Skip to main content
Log in

Therapeutic Strategies in Common Variable Immunodeficiency

  • Therapy in Practice
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The treatment of common variable immunodeficiency (CVID) is currently based on the early recognition of the condition and replacement immunoglobulin combined with prompt treatment of infections and complications. The route of administration, dose and frequency of administration of immunoglobulin still vary between centres and countries. Other interventions aimed at overcoming the immunological defects in CVID such as interleukin-2 therapy are being studied but there is as yet insufficient evidence to support their routine use. The treatment of complications such as suppurative lung disease uses principles broadly similar to those used for cystic fibrosis, whereas the granulomatous complications involving the lungs and other organ systems are in need of much more research to define optimum therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I

Similar content being viewed by others

Notes

  1. The use of tradenames is for product identification purposes only and does not imply endorsement.

References

  1. Spickett GP. Current perspectives on common variable immunodeficiency (CVID). Clin Exp Allergy 2001; 31: 536–42

    Article  PubMed  CAS  Google Scholar 

  2. Fasth A. Primary immunodeficiency disorders in Sweden: cases among children, 1974–1979. J Clin Immunol 1982; 2: 86–92

    Article  PubMed  CAS  Google Scholar 

  3. Cunningham-Rundles C, Bodian C. Common variable immunodeficiency: clinical and immunological features of 248 patients. Clin Immunol 1999; 92: 34–48

    Article  PubMed  CAS  Google Scholar 

  4. Hermaszewski RA, Webster AD. Primary hypogammaglobulinaemia: a survey of clinical manifestations and complications. Q J Med 1993; 86: 31–42

    PubMed  CAS  Google Scholar 

  5. Spickett GP, Zhang JG, Green T, et al. Granulomatous disease in common variable immunodeficiency: effect on immunoglobulin replacement therapy and response to steroids and splenectomy. J Clin Pathol 1996; 49: 431–4

    Article  PubMed  CAS  Google Scholar 

  6. Siegfried EC, Prose NS, Friedman NJ, et al. Cutaneous granulomas in children with combined immunodeficiency. J Am Acad Dermatol 1991; 25: 761–6

    Article  PubMed  CAS  Google Scholar 

  7. Mechanic LJ, Dikman S, Cunningham-Rundles C. Granulomatous disease in common variable immunodeficiency. Ann Intern Med 1997; 127: 613–7

    PubMed  CAS  Google Scholar 

  8. Spickett GP, Farrant J, North ME, et al. Common variable immunodeficiency: how many diseases? Immunol Today 1997; 18: 325–8

    Article  PubMed  CAS  Google Scholar 

  9. Yel L, Minegishi Y, Coustan-Smith E, et al. Mutations in the mu heavy-chain gene in patients with agammaglobulinemia. N Engl J Med 1996; 335: 1486–93

    Article  PubMed  CAS  Google Scholar 

  10. Minegishi Y, Coustan-Smith E, Wang YH, et al. Mutations in the human lambda5/14.1 gene result in B cell deficiency and agammaglobulinemia. J Exp Med 1998; 187: 71–7

    Article  PubMed  CAS  Google Scholar 

  11. Grimbacher B, Hutloff A, Schlesier M, et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat Immunol 2003; 4: 261–8

    Article  PubMed  CAS  Google Scholar 

  12. Bryant A, Calver NC, Toubi E, et al. Classification of patients with common variable immunodeficiency by B cell secretion of IgM and IgG in response to anti-IgM and interleukin-2. Clin Immunol Immunopathol 1990; 56: 239–48

    Article  PubMed  CAS  Google Scholar 

  13. Warnatz K, Denz A, Drager R, et al. Severe deficiency of switched memory B cells (CD27(+) IgM(−) IgD(−)) in subgroups of patients with common variable immunodeficiency: a new approach to classify a heterogeneous disease. Blood 2002; 99: 1544–51

    Article  PubMed  CAS  Google Scholar 

  14. Osur SL, Lillie MA, Chen PB, et al. Elevation of serum IgG levels and normalization of T4/T8 ratio after hepatitis in a patient with common variable hypogammaglobulinemia. J Allergy Clin Immunol 1987; 79: 969–75

    Article  PubMed  CAS  Google Scholar 

  15. Jolles S, Tyrer M, Johnson M, et al. Long term recovery of IgG and IgM production during HIV infection in a patient with common variable immunodeficiency (CVID). J Clin Pathol 2001; 54: 713–5

    Article  PubMed  CAS  Google Scholar 

  16. Morell A, Barandun S, Locher G. HTLV-III seroconversion in a homosexual patient with common variable immunodeficiency [letter]. N Engl J Med 1986; 315: 456–7

    PubMed  CAS  Google Scholar 

  17. Webster AD, Lever A, Spickett G, et al. Recovery of antibody production after HIV infection in ‘common’ variable hypogammaglobulinaemia. Clin Exp Immunol 1989; 77: 309–13

    PubMed  CAS  Google Scholar 

  18. Wright JJ, Birx DL, Wagner DK, et al. Normalization of antibody responsiveness in a patient with common variable hypogammaglobulinemia and HIV infection. N Engl J Med 1987; 317: 1516–20

    Article  PubMed  CAS  Google Scholar 

  19. Seggev JS. Spontaneous remission of common variable immunodeficiency of 20 years duration. J Allergy Clin Immunol 1991; 88: 418–20

    Article  PubMed  CAS  Google Scholar 

  20. Eisenstein EM, Chua K, Strober W. B cell differentiation defects in common variable immunodeficiency are ameliorated after stimulation with anti-CD40 antibody and IL-10. J Immunol 1994; 152: 5957–68

    PubMed  CAS  Google Scholar 

  21. Saxon A, Keld B, Diaz-Sanchez D, et al. B cells from a distinct subset of patients with common variable immunodeficiency (CVID) have increased CD95 (Apo-1/fas), diminished CD38 expression, and undergo enhanced apoptosis. Clin Exp Immunol 1995; 102: 17–25

    Article  PubMed  CAS  Google Scholar 

  22. Kaneko H, Katagiri-Kawade M, Motoyoshi F, et al. Abnormal B cell response of protein kinase C in some common variable immunodeficiency. Exp Clin Immunogenet 1996; 13: 36–42

    PubMed  CAS  Google Scholar 

  23. Arala-Chaves MP, Korn JH, Galbraith GM, et al. Effects of thymosin and evidence of monocyte suppression of both T- and B-cell functions in two cases of ‘common variable immunodeficiency’. Scand J Immunol 1982; 15: 97–104

    Article  PubMed  CAS  Google Scholar 

  24. Pollack S, Reisner Y, Koziner B, et al. B-cell function in common variable immunodeficiency: suppression of in vitro anti-sheep erythrocytes antibody production by T cells and monocytes. Immunology 1985; 54: 89–96

    PubMed  CAS  Google Scholar 

  25. Aukrust P, Muller F, Froland SS. Enhanced generation of reactive oxygen species in monocytes from patients with common variable immunodeficiency. Clin Exp Immunol 1994; 97: 232–8

    Article  PubMed  CAS  Google Scholar 

  26. Cambronero R, Sewell WA, North ME, et al. Up-regulation of IL-12 in monocytes: a fundamental defect in common variable immunodeficiency. J Immunol 2000; 164: 488–94

    PubMed  CAS  Google Scholar 

  27. Zielen S, Dengler TJ, Bauscher P, et al. Defective CD2 T cell pathway activation in common variable immunodeficiency (CVID). Clin Exp Immunol 1994; 96: 253–9

    Article  PubMed  CAS  Google Scholar 

  28. Fischer MB, Wolf HM, Hauber I, et al. Activation via the antigen receptor is impaired in T cells, but not in B cells from patients with common variable immunodeficiency. Eur J Immunol 1996; 26: 231–7

    Article  PubMed  CAS  Google Scholar 

  29. Majolini MB, D’Elios MM, Boncristiano M, et al. Uncoupling of T-cell antigen receptor and downstream protein tyrosine kinases in common variable immunodeficiency. Clin Immunol Immunopathol 1997; 84: 98–102

    Article  PubMed  CAS  Google Scholar 

  30. Sneller MC, Strober W. Abnormalities of lymphokine gene expression in patients with common variable immunodeficiency. J Immunol 1990; 144: 3762–9

    PubMed  CAS  Google Scholar 

  31. North ME, Ivory K, Funauchi M, et al. Intracellular cytokine production by human CD4+ and CD8+ T cells from normal and immunodeficient donors using directly conjugated anticytokine antibodies and three-colour flow cytometry. Clin Exp Immunol 1996; 105: 517–22

    Article  PubMed  CAS  Google Scholar 

  32. Hauber I, Fischer MB, Maris M, et al. Reduced IL-2 expression upon antigen stimulation is accompanied by deficient IL-9 gene expression in T cells of patients with CVID. Scand J Immunol 1995; 41: 215–9

    Article  PubMed  CAS  Google Scholar 

  33. Smith CI, Moller G, Severinson E, et al. Frequencies of interleukin-5 mRNA-producing cells in healthy individuals and in immunoglobulin-deficient patients, measured by in situ hybridization. Clin Exp Immunol 1990; 81: 417–22

    Article  PubMed  CAS  Google Scholar 

  34. Adelman DC, Matsuda T, Hirano T, et al. Elevated serum interleukin-6 associated with a failure in B cell differentiation in common variable immunodeficiency. J Allergy Clin Immunol 1990; 86: 512–21

    Article  PubMed  CAS  Google Scholar 

  35. Fritsch A, Junker U, Vogelsang H, et al. On interleukins 4, 6 and 10 and their interrelationship with immunoglobulins G and M in common variable immunodeficiency. Cell Biol Int 1994; 18: 1067–75

    Article  PubMed  CAS  Google Scholar 

  36. Spickett GP, Webster AD, Farrant J. Cellular abnormalities in common variable immunodeficiency. Immunodefic Rev 1990; 2: 199–219

    PubMed  CAS  Google Scholar 

  37. Spickett GP, Matamores N, Farrant J. Lymphocyte surface phenotype in common variable immunodeficiency. Dis Markers 1992; 10: 67–80

    PubMed  CAS  Google Scholar 

  38. Farrant J, Spickett G, Matamores N, et al. Study of B and T cell phenotypes in blood from patients with common variable immunodeficiency (CVID). Immunodeficiency 1994; 5: 159–69

    PubMed  CAS  Google Scholar 

  39. North ME, Akbar AN, Borthwick N, et al. Co-stimulation with anti-CD28 (Kolt-2) enhances DNA synthesis by defective T cells in common variable immunodeficiency. Clin Exp Immunol 1994; 95: 204–8

    Article  PubMed  CAS  Google Scholar 

  40. North ME, Spickett GP, Webster AD, et al. Raised serum levels of CD8, CD25 and beta 2-microglobulin in common variable immunodeficiency. Clin Exp Immunol 1991; 86: 252–5

    Article  PubMed  CAS  Google Scholar 

  41. Mullighan CG, Fanning GC, Chapel HM, et al. TNF and lymphotoxin-alpha polymorphisms associated with common variable immunodeficiency: role in the pathogenesis of granulomatous disease. J Immunol 1997; 159: 6236–41

    PubMed  CAS  Google Scholar 

  42. Vorechovsky I, Cullen M, Carrington M, et al. Fine mapping of IGAD1 in IgA deficiency and common variable immunodeficiency: identification and characterization of haplotypes shared by affected members of 101 multiple-case families. J Immunol 2000; 164: 4408–16

    PubMed  CAS  Google Scholar 

  43. Kralovicova J, Hammarstrom L, Plebani A, et al. Fine-scale mapping at IGAD1 and genome-wide genetic linkage analysis implicate HLA-DQ/DR as a major susceptibility locus in selective IgA deficiency and common variable immunodeficiency. J Immunol 2003; 170: 2765–75

    PubMed  CAS  Google Scholar 

  44. McAdam AJ, Greenwald RJ, Levin MA, et al. ICOS is critical for CD40-mediated antibody class switching. Nature 2001; 409: 102–5

    Article  PubMed  CAS  Google Scholar 

  45. Dong C, Juedes AE, Temann UA, et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature 2001; 409: 97–101

    Article  PubMed  CAS  Google Scholar 

  46. Nolte MT, Pirofsky B, Gerritz GA, et al. Intravenous immunoglobulin therapy for antibody deficiency. Clin Exp Immunol 1979; 36: 237–43

    PubMed  CAS  Google Scholar 

  47. Cunningham-Rundles C, Siegal FP, Smithwick EM, et al. Efficacy of intravenous immunoglobulin in primary humoral immunodeficiency disease. Ann Intern Med 1984; 101: 435–9

    PubMed  CAS  Google Scholar 

  48. Roifman CM, Lederman HM, Lavi S, et al. Benefit of intravenous IgG replacement in hypogammaglobulinemic patients with chronic sinopulmonary disease. Am J Med 1985; 79: 171–4

    Article  PubMed  CAS  Google Scholar 

  49. Garbett ND, Currie DC, Cole PJ. Comparison of the clinical efficacy and safety of an intramuscular and an intravenous immunoglobulin preparation for replacement therapy in idiopathic adult onset panhypogammaglobulinaemia. Clin Exp Immunol 1989; 76: 1–7

    PubMed  CAS  Google Scholar 

  50. Roifman CM, Levison H, Gelfand EW. High-dose versus low-dose intravenous immunoglobulin in hypogammaglobulinaemia and chronic lung disease. Lancet 1987; I: 1075–7

    Article  Google Scholar 

  51. Quartier P, Debre M, De Blic J, et al. Early and prolonged intravenous immunoglobulin replacement therapy in childhood agammaglobulinemia: a retrospective survey of 31 patients. J Pediatr 1999; 134: 589–96

    Article  PubMed  CAS  Google Scholar 

  52. Eijkhout HW, van Der Meer JW, Kallenberg CG, et al. The effect of two different dosages of intravenous immunoglobulin on the incidence of recurrent infections in patients with primary hypogammaglobulinemia: a randomized, double-blind, multicenter crossover trial. Ann Intern Med 2001; 135: 165–74

    PubMed  CAS  Google Scholar 

  53. Pirofsky B, Campbell SM, Montanaro A. Individual patient variations in the kinetics of intravenous immune globulin administration. J Clin Immunol 1982; 2 Suppl. 2: 7S–14S

    Article  PubMed  CAS  Google Scholar 

  54. Mankarious S, Lee M, Fischer S, et al. The half-lives of IgG subclasses and specific antibodies in patients with primary immunodeficiency who are receiving intravenously administered immunoglobulin. J Lab Clin Med 1988; 112: 634–40

    PubMed  CAS  Google Scholar 

  55. Ziegner UH, Kobayashi RH, Cunningham-Rundles C, et al. Progressive neurodegeneration in patients with primary immunodeficiency disease on IVIG treatment. Clin Immunol 2002; 102: 19–24

    Article  PubMed  Google Scholar 

  56. Gardulf A, Hammarstrom L, Smith CI. Home treatment of hypogammaglobulinaemia with subcutaneous gammaglobulin by rapid infusion. Lancet 1991; 338: 162–6

    Article  PubMed  CAS  Google Scholar 

  57. Thomas MJ, Brennan VM, Chapel HH. Rapid subcutaneous immunoglobulin infusions in children. Lancet 1993; 342: 1432–3

    Article  PubMed  CAS  Google Scholar 

  58. Chapel HM, Spickett GP, Ericson D, et al. The comparison of the efficacy and safety of intravenous versus subcutaneous immunoglobulin replacement therapy. J Clin Immunol 2000; 20: 94–100

    Article  PubMed  CAS  Google Scholar 

  59. Chapel HM, Brennan VM. Home intravenous immunoglobulin therapy [letter]. Lancet 1988; II: 1423

    Article  Google Scholar 

  60. Ashida ER, Saxon A. Home intravenous immunoglobulin therapy by self-administration. J Clin Immunol 1986; 6: 306–9

    Article  PubMed  CAS  Google Scholar 

  61. Ochs HD, Fischer SH, Lee ML, et al. Intravenous immunoglobulin home treatment for patients with primary immunodeficiency diseases. Lancet 1986; I: 610–1

    Article  Google Scholar 

  62. Lamari F, Anastassiou ED, Tsegenidis T, et al. An enzyme immunoassay to determine the levels of specific antibodies toward bacterial surface antigens in human immunoglobulin preparations and blood serum. J Pharm Biomed Anal 1999; 20: 913–20

    Article  PubMed  CAS  Google Scholar 

  63. Prolonged poliovirus excretion in an immunodeficient person with vaccine-associated paralytic poliomyelitis. MMWR Morb Mortal Wkly Rep 1997; 46: 641–3

    Google Scholar 

  64. Kew OM, Sutter RW, Nottay BK, et al. Prolonged replication of a type 1 vaccine-derived poliovirus in an immunodeficient patient. J Clin Microbiol 1998; 36: 2893–9

    PubMed  CAS  Google Scholar 

  65. Agematsu K, Futatani T, Hokibara S, et al. Absence of memory B cells in patients with common variable immunodeficiency. Clin Immunol 2002; 103: 34–42

    Article  PubMed  CAS  Google Scholar 

  66. Stagg AJ, Funauchi M, Knight SC, et al. Failure in antigen responses by T cells from patients with common variable immunodeficiency (CVID). Clin Exp Immunol 1994; 96: 48–53

    Article  PubMed  CAS  Google Scholar 

  67. Pettit SJ, Bourne H, Spickett GP. Survey of infection in patients receiving antibody replacement treatment for immune deficiency. J Clin Pathol 2002; 55: 577–80

    Article  PubMed  CAS  Google Scholar 

  68. Shalit I. Immunological aspects of new quinolones. Eur J Clin Microbiol Infect Dis 1991; 10: 262–6

    Article  PubMed  CAS  Google Scholar 

  69. Heilmann C, Jensen L, Jensen JS, et al. Treatment of resistant Mycoplasma infection in immunocompromised patients with a new pleuromutilin antibiotic. J Infect 2001; 43: 234–8

    Article  PubMed  CAS  Google Scholar 

  70. Cornejo P, Romero A, Lopez S, et al. Cutaneous and hepatic granulomas in a young woman with common variable immunodeficiency. Br J Dermatol 1999; 140: 546–7

    Article  PubMed  CAS  Google Scholar 

  71. Godeau B, Chevret S, Varet B, et al. Intravenous immunoglobulin or high-dose methylprednisolone, with or without oral prednisone, for adults with untreated severe autoimmune thrombocytopenic purpura: a randomised, multicentre trial. Lancet 2002; 359: 23–9

    Article  PubMed  CAS  Google Scholar 

  72. Longhurst HJ, O’Grady C, Evans G, et al. Anti-D immunoglobulin treatment for thrombocytopenia associated with primary antibody deficiency. J Clin Pathol 2002; 55(1): 64–6

    Article  PubMed  CAS  Google Scholar 

  73. Stasi R, Pagano A, Stipa E, et al. Rituximab chimeric anti-CD20 monoclonal antibody treatment for adults with chronic idiopathic thrombocytopenic purpura. Blood 2001; 98: 952–7

    Article  PubMed  CAS  Google Scholar 

  74. Heelan BT, Tormey V, Amlot P, et al. Effect of anti-CD20 (rituximab) on resistant thrombocytopenia in autoimmune lymphoproliferative syndrome. Br J Haematol 2002; 118: 1078–81

    Article  PubMed  Google Scholar 

  75. Cohen AJ, Roifman C, Brendan J, et al. Localised pulmonary resection for bronchiectasis in hypogammaglobulinaemic patients. Thorax 1994; 49: 509–10

    Article  PubMed  CAS  Google Scholar 

  76. Kruger G, Weite K, Ciobanu N, et al. Interleukin-2 correction of defective in vitro T-cell mitogenesis in patients with common varied immunodeficiency. J Clin Immunol 1984; 4: 295–303

    Article  PubMed  CAS  Google Scholar 

  77. Cunningham-Rundles C, Mayer L, Sapira E, et al. Restoration of immunoglobulin secretion in vitro in common variable immunodeficiency by in vivo treatment with polyethylene glycol-conjugated human recombinant interleukin-2. Clin Immunol Immunopathol 1992; 64: 46–56

    Article  PubMed  CAS  Google Scholar 

  78. Cunningham-Rundles C, Kazbay K, Hassett J, et al. Brief report: enhanced humoral immunity in common variable immunodeficiency after long-term treatment with polyethylene glycol-conjugated interleukin-2. N Engl J Med 1994; 331: 918–21

    Article  PubMed  CAS  Google Scholar 

  79. Cunningham-Rundles C, Kazbay K, Zhou Z, et al. Immunologic effects of low-dose polyethylene glycol-conjugated recombinant human interleukin-2 in common variable immunodeficiency. J Interferon Cytokine Res 1995; 15: 269–76

    Article  PubMed  CAS  Google Scholar 

  80. Rump JA, Jahreis A, Schlesier M, et al. A double-blind, placebo-controlled, crossover therapy study with natural human IL-2 (nhuIL-2) in combination with regular intravenous gammaglobulin (IVIG) infusions in 10 patients with common variable immunodeficiency (CVID). Clin Exp Immunol 1997; 110: 167–73

    Article  PubMed  CAS  Google Scholar 

  81. Nonoyama S, Farrington M, Ishida H, et al. Activated B cells from patients with common variable immunodeficiency proliferate and synthesize immunoglobulin. J Clin Invest 1993; 92: 1282–7

    Article  PubMed  CAS  Google Scholar 

  82. Herfarth H, Scholmerich J. IL-10 therapy in Crohn’s disease: at the crossroads. Treatment of Crohn’s disease with the anti-inflammatory cytokine interleukin 10. Gut 2002; 50: 146–7

    CAS  Google Scholar 

  83. Sidell N, Rieber P, Golub SH. Immunological aspects of retinoids in humans, I: analysis of retinoic acid enhancement of thymocyte responses to PHA. Cell Immunol 1984; 87: 118–25

    Article  PubMed  CAS  Google Scholar 

  84. Sidell N, Famatiga E, Golub SH. Immunological aspects of retinoids in humans, II: retinoic acid enhances induction of hemolytic plaque-forming cells. Cell Immunol 1984; 88: 374–81

    Article  PubMed  CAS  Google Scholar 

  85. Sherr E, Adelman DC, Saxon A, et al. Retinoic acid induces the differentiation of B cell hybridomas from patients with common variable immunodeficiency. J Exp Med 1988; 168: 55–71

    Article  PubMed  CAS  Google Scholar 

  86. Porat YB, Levy D, Levy J, et al. Intrinsic defect in B cells of patients with hyper-immunoglobulin M syndrome. Clin Diagn Lab Immunol 1995; 2: 412–6

    PubMed  CAS  Google Scholar 

  87. Zhang JG, Morgan L, Spickett GP. The effects of vitamin A derivatives on in vitro antibody production by peripheral blood mononuclear cells (PBMC) from normal blood donors and patients with common variable immunodeficiency (CVID). Clin Exp Immunol 1997; 107: 57–60

    Article  PubMed  CAS  Google Scholar 

  88. Reichenbach J, Schubert R, Schwan C, et al. Antioxidative capacity in patients with common variable immunodeficiency. J Clin Immunol 2000; 20: 221–6

    Article  PubMed  CAS  Google Scholar 

  89. Aukrust P, Muller F, Ueland T, et al. Decreased vitamin A levels in common variable immunodeficiency: vitamin A supplementation in vivo enhances immunoglobulin production and downregulates inflammatory responses. Eur J Clin Invest 2000; 30: 252–9

    Article  PubMed  CAS  Google Scholar 

  90. Ershler WB, Hacker MP, Burroughs BJ, et al. Cimetidine and the immune response, I: in vivo augmentation of nonspecific and specific immune response. Clin Immunol Immunopathol 1983; 26: 10–7

    Article  PubMed  CAS  Google Scholar 

  91. Nair MP, Schwartz SA. Effect of histamine and histamine antagonists on natural and antibody-dependent cellular cytotoxicity of human lymphocytes in vitro. Cell Immunol 1983; 81: 45–60

    Article  PubMed  CAS  Google Scholar 

  92. Palacios R, Alarcon-Segovia D. Cimetidine abrogates suppressor T cell function in vitro. Immunol Lett 1981; 3: 33–7

    Article  PubMed  CAS  Google Scholar 

  93. White WB, Ballow M. Modulation of suppressor-cell activity by cimetidine in patients with common variable hypogammaglobulinemia. N Engl J Med 1985; 312: 198–202

    Article  PubMed  CAS  Google Scholar 

  94. Segal R, Dayan M, Epstein N, et al. Common variable immunodeficiency: a family study and therapeutic trial with cimetidine. J Allergy Clin Immunol 1989; 84: 753–61

    Article  PubMed  CAS  Google Scholar 

  95. Ambrus Jr JL, Haneiwich S, Chesky L, et al. Improved in vitro antigen-specific antibody synthesis in two patients with common variable immunodeficiency taking an oral cyclooxygenase and lipoxygenase inhibitor (ketoprofen). J Allergy Clin Immunol 1991; 88: 775–83

    Article  PubMed  Google Scholar 

  96. Aucouturier P, Couderc LJ, Gouet D, et al. Serum immunoglobulin G subclass dysbalances in the lymphadenopathy syndrome and acquired immune deficiency syndrome. Clin Exp Immunol 1986; 63: 234–40

    PubMed  CAS  Google Scholar 

  97. Parkin JM, Helbert M, Hughes CL, et al. Immunoglobulin G subclass deficiency and susceptibility to pyogenic infections in patients with AIDS-related complex and AIDS. AIDS 1989; 3: 37–9

    PubMed  CAS  Google Scholar 

  98. Lane HC, Masur H, Edgar LC, et al. Abnormalities of B-cell activation and immunoregulation in patients with the acquired immunodeficiency syndrome. N Engl J Med 1983; 309: 453–8

    Article  PubMed  CAS  Google Scholar 

  99. Smith P, Helbert M, Raftery M, et al. Paraproteins and monoclonal expansion of CD3+ CD8+ CD56-CD57+ T lymphocytes in a patient with HIV infection. Br J Haematol 1999; 105: 85–7

    PubMed  CAS  Google Scholar 

  100. Branda RF, Moore AL, Hong R, et al. B-cell proliferation and differentiation in common variable immunodeficiency patients produced by an antisense oligomer to the rev gene of HIV-1. Clin Immunol Immunopathol 1996; 79: 115–21

    Article  PubMed  CAS  Google Scholar 

  101. Ghetie V, Ward ES. Multiple roles for the major histocompatibility complex class I-related receptor FcRn. Annu Rev Immunol 2000; 18: 739–66

    Article  PubMed  CAS  Google Scholar 

  102. Ma X, Riemann H, Gri G, et al. Positive and negative regulation of interleukin-12 gene expression. Eur Cytokine Netw 1998; 9: 54–64

    PubMed  CAS  Google Scholar 

  103. Gomez F, Ruiz P, Briceno F, et al. Macrophage Fcgamma receptors expression is altered by treatment with dopaminergic drugs. Clin Immunol 1999; 90: 375–87

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Many thanks to Dr David Webster for careful reading of the manuscript and helpful comments. Stephen Jolles is supported by the Leukaemia Research Foundation, Primary Immunodeficiency Association and Peel Medical Research Trust. The authors have no conflicts of interest that are directly relevant to the content of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen R. A. Jolles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sewell, W.A.C., Buckland, M.S. & Jolles, S.R.A. Therapeutic Strategies in Common Variable Immunodeficiency. Drugs 63, 1359–1371 (2003). https://doi.org/10.2165/00003495-200363130-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200363130-00003

Keywords

Navigation