Skip to main content
Log in

Progress with Novel Pharmacological Strategies for Gastro-oesophageal Reflux Disease

  • Leading Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

Gastro-oesophageal reflux disease (GORD) is a chronic disorder characterised by an increased exposure of the oesophagus to intragastric contents. Currently, GORD symptoms are maintained under control with antisecretory agents, mainly gastric proton pump inhibitors (PPIs).

Although impaired oesophageal motility may partly underlie the pathophysiology of GORD, the use of prokinetic agents has been found to be unsatisfactory. To date, novel pharmacological approaches for GORD are mainly related to the control of transient lower oesophageal sphincter (LOS) relaxations (TLOSRs). The majority of patients with GORD have reflux episodes during TLOSRs, which are evoked by gastric distension, mainly occurring after ingestion of a meal. Patients with reflux disease with normal peristalsis and without or with mild erosive disease could potentially benefit from anti-TLOSR therapy. This therapy might also be of value to treat some severe forms of esophagitis in combination with PPIs.

GABA-B-receptor agonists are the most promising class of agents identified so far for TLOSR control. The GABA-B-receptor agonist, baclofen, is the most effective compound in inhibiting TLOSRs in humans. Since baclofen has several CNS adverse effects, novel orally available GABA-B agonists are needed for effective and well tolerated treatment of GORD.

Endogenous or exogenous cholecystokinin (CCK) causes a reduction in LOS pressure, an increase in TLOSR frequency and a reduction in gastric emptying. In healthy volunteers and patients with GORD, loxiglumide, a selective CCK1-receptor antagonist, was found to reduce the rate of TLOSRs, although its effect on postprandial acid reflux may be modest. Orally effective CCK antagonists are not marketed to date.

The anticholinergic agent atropine, given to healthy volunteers and patients with GORD, markedly reduced the rate of TLOSRs. Because of severe gastrointestinal (and other) adverse effects of anticholinergics, including worsening of supine acid clearance and constipation, it is unlikely that this class of drugs will have a future as anti-TLOSR agents on a routine basis.

In spite of their effectiveness in reducing TLOSR rate, untoward adverse effects, such as addiction and severe constipation, currently limit the use of morphine and other opioid μ-receptor agonists. The same applies to nitric oxide synthase inhibitors, which are associated with marked gastrointestinal, cardio-vascular, urinary and respiratory adverse effects.

Animal studies provide promising evidence for the use of cannabinoid receptor 1 agonists, by showing potent inhibition of TLOSRs in the dog, thus opening a new route for clinical investigation in humans.

A better understanding of TLOSR pathophysiology is a necessary step for the further development of novel drugs effective for anti-reflux therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Table I
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tytgat GN. Treatment of mild and severe cases of GERD. Aliment Pharmacol Ther 2002; 16 Suppl. 4: 73–8

    Article  Google Scholar 

  2. Penagini R, Carmagnola S, Cantu P. Gastro-oesophageal reflux disease: pathophysiological issues of clinical relevance. Aliment Pharmacol Ther 2002; 16 Suppl. 4: 65–71

    Article  Google Scholar 

  3. Holloway RH. The anti-reflux barrier and mechanisms of gastro-oesophageal reflux. Baillieres Best Pract Res Clin Gastroenterol 2000; 14: 681–99

    Article  PubMed  CAS  Google Scholar 

  4. Nandurkar S, Talley NJ. Epidemiology and natural history of reflux disease. Baillieres Best Pract Res Clin Gastroenterol 2000; 14: 743–57

    Article  PubMed  CAS  Google Scholar 

  5. Carlsson R, Dent J, Bolling-Sternevald E, et al. The usefulness of a structured questionnaire in the assessment of symptomatic gastroesophageal reflux disease. Scand J Gastroenterol 1998; 33: 1023–9

    Article  PubMed  CAS  Google Scholar 

  6. Behar J, Biancani P, Sheahan DG. Evaluation of esophageal tests in the diagnosis of reflux esophagitis. Gastroenterology 1976; 71: 9–15

    PubMed  CAS  Google Scholar 

  7. Dent J. Patterns of lower esophageal sphincter function associated with gastroesophageal reflux. Am J Med 1997; 103: 29S–32S

    Article  PubMed  CAS  Google Scholar 

  8. Hornby PJ, Abrahams TP. Central control of lower esophageal sphincter relaxation. Am J Med 2000; 108 Suppl 4a: 90S–8S

    Article  PubMed  Google Scholar 

  9. Sang Q, Goyal RK. Lower esophageal sphincter relaxation and activation of medullary neurons by subdiaphragmatic vagal stimulation in the mouse. Gastroenterology 2000; 119: 1600–9

    Article  PubMed  CAS  Google Scholar 

  10. Orlando RC. Pathophysiology of gastroesophageal reflux disease: esophageal epithelial resistance. In: Castell DO, Richter JE, editors. The esophagus. 3rd ed. Philadelphia (PA): Lippincott Williams & Wilkins, 1999: 409–20

    Google Scholar 

  11. Harriett KM, Cao W, Kim N, et al. Signal transduction in esophageal and LES circular muscle contraction. Yale J Biol Med 1999; 72: 153–68

    Google Scholar 

  12. Salapatek AM, Diamant NE. Assessment of neural inhibition of the lower esophageal sphincter in cats with esophagitis. Gastroenterology 1993; 104: 810–8

    PubMed  CAS  Google Scholar 

  13. Dodds WJ, Dent J, Hogan WJ, et al. Mechanisms of gastroesophageal reflux in patients with reflux esophagitis. N Engl J Med 1982; 307: 1547–52

    Article  PubMed  CAS  Google Scholar 

  14. Fang JC, Sarosiek I, Yamamoto Y, et al. Cholinergic blockade inhibits gastro-oesophageal reflux and transient lower oesophageal sphincter relaxation through a central mechanism. Gut 1999; 44: 603–7

    Article  PubMed  CAS  Google Scholar 

  15. Holloway RH, Kocyan P, Dent J. Provocation of transient lower esophageal sphincter relaxations by meals in patients with symptomatic gastroesophageal reflux. Dig Dis Sci 1991; 36: 1034–9

    Article  PubMed  CAS  Google Scholar 

  16. Orlando RC. Reflux esophagitis. In: Yamada T, Alpers DH, Laine L, et al., editors. Textbook of gastroenterology. Philadelphia (PA): Lippincott Williams & Wilkins, 1999: 1235–63

    Google Scholar 

  17. Kahrilas PJ, Shi G. Pathophysiology of gastroesophageal reflux disease: the antireflux barrier and luminal clearance mechanisms. In: Orlando RC, editor. Gastroesophageal reflux disease. New York (NY): Marcel Dekker, 2000: 137–64

    Google Scholar 

  18. Tytgat GN. Shortcomings of the first-generation proton pump inhibitors. Eur J Gastroenterol Hepatol 2001; 13 Suppl. 1: S29–33

    PubMed  Google Scholar 

  19. Klinkenberg-Knol EC, Festen HP, Meuwissen SG. Pharmacological management of gastro-oesophageal reflux disease. Drugs 1995; 49: 695–710

    Article  PubMed  CAS  Google Scholar 

  20. Chiba N, De Gara CJ, Wilkinson JM, et al. Speed of healing and symptom relief in grade II to IV gastroesophageal reflux disease: a meta-analysis. Gastroenterology 1997; 112: 1798–810

    Article  PubMed  CAS  Google Scholar 

  21. Thjodleifsson B, Rindi G, Fiocca R, et al. A randomized, double-blind trial of the efficacy and safety of 10 or 20 mg rabeprazole compared with 20 mg omeprazole in the maintenance of gastro-oesophageal reflux disease over 5 years. Aliment Pharmacol Ther 2003; 17: 343–51

    Article  PubMed  CAS  Google Scholar 

  22. Howden CW, Henning JM, Huang B, et al. Management of heartburn in a large, randomized, community-based study: comparison of four therapeutic strategies. Am J Gastroenterol 2001; 96: 1704–10

    Article  PubMed  CAS  Google Scholar 

  23. Inadomi JM, Jamal R, Murata GH, et al. Step-down management of gastroesophageal reflux disease. Gastroenterology 2001; 121: 1095–100

    Article  PubMed  CAS  Google Scholar 

  24. Gerson LB, Robbins AS, Garber A, et al. A cost-effectiveness analysis of prescribing strategies in the management of gastroesophageal reflux disease. Am J Gastroenterol 2000; 95: 395–407

    Article  PubMed  CAS  Google Scholar 

  25. Bytzer P. On-demand therapy for gastro-oesophageal reflux disease. Eur J Gastroenterol Hepatol 2001; 13 Suppl. 1: S19–22

    Article  PubMed  Google Scholar 

  26. Pace F, Pallotta S, Bianchi PG. On-demand proton pump inhibitor therapy in patients with gastro-oesophageal reflux disease. Dig Liver Dis 2002; 34: 870–7

    Article  PubMed  CAS  Google Scholar 

  27. Lind T, Havelund T, Lundell L, et al. On demand therapy with omeprazole for the long-term management of patients with heartburn without oesophagitis: a placebo-controlled randomized trial. Aliment Pharmacol Ther 1999; 13: 907–14

    Article  PubMed  CAS  Google Scholar 

  28. Talley NJ, Venables TL, Green JR, et al. Esomeprazole 40mg and 20mg is efficacious in the long-term management of patients with endoscopy-negative gastro-oesophageal reflux disease: a placebo-controlled trial of on-demand therapy for 6 months. Eur J Gastroenterol Hepatol 2002; 14: 857–63

    Article  PubMed  CAS  Google Scholar 

  29. PantoflickovaD,Dorta G, Ravic M, et al. Acid inhibition on the first day of dosing: comparison of four proton pump inhibitors. Aliment Pharmacol Ther 2003; 17: 1507–14

    Article  Google Scholar 

  30. Castell DO, Kahrilas PJ, Richter JE, et al. Esomeprazole (40mg) compared with lansoprazole (30mg) in the treatment of erosive esophagitis. Am J Gastroenterol 2002; 97: 575–83

    Article  PubMed  CAS  Google Scholar 

  31. Yeomans ND. Management of peptic ulcer disease not related to Helicobacter. J Gastroenterol Hepatol 2002; 17: 488–94

    Article  PubMed  Google Scholar 

  32. Tonini M, Vigneri S, Savarino V, et al. Clinical pharmacology and safety profile of esomeprazole, the first enantiomerically pure proton pump inhibitor. Dig Liver Dis 2001; 33: 600–6

    Article  PubMed  CAS  Google Scholar 

  33. Vanderhoff BT, Tahboub RM. Proton pump inhibitors: an update. Am Fam Physician 2002; 66: 273–80

    PubMed  Google Scholar 

  34. Fitton A, Wiseman L. Pantoprazole: a review of its pharmacological properties and therapeutic use in acid-related disorders. Drugs 1996; 51: 460–82

    Article  PubMed  CAS  Google Scholar 

  35. Langtry HD, Wilde MI. Omeprazole: a review of its use in Helicobacter pylori infection, gastro-oesophageal reflux disease and peptic ulcers induced by nonsteroidal anti-inflammatory drugs. Drugs 1998; 56: 447–86

    Article  PubMed  CAS  Google Scholar 

  36. Matheson AJ, Jarvis B. Lansoprazole: an update of its place in the management of acid-related disorders. Drugs 2001; 61: 1801–33

    Article  PubMed  CAS  Google Scholar 

  37. Carswell CI, Goa KL. Rabeprazole: an update of its use in acid-related disorders. Drugs 2001; 61: 2327–56

    Article  PubMed  CAS  Google Scholar 

  38. Scott LJ, Dunn CJ, Mallarkey G, et al. Esomeprazole: a review of its use in the management of acid-related disorders. Drugs 2002; 62: 1503–38

    Article  PubMed  CAS  Google Scholar 

  39. Sachs G. Improving on PPI-based therapy of GORD. Eur J Gastroenterol Hepatol 2001; 13 Suppl. 1: S35–41

    PubMed  Google Scholar 

  40. Horn J. The proton-pump inhibitors: similarities and differences. Clin Ther 2000; 22: 266–80

    Article  PubMed  CAS  Google Scholar 

  41. Robinson M. New-generation proton pump inhibitors: overcoming the limitations of early-generation agents. Eur J Gastroenterol Hepatol 2001; 13 Suppl. 1: S43–7

    PubMed  Google Scholar 

  42. Vakil N. Esomeprazole, 40mg once daily, compared with lansoprazole, 30mg once daily, in healing and symptom resolution of erosive oesophagitis. Aliment Pharmacol Ther 2003; 17 Suppl. 1: 21–3

    Article  Google Scholar 

  43. De Ponti F, Malagelada JR. Functional gut disorders: from motility to sensitivity disorders: a review of current and investigational drugs for their management. Pharmacol Ther 1998; 80: 49–88

    Article  PubMed  Google Scholar 

  44. Patel R, Launspach J, Soffer E. Effects of cisapride on salivary production in normal subjects. Dig Dis Sci 1996; 41: 480–4

    Article  PubMed  CAS  Google Scholar 

  45. Sarosiek J, Scheurich CJ, Marcinkiewicz M, et al. Enhancement of salivary esophagoprotection: rationale for a physiological approach to gastroesophageal reflux disease. Gastroenterology 1996; 110: 675–81

    Article  PubMed  CAS  Google Scholar 

  46. Goldin GF, Marcinkiewicz M, Zbroch T, et al. Esophagoprotective potential of cisapride: an additional benefit for gastroesophageal reflux disease. Dig Dis Sci 1997; 42: 1362–9

    Article  PubMed  CAS  Google Scholar 

  47. Pehlivanov N, Sarosiek I, Whitman R, et al. Effect of cisapride on nocturnal transient lower oesophageal sphincter relaxations and nocturnal gastro-oesophageal reflux in patients with oesophagitis: a double-blind, placebo-controlled study. Aliment Pharmacol Ther 2002; 16: 743–7

    Article  PubMed  CAS  Google Scholar 

  48. Finizia C, Lundell L, Cange L, et al. The effect of cisapride on oesophageal motility and lower sphincter function in patients with gastro-oesophageal reflux disease. Eur J Gastroenterol Hepatol 2002; 14: 9–14

    Article  PubMed  CAS  Google Scholar 

  49. Tonini M, De Ponti F, Di Nucci A, et al. Cardiac adverse effects of gastrointestinal prokinetics. Aliment Pharmacol Ther 1999; 13: 1585–91

    Article  PubMed  CAS  Google Scholar 

  50. Carlsson L, Amos GJ, Andersson B, et al. Electrophysiological characterization of the prokinetic agents cisapride and mosapride in vivo and in vitro: implications for proarrhythmic potential? J Pharmacol Exp Ther 1997; 282: 220–7

    PubMed  CAS  Google Scholar 

  51. Drici MD, Ebert SN, Wang WX, et al. Comparison of tegaserod (HTF 919) and its main human metabolite with cisapride and erythromycin on cardiac repolarization in the isolated rabbit heart. J Cardiovasc Pharmacol 1999; 34: 82–8

    Article  PubMed  CAS  Google Scholar 

  52. Whorwell PJ, Krumholz S, Muller-Lissner S, et al. Tegaserod has a favorable safety and tolerability profile in patients with constipation predominant and alternating forms of irritable bowel syndrome (IBS) [abstract]. Gastroenterology 2000; 118 Suppl. 2: A1204

    Article  Google Scholar 

  53. Ruth M, Hamelin B, Röhss K, et al. The effect of mosapride, a novel prokinetic, on acid reflux variables in patients with gastro-oesophageal reflux disease. Aliment Pharmacol Ther 1998; 12: 35–40

    Article  PubMed  CAS  Google Scholar 

  54. Kahrilas PJ, Quigley EM, Castell DO, et al. The effects of tegaserod (HTF 919) on oesophageal acid exposure in gastrooesophageal reflux disease. Aliment Pharmacol Ther 2000; 14: 1503–9

    Article  PubMed  CAS  Google Scholar 

  55. Rouzade ML, Fioramonti J, Bueno L. Role of 5-HT3 receptors in the control by cholecystokinin of transient relaxations of the inferior esophageal sphincter in dogs [in French]. Gastroenterol Clin Biol 1996; 20: 575–80

    PubMed  CAS  Google Scholar 

  56. Peeters TL. Erythromycin and other macrolides as prokinetic agents. Gastroenterology 1993; 105: 1886–99

    PubMed  CAS  Google Scholar 

  57. Itoh Z. Moulin and clinical application. Peptides 1997; 18: 593–608

    Article  PubMed  CAS  Google Scholar 

  58. Itoh Z, Suzuki T, Nakaya M, et al. Structure-activity relation among macrolide antibiotics in initiation of interdigestive migrating contractions in the canine gastrointestinal tract. Am J Physiol 1985; 248: G320–5

    PubMed  CAS  Google Scholar 

  59. Clark MJ, Wright T, Bertrand PP, et al. Erythromycin derivatives ABT 229 and GM 611 act on motilin receptors in the rabbit duodenum. Clin Exp Pharmacol Physiol 1999; 26: 242–5

    Article  PubMed  CAS  Google Scholar 

  60. Siani MA, Skillman AG, Carreras CW, et al. Development and screening of a polyketide virtual library for drug leads against a motilide pharmacophore. J Mol Graph Model 2000; 18: 497–40

    Article  PubMed  CAS  Google Scholar 

  61. Coulie B, Tack J, Peeters T, et al. Involvement of two different pathways in the motor effects of erythromycin on the gastric antrum in humans. Gut 1998; 43: 395–400

    Article  PubMed  CAS  Google Scholar 

  62. Costa A, de Ponti F, Gibelli G, et al. In vivo characterization of the colonic prokinetic effect of erythromycin in the rabbit. Pharmacology 1997; 54: 64–75

    Article  PubMed  CAS  Google Scholar 

  63. Depoortere I, Peeters TL, Vantrappen G. Motilin receptors of the rabbit colon. Peptides 1991; 12: 89–94

    Article  PubMed  CAS  Google Scholar 

  64. Janssens J, Peeters TL, Vantrappen G, et al. Improvement of gastric emptying in diabetic gastroparesis by erythromycin: preliminary studies. N Engl J Med 1990; 322: 1028–31

    Article  PubMed  CAS  Google Scholar 

  65. Tack J, Peeters T. What comes after macrolides and other motilin stimulants? Gut 2001; 49: 317–8

    PubMed  CAS  Google Scholar 

  66. Talley NJ, Verlinden M, Snape W, et al. Failure of a motilin receptor agonist (ABT-229) to relieve the symptoms of functional dyspepsia in patients with and without delayed gastric emptying: a randomized double-blind placebo-controlled trial. Aliment Pharmacol Ther 2000; 14: 1653–61

    Article  PubMed  CAS  Google Scholar 

  67. Netzer P, Schmitt B, Inauen W. Effects of ABT-229, a motilin agonist, on acid reflux, oesophageal motility and gastric emptying in patients with gastro-oesophageal reflux disease. Aliment Pharmacol Ther 2002; 16: 1481–90

    Article  PubMed  CAS  Google Scholar 

  68. Chen CL, Orr WC, Verlinden MH, et al. Efficacy of a motilin receptor agonist (ABT-229) for the treatment of gastro-oesophageal reflux disease. Aliment Pharmacol Ther 2002; 16: 749–57

    Article  PubMed  CAS  Google Scholar 

  69. van Herwaarden MA, Samsom M, Van Nispen CH, et al. The effect of motilin agonist ABT-229 on gastro-oesophageal reflux, oesophageal motility and lower oesophageal sphincter characteristics in GERD patients. Aliment Pharmacol Ther 2000; 14: 453–62

    Article  PubMed  Google Scholar 

  70. Smid SD, Blackshaw LA. Vagal neurotransmission to the ferret lower oesophageal sphincter: inhibition via GABA(B) receptors. Br J Pharmacol 2000; 131: 624–30

    Article  PubMed  CAS  Google Scholar 

  71. McDermott CM, Abrahams TP, Partosoedarso E, et al. Site of action of GABAb receptor for vagal motor control of the lower esophageal sphincter in ferrets and rats. Gastroenterology 2001; 120: 1749–62

    Article  PubMed  CAS  Google Scholar 

  72. Smid SD, Young RL, Cooper NJ, et al. GABA(B)R expressed on vagal afferent neurones inhibit gastric mechanosensitivity in ferret proximal stomach. Am J Physiol Gastrointest Liver Physiol 2001; 281: G1494–501

    PubMed  CAS  Google Scholar 

  73. Blackshaw LA. Receptors and transmission in the brain-gut axis: potential for novel therapies: IV. GABA(B) receptors in the brain-gastroesophageal axis. Am J Physiol Gastrointest Liver Physiol 2001; 281: G311–5

    PubMed  CAS  Google Scholar 

  74. Lidums I, Lehmann A, Checklin H, et al. Control of transient lower esophageal sphincter relaxations and reflux by the GABAb agonist baclofen in normal subjects. Gastroenterology 2000; 118: 7–13

    Article  PubMed  CAS  Google Scholar 

  75. Lee KJ, Vos R, Janssens J, et al. Differential effects of baclofen on lower oesophageal sphincter pressure and proximal gastric motility in humans. Aliment Pharmacol Ther 2003; 18: 199–207

    Article  PubMed  CAS  Google Scholar 

  76. Zhang Q, Lehmann A, Rigda R, et al. Control of transient lower oesophageal sphincter relaxations and reflux by the GABA(B) agonist baclofen in patients with gastro-oesophageal reflux disease. Gut 2002; 50: 19–24

    Article  PubMed  CAS  Google Scholar 

  77. Cange L, Johnsson E, Rydholm H, et al. Baclofen-mediated gastro-oesophageal acid reflux control in patients with established reflux disease. Aliment Pharmacol Ther 2002; 16: 869–73

    Article  PubMed  CAS  Google Scholar 

  78. Vela MF, Tutuian R, Katz PO, et al. Baclofen decreases acid and non-acid post-prandial gastro-oesophageal reflux measured by combined multichannel intraluminal impedance and pH. Aliment Pharmacol Ther 2003; 17: 243–51

    Article  PubMed  CAS  Google Scholar 

  79. Ciccaglione AF, Marzio L. Effect of acute and chronic administration of the GABA(B) agonist baclofen on 24 hour pH metry and symptoms in control subjects and in patients with gastro-oesophageal reflux disease. Gut 2003; 52: 464–70

    Article  PubMed  CAS  Google Scholar 

  80. Moore KA, Baba H, Woolf CJ. Gabapentin: actions on adult superficial dorsal horn neurons. Neuropharmacology 2002; 43: 1077–81

    Article  PubMed  CAS  Google Scholar 

  81. Jensen AA, Mosbacher J, Elg S, et al. The anticonvulsant gabapentin (neurontin) does not act through gamma-aminobutyric acid-B receptors. Mol Pharmacol 2002; 61: 1377–84

    Article  PubMed  CAS  Google Scholar 

  82. Wattchow DA, Furness JB, Costa M, et al. Distributions of neuropeptides in the human esophagus. Gastroenterology 1987; 93: 1363–71

    PubMed  CAS  Google Scholar 

  83. North RA. Receptors on individual neurones. Neuroscience 1986; 17: 899–907

    Article  PubMed  CAS  Google Scholar 

  84. Penagini R, Picone A, Bianchi PA. Effect of morphine and naloxone on motor response of the human esophagus to swallowing and distension. Am J Physiol 1996; 271: G675–80

    PubMed  CAS  Google Scholar 

  85. Penagini R, Bianchi PA. Effect of morphine on gastro-esophageal reflux and transient lower esophageal sphincter relaxation. Gastroenterology 1997; 113: 409–14

    Article  PubMed  CAS  Google Scholar 

  86. Allocca M, Mangano M, Colombo P. Does loperamide decrease gastro-oesophageal reflux in patients with reflux disease [abstract]? Gastroenterology 1999; 116: A111

    Google Scholar 

  87. Dodds WJ, Dent J, Hogan WJ, et al. Effect of atropine on esophageal motor function in humans. Am J Physiol 1981; 240: G290–6

    PubMed  CAS  Google Scholar 

  88. Penagini R, Schoeman MN, Dent J, et al. Motor events underlying gastro-oesophageal reflux in ambulant patients with reflux oesophagitis. Neurogastroenterol Motil 1996; 8: 131–41

    Article  PubMed  CAS  Google Scholar 

  89. Sloan S, Rademaker AW, Kahrilas PJ. Determinants of gastroesophageal junction incompetence: hiatal hernia, lower esophageal sphincter, or both? Ann Intern Med 1992; 117: 977–82

    PubMed  CAS  Google Scholar 

  90. Mittal RK, Holloway R, Dent J. Effect of atropine on the frequency of reflux and transient lower esophageal sphincter relaxation in normal subjects. Gastroenterology 1995; 109: 1547–54

    Article  PubMed  CAS  Google Scholar 

  91. Mittal RK, Chiareli C, Liu J, et al. Atropine inhibits gastric distension and pharyngeal receptor mediated lower oesophageal sphincter relaxation. Gut 1997; 41: 285–90

    Article  PubMed  CAS  Google Scholar 

  92. Koerselman J, Pursnani KG, Peghini P, et al. Different effects of an oral anticholinergic drug on gastroesophageal reflux in upright and supine position in normal, ambulant subjects: a pilot study. Am J Gastroenterol 1999; 94: 925–30

    PubMed  CAS  Google Scholar 

  93. Lidums I, Checklin H, Mittal RK, et al. Effect of atropine on gastro-oesophageal reflux and transient lower oesophageal sphincter relaxations in patients with gastro-oesophageal reflux disease. Gut 1998; 43: 12–6

    Article  PubMed  CAS  Google Scholar 

  94. Lidums I, Hebbard GS, Holloway RH. Effect of atropine on proximal gastric motor and sensory function in normal subjects. Gut 2000; 47: 30–6

    Article  PubMed  CAS  Google Scholar 

  95. Ciccaglione AF, Grossi L, Cappello G, et al. Effect of hyoscine N-butylbromide on gastroesophageal reflux in normal subjects and patients with gastroesophageal reflux disease. Am J Gastroenterol 2001; 96: 2306–11

    Article  PubMed  CAS  Google Scholar 

  96. Ledeboer M, Masclee AA, Biemond I, et al. Effect of medium-and long-chain triglycerides on lower esophageal sphincter pressure: role of CCK. Am J Physiol 1998; 274: G1160–5

    PubMed  CAS  Google Scholar 

  97. Gonzalez AA, Farre R, Mones J, et al. Pharmacological and molecular characterization of muscular cholecystokinin receptors in the human lower oesophageal sphincter. Neurogastroenterol Motil 2000; 12: 539–46

    Article  PubMed  CAS  Google Scholar 

  98. Boulant J, Mathieu S, D’Amato M, et al. Cholecystokinin in transient lower oesophageal sphincter relaxation due to gastric distension in humans. Gut 1997; 40: 575–81

    PubMed  CAS  Google Scholar 

  99. Boeckxstaens GE, Hirsch DP, Fakhry N, et al. Involvement of cholecystokinin A receptors in transient lower esophageal sphincter relaxations triggered by gastric distension. Am J Gastroenterol 1998; 93: 1823–8

    Article  PubMed  CAS  Google Scholar 

  100. Zerbib F, Bruley Des Varannes S, Scarpignato C, et al. Endogenous cholecystokinin in postprandial lower esophageal sphincter function and fundic tone in humans. Am J Physiol 1998; 275: G1266–73

    PubMed  CAS  Google Scholar 

  101. Trudgill NJ, Hussain FN, Moustafa M, et al. The effect of cholecystokinin antagonism on postprandial lower oesophageal sphincter function in asymptomatic volunteers and patients with reflux disease. Aliment Pharmacol Ther 2001; 15: 1357–64

    Article  PubMed  CAS  Google Scholar 

  102. D’Amato M, Whorwell PJ, Thompson DG, et al. The CCK-1 receptor antagonist dexloxiglumide does not increase the risk of gall stone formation [abstract]. Am J Gastroenterol 2001; 96: S316

    Article  Google Scholar 

  103. Hirsch DP, Tiel-Van Buul MM, Tytgat GN, et al. Effect of L-NMMA on postprandial transient lower esophageal sphincter relaxations in healthy volunteers. Dig Dis Sci 2000; 45: 2069–75

    Article  PubMed  CAS  Google Scholar 

  104. Hirsch DP, Holloway RH, Tytgat GN, et al. Involvement of nitric oxide in human transient lower esophageal sphincter relaxations and esophageal primary peristalsis. Gastroenterology 1998; 115: 1374–80

    Article  PubMed  CAS  Google Scholar 

  105. Straathof JW, Adamse M, Onkenhout W, et al. Effect of L-arginine on lower oesophageal sphincter motility in man. Eur J Gastroenterol Hepatol 2000; 12: 419–24

    Article  PubMed  CAS  Google Scholar 

  106. Pertwee RG. Pharmacology of cannabinoid receptor ligands. Curr Med Chem 1999; 6: 635–64

    PubMed  CAS  Google Scholar 

  107. Lehmann A, Blackshaw LA, Branden L, et al. Cannabinoid receptor agonism inhibits transient lower esophageal sphincter relaxations and reflux in dogs. Gastroenterology 2002; 123: 1129–34

    Article  PubMed  CAS  Google Scholar 

  108. Tam WC, Schoeman MN, Zhang Q, et al. Delivery of radiofrequency energy to the lower oesophageal sphincter and gastric cardia inhibits transient lower oesophageal sphincter relaxations and gastro-oesophageal reflux in patients with reflux disease. Gut 2003; 52: 479–85

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The original work of the authors was supported by funds from the Universities of Pavia and Bologna. The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Tonini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tonini, M., De Giorgio, R. & De Ponti, F. Progress with Novel Pharmacological Strategies for Gastro-oesophageal Reflux Disease. Drugs 64, 347–361 (2004). https://doi.org/10.2165/00003495-200464040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200464040-00001

Keywords

Navigation