmacokinetic aspects of therapy with ampicillin and kanamycin in new-born infants. Eur J Clin Pharmacol. 1978;13:449–57.

    Google Scholar 

  131. McCracken GH Jr, Ginsburg CM, Clahsen JC, Thomas ML. Pharmacologic evaluation of orally administered antibiotics in infants and children: effect of feeding on bioavailability. Pediatrics. 1978;62(5):738–43.

    PubMed  Google Scholar 

  132. Ginsburg CM, McCracken GH Jr, Thomas ML, Clahsen J. Comparative pharmacokinetics of amoxicillin and ampicillin in infants and children. Pediatrics. 1979;64(5):627–31.

    CAS  PubMed  Google Scholar 

  133. Sutton AM, Turner TL, Cockburn F, McAllister TA. Pharmacokinetic study of sulbactam and ampicillin administered concomitantly by intraarterial or intravenous infusion in the newborn. Rev Infect Dis. 1986;8(Suppl 5):S518–22.

    PubMed  Google Scholar 

  134. Dahl LB, Melby K, Gutteberg TJ, Storvold G. Serum levels of ampicillin and gentamycin in neonates of varying gestational age. Eur J Pediatr. 1986;145(3):218–21.

    CAS  PubMed  Google Scholar 

  135. Koren G. Therapeutic drug monitoring principles in the neonate. National Academy of Clinical Biochemistry. Clin Chem. 1997;43(1):222–7.

    CAS  PubMed  Google Scholar 

  136. Huang NN, High RH. Comparison of serum levels following the administration of oral and parenteral preparations of penicillin to infants and children of various age groups. J Pediatr. 1953;42(6):657–8.

    CAS  PubMed  Google Scholar 

  137. Ehrnebo M, Agurell S, Jalling B, Boreus LO. Age differences in drug binding by plasma proteins: studies on human foetuses, neonates and adults. Eur J Clin Pharmacol. 1971;3(4):189–93.

    CAS  PubMed  Google Scholar 

  138. Paediatric Formulary Committee. BNF for children 2011–2012. London: BMJ Group, Pharmaceutical Press and RCPCH Publications; 2011.

    Google Scholar 

  139. Noya FJD. Antibiotic usage in neonates. Semin Pediatr Infect Dis. 1998;9(4):322–9.

    Google Scholar 

  140. Jacqz-Aigrain E, Zhao W, Sharland M, van den Anker JN. Use of antibacterial agents in the neonate: 50 years of experience with vancomycin administration. Semin Fetal Neonatal Med. 2013;18(1):28–34.

    PubMed  Google Scholar 

  141. Pawlotsky F, Thomas A, Kergueris MF, Debillon T, Roze JC. Constant rate infusion of vancomycin in premature neonates: a new dosage schedule. Br J Clin Pharmacol. 1998;46(2):163–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Camaione L, Elliott K, Mitchell-Van Steele A, Lomaestro B, Pai MP. Vancomycin dosing in children and young adults: back to the drawing board. Pharmacotherapy. 2013;33(12):1278–87.

    CAS  PubMed  Google Scholar 

  143. de Hoog M, Mouton JW, van den Anker JN. Vancomycin: pharmacokinetics and administration regimens in neonates. Clin Pharmacokinet. 2004;43(7):417–40.

    PubMed  Google Scholar 

  144. Frymoyer A, Hersh AL, Benet LZ, Guglielmo BJ. Current recommended dosing of vancomycin for children with invasive methicillin-resistant Staphylococcus aureus infections is inadequate. Pediatr Infect Dis J. 2009;28(5):398–402.

    PubMed Central  PubMed  Google Scholar 

  145. Welsh KJ, Abbott AN, Lewis EM, Gardiner JM, Kruzel MC, Lewis CT, et al. Clinical characteristics, outcomes, and microbiologic features associated with methicillin-resistant Staphylococcus aureus bacteremia in pediatric patients treated with vancomycin. J Clin Microbiol. 2010;48(3):894–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Marques-Minana MR, Saadeddin A, Peris JE. Population pharmacokinetic analysis of vancomycin in neonates. A new proposal of initial dosage guideline. Br J Clin Pharmacol. 2010;70(5):713–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  147. Gordon CL, Thompson C, Carapetis JR, Turnidge J, Kilburn C, Currie BJ. Trough concentrations of vancomycin: adult therapeutic targets are not appropriate for children. Pediatr Infect Dis J. 2012;31(12):1269–71.

    PubMed  Google Scholar 

  148. Eiland LS, English TM, Eiland EH 3rd. Assessment of vancomycin dosing and subsequent serum concentrations in pediatric patients. Ann Pharmacother. 2011;45(5):582–9.

    CAS  PubMed  Google Scholar 

  149. Frymoyer A, Guglielmo BJ, Wilson SD, Scarpace SB, Benet LZ, Hersh AL. Impact of a hospitalwide increase in empiric pediatric vancomycin dosing on initial trough concentrations. Pharmacotherapy. 2011;31(9):871–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the infectious diseases society of america for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.

    PubMed  Google Scholar 

  151. Lasky T, Greenspan J, Ernst FR, Gonzalez L. Pediatric vancomycin use in 421 hospitals in the United States, 2008. PLoS One. 2012;7(8):e43258.

    CAS  PubMed Central  PubMed  Google Scholar 

  152. Kadambari S, Heath PT, Sharland M, Lewis S, Nichols A, Turner MA. Variation in gentamicin and vancomycin dosage and monitoring in UK neonatal units. J Antimicrob Chemother. 2011;66(11):2647–50.

    CAS  PubMed  Google Scholar 

  153. Frymoyer A, Guglielmo BJ, Hersh AL. Desired vancomycin trough serum concentration for treating invasive methicillin-resistant Staphylococcal infections. Pediatr Infect Dis J. 2013;32(10):1077–9.

    PubMed  Google Scholar 

  154. Le J, Bradley JS, Murray W, Romanowski GL, Tran TT, Nguyen N, et al. Improved vancomycin dosing in children using area under the curve exposure. Pediatr Infect Dis J. 2013;32(4):e155–63.

    PubMed Central  PubMed  Google Scholar 

  155. Liu C, Bayer A, Cosgrove SE, Daum RS, Fridkin SK, Gorwitz RJ, et al. Clinical practice guidelines by the Infectious Diseases Society of America for the treatment of methicillin-resistant Staphylococcus aureus infections in adults and children. Clin Infect Dis. 2011;52(3):e18–55.

    PubMed  Google Scholar 

  156. Frymoyer A, Hersh AL, Coralic Z, Benet LZ, Joseph Guglielmo B. Prediction of vancomycin pharmacodynamics in children with invasive methicillin-resistant Staphylococcus aureus infections: a Monte Carlo simulation. Clin Ther. 2010;32(3):534–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  157. Ward RM, Allegaert K, de Groot R, van den Anker JN. Commentary: continuous infusion of vancomycin in neonates: to use or not to use remains the question. Pediatr Infect Dis J. Epub 2013 Dec 30.

  158. van den Anker JN. Getting the dose of vancomycin right in the neonate. Int J Clin Pharmacol Ther. 2011;49(4):247–9.

    PubMed  Google Scholar 

  159. Butterfield JM, Patel N, Pai MP, Rosano TG, Drusano GL, Lodise TP. Refining vancomycin protein binding estimates: identification of clinical factors that influence protein binding. Antimicrob Agents Chemother. 2011;55(9):4277–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Rodvold KA, Everett JA, Pryka RD, Kraus DM. Pharmacokinetics and administration regimens of vancomycin in neonates, infants and children. Clin Pharmacokinet. 1997;33(1):32–51.

    CAS  PubMed  Google Scholar 

  161. Stockmann C, Sherwin CM, Zobell JT, Lubsch L, Young DC, Olson J, et al. Population pharmacokinetics of intermittent vancomycin in children with cystic fibrosis. Pharmacotherapy. 2013;33(12):1288–96.

    CAS  PubMed  Google Scholar 

  162. Anderson BJ, Allegaert K, Van den Anker JN, Cossey V, Holford NH. Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br J Clin Pharmacol. 2007;63(1):75–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  163. De Cock RF, Allegaert K, Schreuder MF, Sherwin CM, de Hoog M, van den Anker JN, et al. Maturation of the glomerular filtration rate in neonates, as reflected by amikacin clearance. Clin Pharmacokinet. 2012;51(2):105–17.

    PubMed  Google Scholar 

  164. Smits A, Kulo A, de Hoon JN, Allegaert K. Pharmacokinetics of drugs in neonates: pattern recognition beyond compound specific observations. Curr Pharm Des. 2012;18(21):3119–46.

    CAS  PubMed  Google Scholar 

  165. James A, Koren G, Milliken J, Soldin S, Prober C. Vancomycin pharmacokinetics and dose recommendations for preterm infants. Antimicrob Agents Chemother. 1987;31(1):52–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  166. Marsot A, Boulamery A, Bruguerolle B, Simon N. Vancomycin: a review of population pharmacokinetic analyses. Clin Pharmacokinet. 2012;51(1):1–13.

    CAS  PubMed  Google Scholar 

  167. Oudin C, Vialet R, Boulamery A, Martin C, Simon N. Vancomycin prescription in neonates and young infants: toward a simplified dosage. Arch Dis Child Fetal Neonatal Ed. 2011;96(5):F365–70.

    CAS  PubMed  Google Scholar 

  168. de Hoog M, Schoemaker RC, Mouton JW, van den Anker JN. Vancomycin population pharmacokinetics in neonates. Clin Pharmacol Ther. 2000;67(4):360–7.

    PubMed  Google Scholar 

  169. Zhao W, Kaguelidou F, Biran V, Zhang D, Allegaert K, Capparelli EV, et al. External evaluation of population pharmacokinetic models of vancomycin in neonates: the transferability of published models to different clinical settings. Br J Clin Pharmacol. Epub 2012 Aug 1. doi:10.1111/j.1365-2125.2012.04406.x.

  170. Spears RL, Koch R. The use of vancomycin in pediatrics. Antibiot Ann. 1959;7:798–803.

    PubMed  Google Scholar 

  171. Rana D, Abughali N, Kumar D, Super DM, Jacobs MR, Kumar ML. Staphylococcus aureus, including community-acquired methicillin-resistant S. aureus, in a level III NICU: 2001 to 2008. Am J Perinatol. 2012;29(6):401–8.

    PubMed  Google Scholar 

  172. Venkatesh MP, Placencia F, Weisman LE. Coagulase-negative staphylococcal infections in the neonate and child: an update. Semin Pediatr Infect Dis. 2006;17(3):120–7.

    PubMed  Google Scholar 

  173. Broome L, So TY. An evaluation of initial vancomycin dosing in infants, children, and adolescents. Int J Pediatr. 2011;2011:470364.

    PubMed Central  PubMed  Google Scholar 

  174. Sammons HM, Starkey E. Vancomycin use in neonates and children: evidence-based practice is needed. Arch Dis Child. 2013;98(6):447–8.

    PubMed  Google Scholar 

  175. Goutelle S, Neely M, Bleyzac N. Comment: assessment of vancomycin dosing and subsequent serum concentrations in pediatric patients. Ann Pharmacother. 2011;45(9):1171–2.

    PubMed  Google Scholar 

  176. Crumby T, Rinehart E, Carby MC, Kuhl D, Talati AJ. Pharmacokinetic comparison of nomogram-based and individualized vancomycin regimens in neonates. Am J Health Syst Pharm. 2009;66(2):149–53.

    CAS  PubMed  Google Scholar 

  177. Myers AL, Gaedigk A, Dai H, James LP, Jones BL, Neville KA. Defining risk factors for red man syndrome in children and adults. Pediatr Infect Dis J. 2012;31(5):464–8.

    PubMed Central  PubMed  Google Scholar 

  178. Samiee-Zafarghandy S, van den Anker JN. Do we really need continuous vancomycin infusion in neonates? Arch Dis Child. 2013;98(12):1023–4.

    PubMed  Google Scholar 

  179. Patel AD, Anand D, Lucas C, Thomson AH. Continuous infusion of vancomycin in neonates. Arch Dis Child. 2013;98(6):478–9.

    PubMed  Google Scholar 

  180. Chamberlain J, Coombes JD, Dell D, Fromson JM, Ings RJ, Macdonald CM, et al. Metabolism of cefotaxime in animals and man. J Antimicrob Chemother. 1980;6(Suppl A):69–78.

    CAS  PubMed  Google Scholar 

  181. Ings RM, Reeves DS, White LO, Bax RP, Bywater MJ, Holt HA. The human pharmacokinetics of cefotaxime and its metabolites and the role of renal tubular secretion on their elimination. J Pharmacokinet Biopharm. 1985;13(2):121–42.

    CAS  PubMed  Google Scholar 

  182. Schrinner E, Limbert M, Penasse L, Lutz A. Antibacterial activity of cefotaxime and other newer cephalosporins (in vitro and in vivo). J Antimicrob Chemother. 1980;6(Suppl A):25–30.

    CAS  PubMed  Google Scholar 

  183. Mitsuhashi S, Inoue M, Masuyoshi S. Antibacterial activity of cefotaxime. J Antimicrob Chemother. 1980;6(Suppl A):37–46.

    CAS  PubMed  Google Scholar 

  184. Labia R, Kazmierczak A, Guionie M, Masson JM. Some bacterial proteins with affinity for cefotaxime. J Antimicrob Chemother. 1980;6(Suppl A):19–23.

    CAS  PubMed  Google Scholar 

  185. Plosker GL, Foster RH, Benfield P. Cefotaxime. A pharmacoeconomic review of its use in the treatment of infections. Pharmacoeconomics. 1998;13(1 Pt 1):91–106.

    CAS  PubMed  Google Scholar 

  186. Trang JM, Jacobs RF, Kearns GL, Brown AL, Wells TG, Underwood FL, et al. Cefotaxime and desacetylcefotaxime pharmacokinetics in infants and children with meningitis. Antimicrob Agents Chemother. 1985;28(6):791–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Bergan T. Pharmacokinetic properties of the cephalosporins. Drugs. 1987;34(Suppl 2):89–104.

    CAS  PubMed  Google Scholar 

  188. Kearns GL, Young RA. Pharmacokinetics of cefotaxime and desacetylcefotaxime in the young. Diagn Microbiol Infect Dis. 1995;22(1–2):97–104.

    CAS  PubMed  Google Scholar 

  189. Clark RH, Bloom BT, Spitzer AR, Gerstmann DR. Empiric use of ampicillin and cefotaxime, compared with ampicillin and gentamicin, for neonates at risk for sepsis is associated with an increased risk of neonatal death. Pediatrics. 2006;117(1):67–74.

    PubMed  Google Scholar 

  190. Kafetzis DA, Brater DC, Kapiki AN, Papas CV, Dellagrammaticas H, Papadatos CJ. Treatment of severe neonatal infections with cefotaxime. Efficacy and pharmacokinetics. J Pediatr. 1982;100(3):483–9.

    CAS  PubMed  Google Scholar 

  191. Schaad UB, McCracken GH Jr, Loock CA, Thomas ML. Pharmacokinetics and bacteriologic efficacy of moxalactam, cefotaxime, cefoperazone, and rocephin in experimental bacterial meningitis. J Infect Dis. 1981;143(2):156–63.

    CAS  PubMed  Google Scholar 

  192. Baird-Lambert J, Doyle PE, Thomas D, Cvejic M, Buchanan N. Pharmacokinetics of cefotaxime in neonates. J Antimicrob Chemother. 1984;13(5):471–7.

    CAS  PubMed  Google Scholar 

  193. Aujard Y, Brion F, Jacqz-Aigrain E, Kasse MC, Chretien P, Criqui C, et al. Pharmacokinetics of cefotaxime and desacetylcefotaxime in the newborn. Diagn Microbiol Infect Dis. 1989;12(1):87–91.

    CAS  PubMed  Google Scholar 

  194. de Louvois J, Mulhall A, Hurley R. The safety and pharmacokinetics of cefotaxime in the treatment of neonates. Pediatr Pharmacol (New York). 1982;2(4):275–84.

    Google Scholar 

  195. von Hattingberg HM, Marget W, Belohradsky BH, Roos R. Pharmacokinetics of cefotaxime in neonates and children: clinical aspects. J Antimicrob Chemother. 1980;6(Suppl A):113–8.

    Google Scholar 

  196. Crooks J, White LO, Burville LJ, Speidel BD, Reeves DS. Pharmacokinetics of cefotaxime and desacetyl-cefotaxime in neonates. J Antimicrob Chemother. 1984;14(Suppl B):97–101.

    PubMed  Google Scholar 

  197. Gouyon JB, Pechinot A, Safran C, Chretien P, Sandre D, Kazmierczak A. Pharmacokinetics of cefotaxime in preterm infants. Dev Pharmacol Ther. 1990;14(1):29–34.

    CAS  PubMed  Google Scholar 

  198. Kearns GL, Jacobs RF, Thomas BR, Darville TL, Trang JM. Cefotaxime and desacetylcefotaxime pharmacokinetics in very low birth weight neonates. J Pediatr. 1989;114(3):461–7.

    CAS  PubMed  Google Scholar 

  199. Kafetzis DA, Brater DC, Kanarios J, Sinaniotis CA, Papadatos CJ. Clinical pharmacology of cefotaxime in pediatric patients. Antimicrob Agents Chemother. 1981;20(4):487–90.

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Begue P, Safran C, Quiniou F, Lasfargues G, Quinet B. Comparative pharmacokinetics of four new cephalosporins: moxalactam, cefotaxime, cefoperazone and ceftazidime in neonates. Dev Pharmacol Ther. 1984;7(Suppl 1):105–8.

    PubMed  Google Scholar 

  201. Ahsman MJ, Wildschut ED, Tibboel D, Mathot RA. Pharmacokinetics of cefotaxime and desacetylcefotaxime in infants during extracorporeal membrane oxygenation. Antimicrob Agents Chemother. 2010;54(5):1734–41.

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Odio CM. Cefotaxime for treatment of neonatal sepsis and meningitis. Diagn Microbiol Infect Dis. 1995;22(1–2):111–7.

    CAS  PubMed  Google Scholar 

  203. Muller-Pebody B, Johnson AP, Heath PT, Gilbert RE, Henderson KL, Sharland M. Empirical treatment of neonatal sepsis: are the current guidelines adequate? Arch Dis Child Fetal Neonatal Ed. 2011;96(1):F4–8.

    CAS  PubMed  Google Scholar 

  204. Cotten CM, McDonald S, Stoll B, Goldberg RN, Poole K, Benjamin DK Jr. The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics. 2006;118(2):717–22.

    PubMed  Google Scholar 

  205. Stockmann C, Spigarelli MG, Campbell SC, Constance JE, Courter JD, Thorell EA, et al. Considerations in the pharmacologic treatment and prevention of neonatal sepsis. Paediatr Drugs. 2014;16(1):67–81.

    PubMed  Google Scholar 

  206. APP Pharmaceuticals Ltd. Gentamicin Injection, USP. 2008. http://www.baxter.ca/en/downloads/product_information/GENTAMICIN(E)_PM_AUG282012_EN.pdf. Accessed 1 Nov 2013.

  207. Kaplan JM, McCracken GH Jr, Horton LJ, Thomas ML, Davis N. Pharmacologic studies in neonates given large dosages of ampicillin. J Pediatr. 1974;84(4):571–7.

    CAS  PubMed  Google Scholar 

  208. Izaki K, Matsuhashi M, Strominger JL. Glycopeptide transpeptidase and d-alanine carboxypeptidase: penicillin-sensitive enzymatic reactions. Proc Natl Acad Sci USA. 1966;55(3):656–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Marques-Minana MR, Saadeddin A, Peris JE. Population pharmacokinetic analysis of vancomycin in neonates. A new proposal of initial dosage guideline. Br J Clin Pharmacol. 2010;70(5):713–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Croes S, Stolk LM. Vancomycin therapeutic guidelines: closer examination of neonatal pharmacokinetics. Clin Infect Dis. 2011;53(9):966–7.

    PubMed  Google Scholar 

  211. Boger DL. Vancomycin, teicoplanin, and ramoplanin: synthetic and mechanistic studies. Med Res Rev. 2001;21(5):356–81.

    CAS  PubMed  Google Scholar 

  212. West-Ward Pharmaceuticals. Cefotaxime for injection, USP. November 2012. http://www.west-ward.com/images/files/package/Cefotaxime%20for%20Inj.%20-%20PI%20-500mg%20-%201g%20-%202g%20-%20Approved.pdf. Accessed 11 Nov 2013

  213. Stoll BJ, Hansen N, Fanaroff AA, Wright LL, Carlo WA, Ehrenkranz RA, et al. Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics. 2002;110(2 Pt 1):285–91.

    PubMed  Google Scholar 

  214. Saiman L, Ludington E, Pfaller M, Rangel-Frausto S, Wiblin RT, Dawson J, et al. Risk factors for candidemia in Neonatal Intensive Care Unit patients. The National Epidemiology of Mycosis Survey study group. Pediatr Infect Dis J. 2000;19(4):319–24.

    CAS  PubMed  Google Scholar 

  215. Saxen H, Virtanen M, Carlson P, Hoppu K, Pohjavuori M, Vaara M, et al. Neonatal Candida parapsilosis outbreak with a high case fatality rate. Pediatr Infect Dis J. 1995;14(9):776–81.

    CAS  PubMed  Google Scholar 

  216. Rowen JL, Atkins JT, Levy ML, Baer SC, Baker CJ. Invasive fungal dermatitis in the < or = 1000-gram neonate. Pediatrics. 1995;95(5):682–7.

    CAS  PubMed  Google Scholar 

  217. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  218. Benjamin DK Jr, Stoll BJ, Fanaroff AA, McDonald SA, Oh W, Higgins RD, et al. Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics. 2006;117(1):84–92.

    PubMed  Google Scholar 

  219. Friedman S, Richardson SE, Jacobs SE, O’Brien K. Systemic Candida infection in extremely low birth weight infants: short term morbidity and long term neurodevelopmental outcome. Pediatr Infect Dis J. 2000;19(6):499–504.

    CAS  PubMed  Google Scholar 

  220. Mittal M, Dhanireddy R, Higgins RD. Candida sepsis and association with retinopathy of prematurity. Pediatrics. 1998;101(4 Pt 1):654–7.

    CAS  PubMed  Google Scholar 

  221. Kremer I, Naor N, Davidson S, Arbizo M, Nissenkorn I. Systemic candidiasis in babies with retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol. 1992;230(6):592–4.

    CAS  PubMed  Google Scholar 

  222. Rowen JL. Mucocutaneous candidiasis. Semin Perinatol. 2003;27(5):406–13.

    PubMed  Google Scholar 

  223. Coukell AJ, Brogden RN. Liposomal amphotericin B. Therapeutic use in the management of fungal infections and visceral leishmaniasis. Drugs. 1998;55(4):585–612.

    CAS  PubMed  Google Scholar 

  224. Chapman RL. Prevention and treatment of Candida infections in neonates. Semin Perinatol. 2007;31(1):39–46.

    PubMed  Google Scholar 

  225. Bliss JM, Wellington M, Gigliotti F. Antifungal pharmacotherapy for neonatal candidiasis. Semin Perinatol. 2003;27(5):365–74.

    PubMed  Google Scholar 

  226. Hamilton-Miller JM. Chemistry and biology of the polyene macrolide antibiotics. Bacteriol Rev. 1973;37(2):166–96.

    CAS  Google Scholar 

  227. Janknegt R, de Marie S, Bakker-Woudenberg IA, Crommelin DJ. Liposomal and lipid formulations of amphotericin B. Clinical pharmacokinetics. Clin Pharmacokinet. 1992;23(4):279–91.

    CAS  PubMed  Google Scholar 

  228. Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990;12(2):308–29.

    CAS  PubMed  Google Scholar 

  229. Linder N, Klinger G, Shalit I, Levy I, Ashkenazi S, Haski G, et al. Treatment of candidaemia in premature infants: comparison of three amphotericin B preparations. J Antimicrob Chemother. 2003;52(4):663–7.

    CAS  PubMed  Google Scholar 

  230. Baley JE, Meyers C, Kliegman RM, Jacobs MR, Blumer JL. Pharmacokinetics, outcome of treatment, and toxic effects of amphotericin B and 5-fluorocytosine in neonates. J Pediatr. 1990;116(5):791–7.

    CAS  PubMed  Google Scholar 

  231. Turkova A, Roilides E, Sharland M. Amphotericin B in neonates: deoxycholate or lipid formulation as first-line therapy—is there a ‘right’ choice? Curr Opin Infect Dis. 2011;24(2):163–71.

    CAS  PubMed  Google Scholar 

  232. Le J, Adler-Shohet FC, Nguyen C, Lieberman JM. Nephrotoxicity associated with amphotericin B deoxycholate in neonates. Pediatr Infect Dis J. 2009;28(12):1061–3.

    PubMed  Google Scholar 

  233. Turcu R, Patterson MJ, Omar S. Influence of sodium intake on Amphotericin B-induced nephrotoxicity among extremely premature infants. Pediatr Nephrol. 2009;24(3):497–505.

    PubMed  Google Scholar 

  234. Holler B, Omar SA, Farid MD, Patterson MJ. Effects of fluid and electrolyte management on amphotericin B-induced nephrotoxicity among extremely low birth weight infants. Pediatrics. 2004;113(6):e608–16.

    PubMed  Google Scholar 

  235. Starke JR, Mason EO Jr, Kramer WG, Kaplan SL. Pharmacokinetics of amphotericin B in infants and children. J Infect Dis. 1987;155(4):766–74.

    CAS  PubMed  Google Scholar 

  236. Hall JE, Cox F, Karlson K, Robertson A. Amphotericin B dosage for disseminated candidiasis in premature infants. J Perinatol. 1987;7(3):194–8.

    CAS  PubMed  Google Scholar 

  237. Baley JE, Kliegman RM, Fanaroff AA. Disseminated fungal infections in very low-birth-weight infants: therapeutic toxicity. Pediatrics. 1984;73(2):153–7.

    CAS  PubMed  Google Scholar 

  238. Higuchi R, Kusumoto S, Ban H, Iwahashi S, Kobayashi M, Sumiyama K, et al. Increased level/dose ratio of amphotericin-B in premature infants with renal failure. Acta Paediatr Jpn. 1993;35(3):238–42.

    CAS  PubMed  Google Scholar 

  239. Steinbach WJ, Perfect J. Antifungal agents. In: Yaffe SJ, Aranda JV, editors. Neonatal and pediatric pharmacology: therapeutic principles in practice. 3rd ed. Philadelphia: Lippincot Williams & Wilkins; 2005. p. 459–62.

    Google Scholar 

  240. Kotwani RN, Gokhale PC, Bodhe PV, Kirodian BG, Kshirsagar NA, Pandya SK. A comparative study of plasma concentrations of liposomal amphotericin B (L-AMP-LRC-1) in adults, children and neonates. Int J Pharm. 2002;238(1–2):11–5.

    CAS  PubMed  Google Scholar 

  241. Ascher SB, Smith PB, Watt K, Benjamin DK, Cohen-Wolkowiez M, Clark RH, et al. Antifungal therapy and outcomes in infants with invasive Candida infections. Pediatr Infect Dis J. 2012;31(5):439–43.

    PubMed Central  PubMed  Google Scholar 

  242. Williams KM, Kearns GL. Lipid amphotericin preparations. Pediatr Infect Dis J. 2000;19(6):567–9.

    CAS  PubMed  Google Scholar 

  243. Klepser ME, Wolfe EJ, Jones RN, Nightingale CH, Pfaller MA. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B tested against Candida albicans. Antimicrob Agents Chemother. 1997;41(6):1392–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  244. Pfaller MA, Messer SA, Hollis RJ, Jones RN, Doern GV, Brandt ME, et al. Trends in species distribution and susceptibility to fluconazole among blood stream isolates of Candida species in the United States. Diagn Microbiol Infect Dis. 1999;33(4):217–22.

    CAS  PubMed  Google Scholar 

  245. Rowen JL, Tate JM, Nordoff N, Passarell L, McGinnis MR. Candida isolates from neonates: frequency of misidentification and reduced fluconazole susceptibility. J Clin Microbiol. 1999;37(11):3735–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Mann PA, McNicholas PM, Chau AS, Patel R, Mendrick C, Ullmann AJ, et al. Impact of antifungal prophylaxis on colonization and azole susceptibility of Candida species. Antimicrob Agents Chemother. 2009;53(12):5026–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Dotis J, Prasad PA, Zaoutis T, Roilides E. Epidemiology, risk factors and outcome of Candida parapsilosis bloodstream infection in children. Pediatr Infect Dis J. 2012;31(6):557–60.

    PubMed Central  PubMed  Google Scholar 

  248. Mandras N, Tullio V, Allizond V, Scalas D, Banche G, Roana J, et al. In vitro activities of fluconazole and voriconazole against clinical isolates of Candida spp. determined by disk diffusion testing in Turin, Italy. Antimicrob Agents Chemother. 2009;53(4):1657–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  249. Pfaller MA, Messer SA, Hollis RJ, Jones RN, Diekema DJ. In vitro activities of ravuconazole and voriconazole compared with those of four approved systemic antifungal agents against 6,970 clinical isolates of Candida spp. Antimicrob Agents Chemother. 2002;46(6):1723–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  250. Diekema DJ, Messer SA, Hollis RJ, Boyken L, Tendolkar S, Kroeger J, et al. A global evaluation of voriconazole activity tested against recent clinical isolates of Candida spp. Diagn Microbiol Infect Dis. 2009;63(2):233–6.

    CAS  PubMed  Google Scholar 

  251. Kelly SL, Lamb DC, Corran AJ, Baldwin BC, Kelly DE. Mode of action and resistance to azole antifungals associated with the formation of 14 alpha-methylergosta-8,24(28)-dien-3 beta,6 alpha-diol. Biochem Biophys Res Commun. 1995;207(3):910–5.

    CAS  PubMed  Google Scholar 

  252. Tripathi N, Watt K, Benjamin DK Jr. Treatment and prophylaxis of invasive candidiasis. Semin Perinatol. 2012;36(6):416–23.

    PubMed Central  PubMed  Google Scholar 

  253. Wildfeuer A, Laufen H, Schmalreck AF, Yeates RA, Zimmermann T. Fluconazole: comparison of pharmacokinetics, therapy and in vitro susceptibility. Mycoses. 1997;40(7–8):259–65.

    CAS  PubMed  Google Scholar 

  254. Fasano C, O’Keeffe J, Gibbs D. Fluconazole treatment of neonates and infants with severe fungal infections not treatable with conventional agents. Eur J Clin Microbiol Infect Dis. 1994;13(4):351–4.

    CAS  PubMed  Google Scholar 

  255. Steinbach WJ, Benjamin DK. New antifungal agents under development in children and neonates. Curr Opin Infect Dis. 2005;18(6):484–9.

    PubMed  Google Scholar 

  256. Walsh TJ, Lutsar I, Driscoll T, Dupont B, Roden M, Ghahramani P, et al. Voriconazole in the treatment of aspergillosis, scedosporiosis and other invasive fungal infections in children. Pediatr Infect Dis J. 2002;21(3):240–8.

    PubMed  Google Scholar 

  257. Celik IH, Demirel G, Oguz SS, Uras N, Erdeve O, Dilmen U. Compassionate use of voriconazole in newborn infants diagnosed with severe invasive fungal sepsis. Eur Rev Med Pharmacol Sci. 2013;17(6):729–34.

    CAS  PubMed  Google Scholar 

  258. Saxen H, Hoppu K, Pohjavuori M. Pharmacokinetics of fluconazole in very low birth weight infants during the first two weeks of life. Clin Pharmacol Ther. 1993;54(3):269–77.

    CAS  PubMed  Google Scholar 

  259. Nahata MC, Tallian KB, Force RW. Pharmacokinetics of fluconazole in young infants. Eur J Drug Metab Pharmacokinet. 1999;24(2):155–7.

    CAS  PubMed  Google Scholar 

  260. Wenzl TG, Schefels J, Hornchen H, Skopnik H. Pharmacokinetics of oral fluconazole in premature infants. Eur J Pediatr. 1998;157(8):661–2.

    CAS  PubMed  Google Scholar 

  261. Wade KC, Wu D, Kaufman DA, Ward RM, Benjamin DK Jr, Sullivan JE, et al. Population pharmacokinetics of fluconazole in young infants. Antimicrob Agents Chemother. 2008;52(11):4043–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  262. Wade KC, Benjamin DK Jr, Kaufman DA, Ward RM, Smith PB, Jayaraman B, et al. Fluconazole dosing for the prevention or treatment of invasive candidiasis in young infants. Pediatr Infect Dis J. 2009;28(8):717–23.

    PubMed Central  PubMed  Google Scholar 

  263. Stockmann C, Constance J, Roberts JK, Olsen J, Doby EH, Ampofo K, et al. Pharmacokinetics and pharmacodynamics of antifungals in children and their clinical implications. Clin Pharmacokinet. 2014 May;53(5):429-54.

  264. Piper L, Smith PB, Hornik CP, Cheifetz IM, Barrett JS, Moorthy G, et al. Fluconazole loading dose pharmacokinetics and safety in infants. Pediatr Infect Dis J. 2011;30(5):375–8.

    PubMed Central  PubMed  Google Scholar 

  265. Spriet I, Cosaert K, Renard M, Uyttebroeck A, Meyts I, Proesmans M, et al. Voriconazole plasma levels in children are highly variable. Eur J Clin Microbiol Infect Dis. 2011;30(2):283–7.

    CAS  PubMed  Google Scholar 

  266. Almirante B, Rodriguez D. Antifungal agents in neonates: issues and recommendations. Paediatr Drugs. 2007;9(5):311–21.

    PubMed  Google Scholar 

  267. Scholz I, Oberwittler H, Riedel KD, Burhenne J, Weiss J, Haefeli WE, et al. Pharmacokinetics, metabolism and bioavailability of the triazole antifungal agent voriconazole in relation to CYP2C19 genotype. Br J Clin Pharmacol. 2009;68(6):906–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  268. Watt KM, Cohen-Wolkowiez M, Ward RM, Benjamin DK Jr. Commentary: pediatric antifungal drug development: lessons learned and recommendations for the future. Pediatr Infect Dis J. 2012;31(6):635–7.

    PubMed Central  PubMed  Google Scholar 

  269. Karlsson MO, Lutsar I, Milligan PA. Population pharmacokinetic analysis of voriconazole plasma concentration data from pediatric studies. Antimicrob Agents Chemother. 2009;53(3):935–44.

    CAS  PubMed Central  PubMed  Google Scholar 

  270. Shima H, Miharu M, Osumi T, Takahashi T, Shimada H. Differences in voriconazole trough plasma concentrations per oral dosages between children younger and older than 3 years of age. Pediatr Blood Cancer. 2010;54(7):1050–2.

    PubMed  Google Scholar 

  271. Doby EH, Benjamin DK Jr, Blaschke AJ, Ward RM, Pavia AT, Martin PL, et al. Therapeutic monitoring of voriconazole in children less than three years of age: a case report and summary of voriconazole concentrations for ten children. Pediatr Infect Dis J. 2012;31(6):632–5.

    PubMed Central  PubMed  Google Scholar 

  272. Gerin M, Mahlaoui N, Elie C, Lanternier F, Bougnoux ME, Blanche S, et al. Therapeutic drug monitoring of voriconazole after intravenous administration in infants and children with primary immunodeficiency. Ther Drug Monit. 2011;33(4):464–6.

    CAS  PubMed  Google Scholar 

  273. Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48(5):503–35.

    CAS  PubMed  Google Scholar 

  274. Driessen M, Ellis JB, Cooper PA, Wainer S, Muwazi F, Hahn D, et al. Fluconazole vs. amphotericin B for the treatment of neonatal fungal septicemia: a prospective randomized trial. Pediatr Infect Dis J. 1996;15(12):1107–12.

    CAS  PubMed  Google Scholar 

  275. Wainer S, Cooper PA, Gouws H, Akierman A. Prospective study of fluconazole therapy in systemic neonatal fungal infection. Pediatr Infect Dis J. 1997;16(8):763–7.

    CAS  PubMed  Google Scholar 

  276. Healy CM, Baker CJ, Zaccaria E, Campbell JR. Impact of fluconazole prophylaxis on incidence and outcome of invasive candidiasis in a neonatal intensive care unit. J Pediatr. 2005;147(2):166–71.

    CAS  PubMed  Google Scholar 

  277. Austin N, McGuire W. Prophylactic systemic antifungal agents to prevent mortality and morbidity in very low birth weight infants. Cochrane Database Syst Rev. 2013;4:CD003850.

  278. Austin N, McGuire W. Prophylactic systemic antifungal agents to prevent mortality and morbidity in very low birth weight infants. Cochrane Database Syst Rev 2013;4:CD003850.

  279. Garcia-Effron G, Park S, Perlin DS. Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother. 2009;53(1):112–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  280. Douglas CM. Fungal beta(1,3)-D-glucan synthesis. Med Mycol. 2001;39(Suppl 1):55–66.

    CAS  PubMed  Google Scholar 

  281. Kurtz MB, Douglas CM. Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol. 1997;35(2):79–86.

    CAS  PubMed  Google Scholar 

  282. Denning DW. Echinocandin antifungal drugs. Lancet. 2003;362(9390):1142–51.

    CAS  PubMed  Google Scholar 

  283. Morrison VA. Echinocandin antifungals: review and update. Expert Rev Anti Infect Ther. 2006;4(2):325–42.

    CAS  PubMed  Google Scholar 

  284. Niimi K, Monk BC, Hirai A, Hatakenaka K, Umeyama T, Lamping E, et al. Clinically significant micafungin resistance in Candida albicans involves modification of a glucan synthase catalytic subunit GSC1 (FKS1) allele followed by loss of heterozygosity. J Antimicrob Chemother. 2010;65(5):842–52.

    CAS  PubMed  Google Scholar 

  285. Balashov SV, Park S, Perlin DS. Assessing resistance to the echinocandin antifungal drug caspofungin in Candida albicans by profiling mutations in FKS1. Antimicrob Agents Chemother. 2006;50(6):2058–63.

    CAS  PubMed Central  PubMed  Google Scholar 

  286. Pfeiffer CD, Garcia-Effron G, Zaas AK, Perfect JR, Perlin DS, Alexander BD. Breakthrough invasive candidiasis in patients on micafungin. J Clin Microbiol. 2010;48(7):2373–80.

    CAS  PubMed Central  PubMed  Google Scholar 

  287. Park S, Kelly R, Kahn JN, Robles J, Hsu MJ, Register E, et al. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother. 2005;49(8):3264–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  288. Chen SC, Slavin MA, Sorrell TC. Echinocandin antifungal drugs in fungal infections: a comparison. Drugs. 2011;71(1):11–41.

    PubMed  Google Scholar 

  289. Smith PB, Walsh TJ, Hope W, Arrieta A, Takada A, Kovanda LL, et al. Pharmacokinetics of an elevated dosage of micafungin in premature neonates. Pediatr Infect Dis J. 2009;28(5):412–5.

    PubMed Central  PubMed  Google Scholar 

  290. Benjamin DK Jr, Smith PB, Arrieta A, Castro L, Sanchez PJ, Kaufman D, et al. Safety and pharmacokinetics of repeat-dose micafungin in young infants. Clin Pharmacol Ther. 2010;87(1):93–9.

    PubMed Central  PubMed  Google Scholar 

  291. Heresi GP, Gerstmann DR, Reed MD, van den Anker JN, Blumer JL, Kovanda L, et al. The pharmacokinetics and safety of micafungin, a novel echinocandin, in premature infants. Pediatr Infect Dis J. 2006;25(12):1110–5.

    PubMed  Google Scholar 

  292. Natarajan G, Lulic-Botica M, Aranda JV. Refractory neonatal candidemia and high-dose micafungin pharmacotherapy. J Perinatol. 2009;29(11):738–43.

    CAS  PubMed  Google Scholar 

  293. Saez-Llorens X, Macias M, Maiya P, Pineros J, Jafri HS, Chatterjee A, et al. Pharmacokinetics and safety of caspofungin in neonates and infants less than 3 months of age. Antimicrob Agents Chemother. 2009;53(3):869–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  294. Odio CM, Araya R, Pinto LE, Castro CE, Vasquez S, Alfaro B, et al. Caspofungin therapy of neonates with invasive candidiasis. Pediatr Infect Dis J. 2004;23(12):1093–7.

    PubMed  Google Scholar 

  295. Filippi L, Poggi C, Gozzini E, Meleleo R, Mirabile L, Fiorini P. Neonatal liver abscesses due to Candida infection effectively treated with caspofungin. Acta Paediatr. 2009;98(5):906–9.

    CAS  PubMed  Google Scholar 

  296. Manzar S, Kamat M, Pyati S. Caspofungin for refractory candidemia in neonates. Pediatr Infect Dis J. 2006;25(3):282–3.

    PubMed  Google Scholar 

  297. Merk and Compnay Inc. Cancidas (caspofungin acetate) for injection: US prescribing information. http://www.merck.com/product/usa/pi_circulars/c/cancidas/cancidas_pi.pdf. Accessed 18 Oct 2013.

  298. Neely M, Jafri HS, Seibel N, Knapp K, Adamson PC, Bradshaw SK, et al. Pharmacokinetics and safety of caspofungin in older infants and toddlers. Antimicrob Agents Chemother. 2009;53(4):1450–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  299. Li CC, Sun P, Dong Y, Bi S, Desai R, Dockendorf MF, et al. Population pharmacokinetics and pharmacodynamics of caspofungin in pediatric patients. Antimicrob Agents Chemother. 2011;55(5):2098–105.

    CAS  PubMed Central  PubMed  Google Scholar 

  300. Seibel NL, Schwartz C, Arrieta A, Flynn P, Shad A, Albano E, et al. Safety, tolerability, and pharmacokinetics of Micafungin (FK463) in febrile neutropenic pediatric patients. Antimicrob Agents Chemother. 2005;49(8):3317–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  301. Hebert MF, Smith HE, Marbury TC, Swan SK, Smith WB, Townsend RW, et al. Pharmacokinetics of micafungin in healthy volunteers, volunteers with moderate liver disease, and volunteers with renal dysfunction. J Clin Pharmacol. 2005;45(10):1145–52.

    CAS  PubMed  Google Scholar 

  302. Yanni SB, Smith PB, Benjamin DK Jr, Augustijns PF, Thakker DR, Annaert PP. Higher clearance of micafungin in neonates compared with adults: role of age-dependent micafungin serum binding. Biopharm Drug Dispos. 2011;32(4):222–32.

    CAS  PubMed Central  PubMed  Google Scholar 

  303. Hope WW, Smith PB, Arrieta A, Buell DN, Roy M, Kaibara A, et al. Population pharmacokinetics of micafungin in neonates and young infants. Antimicrob Agents Chemother. 2010;54(6):2633–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  304. Prasad PA, Coffin SE, Leckerman KH, Walsh TJ, Zaoutis TE. Pediatric antifungal utilization: new drugs, new trends. Pediatr Infect Dis J. 2008;27(12):1083–8.

    PubMed  Google Scholar 

  305. Caudle KE, Inger AG, Butler DR, Rogers PD. Echinocandin use in the neonatal intensive care unit. Ann Pharmacother. 2012;46(1):108–16.

    CAS  PubMed  Google Scholar 

  306. Testoni D, Smith PB, Benjamin DK Jr. The use of antifungal therapy in neonatal intensive care. Clin Perinatol. 2012;39(1):83–98.

    PubMed Central  PubMed  Google Scholar 

  307. Wurthwein G, Groll AH, Hempel G, Adler-Shohet FC, Lieberman JM, Walsh TJ. Population pharmacokinetics of amphotericin B lipid complex in neonates. Antimicrob Agents Chemother. 2005;49(12):5092–8.

    PubMed Central  PubMed  Google Scholar 

  308. Evdoridou J, Roilides E, Bibashi E, Kremenopoulos G. Multifocal osteoarthritis due to Candida albicans in a neonate: serum level monitoring of liposomal amphotericin B and literature review. Infection. 1997;25(2):112–6.

    CAS  PubMed  Google Scholar 

  309. Bekersky I, Fielding RM, Dressler DE, Lee JW, Buell DN, Walsh TJ. Pharmacokinetics, excretion, and mass balance of liposomal amphotericin B (AmBisome) and amphotericin B deoxycholate in humans. Antimicrob Agents Chemother. 2002;46(3):828–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  310. Driessen M, Ellis JB, Cooper PA, Wainer S, Muwazi F, Hahn D, et al. Fluconazole vs. amphotericin B for the treatment of neonatal fungal septicemia: a prospective randomized trial. Pediatr Infect Dis J. 1996;15(12):1107–12.

    CAS  PubMed  Google Scholar 

  311. Pfaller MA, Diekema DJ, Rex JH, Espinel-Ingroff A, Johnson EM, Andes D, et al. Correlation of MIC with outcome for Candida species tested against voriconazole: analysis and proposal for interpretive breakpoints. J Clin Microbiol. 2006;44(3):819–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  312. Groll AH, Walsh TJ. Caspofungin: pharmacology, safety and therapeutic potential in superficial and invasive fungal infections. Expert Opin Investig Drugs. 2001;10(8):1545–58.

    CAS  PubMed  Google Scholar 

  313. Watt K, Benjamin DK Jr, Cohen-Wolkowiez M. Pharmacokinetics of antifungal agents in children. Early Hum Dev. 2011;87(Suppl 1):S61–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  314. Eschenauer G, Depestel DD, Carver PL. Comparison of echinocandin antifungals. Ther Clin Risk Manag. 2007;3(1):71–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  315. Stone JA, Xu X, Winchell GA, Deutsch PJ, Pearson PG, Migoya EM, et al. Disposition of caspofungin: role of distribution in determining pharmacokinetics in plasma. Antimicrob Agents Chemother. 2004;48(3):815–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  316. Brown ZA, Wald A, Morrow RA, Selke S, Zeh J, Corey L. Effect of serologic status and cesarean delivery on transmission rates of herpes simplex virus from mother to infant. JAMA. 2003;289(2):203–9.

    PubMed  Google Scholar 

  317. Whitley RJ. The use of antiviral drugs during the neonatal period. Clin Perinatol. 2012;39(1):69–81.

    PubMed Central  PubMed  Google Scholar 

  318. Kimberlin DW. Management of HSV encephalitis in adults and neonates: diagnosis, prognosis and treatment. Herpes. 2007;14(1):11–6.

    PubMed  Google Scholar 

  319. Demmler GJ. Infectious Diseases Society of America and Centers for Disease Control. Summary of a workshop on surveillance for congenital cytomegalovirus disease. Rev Infect Dis. 1991;13(2):315–29.

    CAS  PubMed  Google Scholar 

  320. Istas AS, Demmler GJ, Dobbins JG, Stewart JA. Surveillance for congenital cytomegalovirus disease: a report from the National Congenital Cytomegalovirus Disease Registry. Clin Infect Dis. 1995;20(3):665–70.

    CAS  PubMed  Google Scholar 

  321. Griffiths P. Cytomegalovirus infection of the central nervous system. Herpes. 2004;11(Suppl 2):95a–104a.

    PubMed  Google Scholar 

  322. Elion GB, Furman PA, Fyfe JA, de Miranda P, Beauchamp L, Schaeffer HJ. Selectivity of action of an antiherpetic agent, 9-(2-hydroxyethoxymethyl) guanine. Proc Natl Acad Sci U S A. 1977;74(12):5716–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  323. Schaeffer HJ, Beauchamp L, de Miranda P, Elion GB, Bauer DJ, Collins P. 9-(2-hydroxyethoxymethyl) guanine activity against viruses of the herpes group. Nature. 1978;272(5654):583–5.

    CAS  PubMed  Google Scholar 

  324. Englund JA, Zimmerman ME, Swierkosz EM, Goodman JL, Scholl DR, Balfour HH Jr. Herpes simplex virus resistant to acyclovir. A study in a tertiary care center. Ann Intern Med. 1990;112(6):416–22.

    CAS  PubMed  Google Scholar 

  325. Kimberlin DW, Lin CY, Jacobs RF, Powell DA, Corey L, Gruber WC, et al. Safety and efficacy of high-dose intravenous acyclovir in the management of neonatal herpes simplex virus infections. Pediatrics. 2001;108(2):230–8.

    CAS  PubMed  Google Scholar 

  326. Kimberlin D, Powell D, Gruber W, Diaz P, Arvin A, Kumar M, et al. Administration of oral acyclovir suppressive therapy after neonatal herpes simplex virus disease limited to the skin, eyes and mouth: results of a phase I/II trial. Pediatr Infect Dis J. 1996;15(3):247–54.

    CAS  PubMed  Google Scholar 

  327. Sampson MR, Bloom BT, Lenfestey RW, Harper B, Kashuba AD, Anand R, et al. Population pharmacokinetics of intravenous acyclovir in preterm and term infants. Pediatr Infect Dis J. 2014;33:42–9.

    PubMed  Google Scholar 

  328. Blum MR, Liao SH, de Miranda P. Overview of acyclovir pharmacokinetic disposition in adults and children. Am J Med. 1982;73(1A):186–92.

    CAS  PubMed  Google Scholar 

  329. Hintz M, Connor JD, Spector SA, Blum MR, Keeney RE, Yeager AS. Neonatal acyclovir pharmacokinetics in patients with herpes virus infections. Am J Med. 1982;73(1A):210–4.

    CAS  PubMed  Google Scholar 

  330. Englund JA, Fletcher CV, Balfour HH Jr. Acyclovir therapy in neonates. J Pediatr. 1991;119(1 Pt 1):129–35.

    CAS  PubMed  Google Scholar 

  331. Sampson MR, Bloom BT, Lenfestey RW, Harper B, Kashuba AD, Anand R, et al. Population pharmacokinetics of intravenous acyclovir in preterm and term infants. Pediatr Infect Dis J. 2014;33(1):42–9.

    PubMed  Google Scholar 

  332. Rabalais GP, Nusinoff-Lehrman S, Arvin AM, Levin MJ. Antiviral susceptibilities of herpes simplex virus isolates from infants with recurrent mucocutaneous lesions after neonatal infection. Pediatr Infect Dis J. 1989;8(4):221–3.

    CAS  PubMed  Google Scholar 

  333. Pinninti SG, Kimberlin DW. Neonatal herpes simplex virus infections. Pediatr Clin N Am. 2013;60(2):351–65.

    Google Scholar 

  334. Jones CA, Walker KS, Badawi N. Antiviral agents for treatment of herpes simplex virus infection in neonates. Cochrane Database Syst Rev. 2009;(3):CD004206.

  335. Shah SS, Aronson PL, Mohamad Z, Lorch SA. Delayed acyclovir therapy and death among neonates with herpes simplex virus infection. Pediatrics. 2011;128(6):1153–60.

    PubMed Central  PubMed  Google Scholar 

  336. Whitley R, Arvin A, Prober C, Burchett S, Corey L, Powell D, et al. A controlled trial comparing vidarabine with acyclovir in neonatal herpes simplex virus infection. Infectious Diseases Collaborative Antiviral Study Group. N Engl J Med. 1991;324(7):444–9.

    CAS  PubMed  Google Scholar 

  337. Kimberlin DW, Whitley RJ, Wan W, Powell DA, Storch G, Ahmed A, et al. Oral acyclovir suppression and neurodevelopment after neonatal herpes. N Engl J Med. 2011;365(14):1284–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  338. Long SS. In defense of empiric acyclovir therapy in certain neonates. J Pediatr. 2008;153(2):157–8.

    PubMed  Google Scholar 

  339. Caviness AC, Demmler GJ, Swint JM, Cantor SB. Cost-effectiveness analysis of herpes simplex virus testing and treatment strategies in febrile neonates. Arch Pediatr Adolesc Med. 2008;162(7):665–74.

    PubMed  Google Scholar 

  340. Kimberlin DW. When should you initiate acyclovir therapy in a neonate? J Pediatr. 2008;153(2):155–6.

    PubMed  Google Scholar 

  341. Whitley RJ. The use of antiviral drugs during the neonatal period. Clin Perinatol. 2012;39(1):69–81.

    PubMed Central  PubMed  Google Scholar 

  342. Ashton WT, Karkas JD, Field AK, Tolman RL. Activation by thymidine kinase and potent antiherpetic activity of 2′-nor-2′-deoxyguanosine (2′NDG). Biochem Biophys Res Commun. 1982;108(4):1716–21.

    CAS  PubMed  Google Scholar 

  343. Martin JC, Dvorak CA, Smee DF, Matthews TR, Verheyden JP. 9-[(1,3-Dihydroxy-2-propoxy)methyl]guanine: a new potent and selective antiherpes agent. J Med Chem. 1983;26(5):759–61.

    CAS  PubMed  Google Scholar 

  344. Cheng YC, Huang ES, Lin JC, Mar EC, Pagano JS, Dutschman GE, et al. Unique spectrum of activity of 9-[(1,3-dihydroxy-2-propoxy)methyl]-guanine against herpesviruses in vitro and its mode of action against herpes simplex virus type 1. Proc Natl Acad Sci U S A. 1983;80(9):2767–70.

    CAS  PubMed Central  PubMed  Google Scholar 

  345. Field AK, Davies ME, DeWitt C, Perry HC, Liou R, Germershausen J, et al. 9-([2-hydroxy-1-(hydroxymethyl)ethoxy]methyl)guanine: a selective inhibitor of herpes group virus replication. Proc Natl Acad Sci U S A. 1983;80(13):4139–43.

    CAS  PubMed Central  PubMed  Google Scholar 

  346. Smith KO, Galloway KS, Kennell WL, Ogilvie KK, Radatus BK. A new nucleoside analog, 9-[[2-hydroxy-1-(hydroxymethyl)ethoxyl]methyl]guanine, highly active in vitro against herpes simplex virus types 1 and 2. Antimicrob Agents Chemother. 1982;22(1):55–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  347. Lin JC, Smith MC, Pagano JS. Prolonged inhibitory effect of 9-(1,3-dihydroxy-2-propoxymethyl)guanine against replication of Epstein-Barr virus. J Virol. 1984;50(1):50–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  348. Cheng YC, Grill SP, Dutschman GE, Nakayama K, Bastow KF. Metabolism of 9-(1,3-dihydroxy-2-propoxymethyl)guanine, a new anti-herpes virus compound, in herpes simplex virus-infected cells. J Biol Chem. 1983;258(20):12460–4.

    CAS  PubMed  Google Scholar 

  349. Sullivan V, Talarico CL, Stanat SC, Davis M, Coen DM, Biron KK. A protein kinase homologue controls phosphorylation of ganciclovir in human cytomegalovirus-infected cells. Nature. 1992;359(6390):85.

    CAS  PubMed  Google Scholar 

  350. Littler E, Stuart AD, Chee MS. Human cytomegalovirus UL97 open reading frame encodes a protein that phosphorylates the antiviral nucleoside analogue ganciclovir. Nature. 1992;358(6382):160–2.

    CAS  PubMed  Google Scholar 

  351. Chee MS, Lawrence GL, Barrell BG. Alpha-, beta- and gammaherpesviruses encode a putative phosphotransferase. J Gen Virol. 1989;70(Pt 5):1151–60.

    CAS  PubMed  Google Scholar 

  352. Erice A. Resistance of human cytomegalovirus to antiviral drugs. Clin Microbiol Rev. 1999;12(2):286–97.

    CAS  PubMed Central  PubMed  Google Scholar 

  353. Whitley RJ, Cloud G, Gruber W, Storch GA, Demmler GJ, Jacobs RF, et al. Ganciclovir treatment of symptomatic congenital cytomegalovirus infection: results of a phase II study. National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. J Infect Dis. 1997;175(5):1080–6.

    CAS  PubMed  Google Scholar 

  354. Kimberlin DW. Antiviral therapy for cytomegalovirus infections in pediatric patients. Semin Pediatr Infect Dis. 2002;13(1):22–30.

    PubMed  Google Scholar 

  355. Jacobson MA, Gambertoglio JG, Aweeka FT, Causey DM, Portale AA. Foscarnet-induced hypocalcemia and effects of foscarnet on calcium metabolism. J Clin Endocrinol Metab. 1991;72(5):1130–5.

    CAS  PubMed  Google Scholar 

  356. Kimberlin DW, Lin CY, Sanchez PJ, Demmler GJ, Dankner W, Shelton M, et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J Pediatr. 2003;143(1):16–25.

    CAS  PubMed  Google Scholar 

  357. Cocohoba JM, McNicholl IR. Valganciclovir: an advance in cytomegalovirus therapeutics. Ann Pharmacother. 2002;36(6):1075–9.

    CAS  PubMed  Google Scholar 

  358. Meine Jansen CF, Toet MC, Rademaker CM, Ververs TF, Gerards LJ, van Loon AM. Treatment of symptomatic congenital cytomegalovirus infection with valganciclovir. J Perinat Med. 2005;33(4):364–6.

    PubMed  Google Scholar 

  359. Muller A, Eis-Hubinger AM, Brandhorst G, Heep A, Bartmann P, Franz AR. Oral valganciclovir for symptomatic congenital cytomegalovirus infection in an extremely low birth weight infant. J Perinatol. 2008;28(1):74–6.

    CAS  PubMed  Google Scholar 

  360. Schulzke S, Buhrer C. Valganciclovir for treatment of congenital cytomegalovirus infection. Eur J Pediatr. 2006;165(8):575–6.

    PubMed  Google Scholar 

  361. Buonuomo PS, Maurizi P, Valentini P, Mastrangelo S, Lazzareschi I, Ridola V, et al. Successful treatment with oral valganciclovir in immunocompetent infant with gastrointestinal manifestations of cytomegalovirus infection. J Perinatol. 2006;26(10):648–9.

    CAS  PubMed  Google Scholar 

  362. Kimberlin DW, Acosta EP, Sanchez PJ, Sood S, Agrawal V, Homans J, et al. Pharmacokinetic and pharmacodynamic assessment of oral valganciclovir in the treatment of symptomatic congenital cytomegalovirus disease. J Infect Dis. 2008;197(6):836–45.

    CAS  PubMed  Google Scholar 

  363. Lombardi G, Garofoli F, Villani P, Tizzoni M, Angelini M, Cusato M, et al. Oral valganciclovir treatment in newborns with symptomatic congenital cytomegalovirus infection. Eur J Clin Microbiol Infect Dis. 2009;28(12):1465–70.

    CAS  PubMed  Google Scholar 

  364. Trang JM, Kidd L, Gruber W, Storch G, Demmler G, Jacobs R, et al. Linear single-dose pharmacokinetics of ganciclovir in newborns with congenital cytomegalovirus infections. NIAID Collaborative Antiviral Study Group. Clin Pharmacol Ther. 1993;53(1):15–21.

    CAS  PubMed  Google Scholar 

  365. Zhou XJ, Gruber W, Demmler G, Jacobs R, Reuman P, Adler S, et al. Population pharmacokinetics of ganciclovir in newborns with congenital cytomegalovirus infections. NIAID Collaborative Antiviral Study Group. Antimicrob Agents Chemother. 1996;40(9):2202–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  366. Markham A, Faulds D. Ganciclovir. An update of its therapeutic use in cytomegalovirus infection. Drugs. 1994;48(3):455–84.

    CAS  PubMed  Google Scholar 

  367. Galli L, Novelli A, Chiappini E, Gervaso P, Cassetta MI, Fallani S, et al. Valganciclovir for congenital CMV infection: a pilot study on plasma concentration in newborns and infants. Pediatr Infect Dis J. 2007;26(5):451–3.

    PubMed  Google Scholar 

  368. Acosta EP, Brundage RC, King JR, Sanchez PJ, Sood S, Agrawal V, et al. Ganciclovir population pharmacokinetics in neonates following intravenous administration of ganciclovir and oral administration of a liquid valganciclovir formulation. Clin Pharmacol Ther. 2007;81(6):867–72.

    CAS  PubMed  Google Scholar 

  369. Kimberlin DW, Lin CY, Sanchez PJ, Demmler GJ, Dankner W, Shelton M, et al. Effect of ganciclovir therapy on hearing in symptomatic congenital cytomegalovirus disease involving the central nervous system: a randomized, controlled trial. J Pediatr. 2003;143(1):16–25.

    CAS  PubMed  Google Scholar 

  370. Oliver SE, Cloud GA, Sánchez PJ, Demmler GJ, Dankner W, Shelton M, et al. Neurodevelopmental outcomes following ganciclovir therapy in symptomatic congenital cytomegalovirus infections involving the central nervous system. J Clin Virol. 2009;46(Suppl 4):S22–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  371. Nassetta L, Kimberlin D, Whitley R. Treatment of congenital cytomegalovirus infection: implications for future therapeutic strategies. J Antimicrob Chemother. 2009;63(5):862–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  372. Frenkel LM, Capparelli EV, Dankner WM, Xu J, Smith IL, Ballow A, et al. Oral ganciclovir in children: pharmacokinetics, safety, tolerance, and antiviral effects. The Pediatric AIDS Clinical Trials Group. J Infect Dis. 2000;182(6):1616–24.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

None.

Funding

JKR is supported by the Pharmacotherapy Subspecialty Award from the Primary Children’s Medical Center Foundation. RMW is supported by NIH Grants: 1 R01 HD070795-01A1 and 5 R01 HD060559-05.

Transparency declarations

The University of Utah receives reimbursement for the conduct of a clinical trial involving micafungin. RMW receives no direct payment. All other authors declared no conflicts of interest.

Contributors

JKR, CS, JEC, JS, MGS, RMW, and CMTS wrote the initial draft of the review. All authors also contributed to the reviewing and finalization of the document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine M. T. Sherwin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roberts, J.K., Stockmann, C., Constance, J.E. et al. Pharmacokinetics and Pharmacodynamics of Antibacterials, Antifungals, and Antivirals Used Most Frequently in Neonates and Infants. Clin Pharmacokinet 53, 581–610 (2014). https://doi.org/10.1007/s40262-014-0147-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0147-0

Keywords

Navigation