Skip to main content
Log in

Renoprotective Therapy in Patients With Nondiabetic Nephropathies

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

End-stage renal failure (ESRF) represents a major health problem. Early diagnosis and effective measures to slow or to stop renal damage are essential goals for nephrologists to prevent or delay progression to ESRF. Identifying mechanisms of progressive parenchymal injury is instrumental in developing renoprotective strategies. Protein traffic through the glomerular barrier is an important determinant of progression in chronic nephropathies and proteinuria is the best predictor of renal outcome.

At the moment, ACE inhibition is the most effective treatment in patients with chronic nondiabetic proteinuric nephropathies, reducing protein traffic, urinary protein excretion rate and progression to ESRF more effectively than conventional treatment. Low sodium diet and/or diuretic treatment may help to increase the antiproteinuric effect of ACE inhibitors by maximally activating the reninangiotensin system. Intensified blood pressure control, whatever treatment is employed, also enhances the antiproteinuric response to ACE inhibitors. However, since this is not always sufficient to normalise urinary proteins and fully prevent renal damage, additional treatments may be needed in patients poorly or not responding to ACE inhibitors. These may include angiotensin II receptor antagonists, non-dihydropyridine calcium antagonists and perhaps low doses of nonsteroidal anti-inflammatory drugs.

Preliminary data on multidrug treatments including these additional antiproteinuric agents are encouraging, but additional studies in larger patient numbers are needed to better define the risk/benefit profile of this innovative approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Anonymous. Incidence and prevalence of ESRD. United Stataes Renal Data System. Am J Kidney Dis 1998; 32 (2 Suppl. 1): S38–49

  2. Brenner BM, Meyer TW, Hostetter TH. Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 1982; 307: 652–9

    Article  PubMed  CAS  Google Scholar 

  3. Hostetter TH, Meyer TW, Rennke HG, et al. Chronic effects of dietary protein in the rat with intact and reduced renal mass. Kidney Int 1986; 30: 509–17

    Article  PubMed  CAS  Google Scholar 

  4. Anderson S, Rennke HG, Brenner BM. Therapeutic advantage of converting enzyme inhibitors in arresting progressive renal disease associated with systemic hypertension in the rat. J Clin Invest 1986; 77: 1993–2000

    Article  PubMed  CAS  Google Scholar 

  5. Bohrer MP, Deen WM, Robertson CR, et al. Mechanism of angiotensin II induced proteinuria in the rat. Am J Physiol 1977; 233: F13–F21

    PubMed  CAS  Google Scholar 

  6. Yoshioka T, Mitarai T, Kon V, et al. Role of angiotensin II in a overt functional proteinuria. Kidney Int 1986; 30: 538–45

    Article  PubMed  CAS  Google Scholar 

  7. Yoshioka T, Rennke HG, Salant DJ, et al. Role of abnormally high transmural pressure in the permselectivity defect of glomerular capillary wall: a study in early passive Heymann nephritis. Circ Res 1987; 61: 531–8

    Article  PubMed  CAS  Google Scholar 

  8. Remuzzi G, Ruggenenti P, Benigni A. Understanding the nature of renal disease progression. Kidney Int 1997; 51: 2–15

    Article  PubMed  CAS  Google Scholar 

  9. Zoja C, Morigi M, Figliuzzi M, et al. Proximal tubular cell synthesis and secretion of endothelin-1 on challenge with albumin and other proteins. Am J Kidney Dis 1995; 26: 934–41

    Article  PubMed  CAS  Google Scholar 

  10. Wang Y, Chen J, Chen L, et al. Induction of monocyte chemoattractant protein-1 in proximal tubule cells by urinary protein. J Am Soc Nephrol 1997; 8: 1537–45

    PubMed  CAS  Google Scholar 

  11. Zoja C, Bonadelli R, Colleoni S, et al. Protein overload stimulates RANTES production by proximal tubular cells depending on NF-kB activation. Kidney Int 1998; 53: 1608–15

    Article  PubMed  CAS  Google Scholar 

  12. Deckert T, Kofoed-Enevoldsen A, Vidal P, et al. Size- and charge selectivity of glomerular filtration in type 1 (insulin-dependent) diabetic patients with and without albuminuria. Diabetologia 1993; 36: 244–51

    Article  PubMed  CAS  Google Scholar 

  13. Bolton G, Deen W, Daniels B. Assessment of the charge selectivity of glomerular basement membrane using Ficoll sulfate. Am J Physiol 1998; 274: F889–F896

    PubMed  CAS  Google Scholar 

  14. Comper W, Glasgow E. Charge selectivity in kidney ultrafiltration. Kidney Int 1995; 47: 1242–51

    Article  PubMed  CAS  Google Scholar 

  15. Zoja C, Liu X-H, Abbate M, et al. Angiotensin II blockade limits tubular protein overreabsorption and the consequent upregulation of endothelin 1 gene in experimental membranous nephropathy. Exp Nephrol 1998; 6: 121–31

    Article  PubMed  CAS  Google Scholar 

  16. Eddy AA, Giachelli CM. Renal expression of genes that promote interstitial inflammation and fibrosis in rats with protein-overload proteinuria. Kidney Int 1995; 47: 1546–57

    Article  PubMed  CAS  Google Scholar 

  17. Tang WW, Qi M, Warren JS, et al. Chemokine expression in experimental tubulointerstitial nephritis. J Immunol 1997; 159: 870–6

    PubMed  CAS  Google Scholar 

  18. Abbate M, Zoja C, Corna D, et al. In progressive nephropathies, overload of tubular cells with filtered proteins translates glomerular permeability dysfunction into cellular signals of interstitial inflammation. J Am Soc Nephrol 1998; 9: 1213–24

    PubMed  CAS  Google Scholar 

  19. Mallick NP, Short CD, Hunt LP. How far since Ellis? Nephron 1987; 46: 113–24

    Article  PubMed  CAS  Google Scholar 

  20. Peterson JC, Adler S, Burkart JM, et al. Blood pressure control, proteinuria, and the progression of renal disease. Ann Intern Med 1995; 123: 754–62

    PubMed  CAS  Google Scholar 

  21. GISEN Group. Randomised placebo-controlled trial of effect of ramipril on decline in glomerular filtration rate and risk of terminal renal failure in proteinuric, non-diabetic nephropathy. Lancet 1997; 349: 1857–63

    Article  Google Scholar 

  22. Ruggenenti P, Perna A, Mosconi L, et al. Urinary protein excretion rate is the best independent predictor of ESRF in non-diabetic proteinuric chronic nephropathies. Kidney Int 1998; 53: 1209–16

    Article  PubMed  CAS  Google Scholar 

  23. Wapstra FH, Navis G, de Jong PE, et al. Prognostic value of the short-term antiproteinuric response to ACE-inhibition for prediction of GFR decline in patients with nondiabetic renal disease. Exp Nephrol 1996; 4 Suppl. 1: 47–52

    PubMed  CAS  Google Scholar 

  24. Meyer TW, ANderson SA, Rennke HG, et al. Reversing glomerular hypertension stabilises established glomerula injury. Kidney Int 1987; 31: 752–9

    Article  PubMed  CAS  Google Scholar 

  25. Zatz M, Meyer TW, Rennke HG, et al. Predominance of hemodynamic rather than metabolic factors in the pathogenesis of diabetic nephropathy. Proc Natl Acad Sci U S A 1985; 82: 5963–7

    Article  PubMed  CAS  Google Scholar 

  26. Keane WF. Lipids and kidney. Kidney Int 1994; 46: 910–20

    Article  PubMed  CAS  Google Scholar 

  27. Diamond JR, Karnovski MJ. Exacerbation of chronic aminonucleoside nephrosis by dietary cholesterol supplementation. Kidney Int 1987; 32: 671–7

    Article  PubMed  CAS  Google Scholar 

  28. Michel O, Heudes D, Lamarre I, et al. Reduction of insulin and triglycerides delays glomerulosclerosis in obese Zucker rats. Kidney Int 1997; 52: 1532–42

    Article  PubMed  CAS  Google Scholar 

  29. Remuzzi A, Perticucci E, Ruggenenti P, et al. Angiotensin converting enzyme inhibition improves glomerular size-selectivity in IgA nephropathy. Kidney Int 1991; 39: 1267–73

    Article  PubMed  CAS  Google Scholar 

  30. Giatras I, Lau J, Levey AS, for the Angiotensin-Converting-Enzyme Inhibition and Progressive Renal Disease Study Group. Effect of angiotensin converting enzyme inhibitors on the progression of non-diabetic renal disease: a meta-analysis of randomized trials. Ann Intern Med 1997; 127: 337–45

    PubMed  CAS  Google Scholar 

  31. Maschio G, Alberti D, Janin G, et al. Effect of the angiotensin-converting-enzyme inhibitor benazepril on the progression of chronic renal insufficiency. N Engl J Med 1996; 334: 939–45

    Article  PubMed  CAS  Google Scholar 

  32. Ruggenenti P, Perna A, Gherardi G, et al. Renal function and requirement for dialysis in chronic nephropathy patients on long-term ramipril: REIN follow-up trial. Lancet 1998; 352: 1252–6

    Article  PubMed  CAS  Google Scholar 

  33. Ruggenenti P, Perna A, Benini R, et al. In chronic nephropathies prolonged ACE inhibition can induce remission: dynamics of time-dependent changes in GFR. J Am Soc Nephrol 1999; 10: 997–1006

    PubMed  CAS  Google Scholar 

  34. Wilmer WA, Hebert LA, Lewis EJ, et al. Remission of nephrotic syndrome in type 1 diabetes: long-term follow-up of patients in the Captopril Study. Am J Kidney Dis 1999; 34: 308–14

    Article  PubMed  CAS  Google Scholar 

  35. Fogo AB. Progression and potential regression of glomerulosclerosis. Kidney Int 2001; 59: 804–19

    Article  PubMed  CAS  Google Scholar 

  36. Ruggenenti P, Perna A, Gherardi G, et al. Renoprotective properties of ACE-inhibition in non-diabetic nephropathies with non-nephrotic proteinuria. Lancet 1999; 354: 359–64

    Article  PubMed  CAS  Google Scholar 

  37. Ruggenenti P, Perna A, Zoccali C, et al. Chronic proteinuric nephropathies. Outcomes and response to treatment in a prospective cohort of 352 patients: differences between women and men in relation to ACE gene polymorphism. J Am Soc Nephrol 2000; 11:88–96

    PubMed  CAS  Google Scholar 

  38. Yoshida H, Mitarai T, Kawamura T. Role of the deletion polymorphism of angiotensin converting enzyme gene in the progression and therapeutic responsiveness of IgA nephropathy. J Clin Invest 1995; 96: 2162

    Article  PubMed  CAS  Google Scholar 

  39. Moriyama T, Kitamura H, Ochi S. Association of angiotensin I-converting enzyme gene polymorphism with susceptibility to antiproteinuric effect of angiotensin I-converting enzyme inhibitors in patients with proteinuria. J Am Soc Nephrol 1995; 6(6): 1676–8

    PubMed  CAS  Google Scholar 

  40. van Essen GG, Rensma PL, de Zeeuw D. Association between angiotensin-converting-enzyme gene polymorphism and renoprotective therapy. Lancet 1996; 347: 94–5

    Article  PubMed  Google Scholar 

  41. Bakris GL, Weir MR. Angiotensin-converting enzyme inhibitor-associated elevations in serum creatinine. Arch Intern Med 2000; 160: 685–93

    Article  PubMed  CAS  Google Scholar 

  42. Remuzzi G, Bertani T. Pathophysiology of progressive nephropathies. N Engl J Med 1998; 20: 1448–56

    Google Scholar 

  43. Perico N, Remuzzi A, Sangalli F, et al. The antiproteinuric effect of angiotensin antagonism in human IgA nephropathy is potentiated by indomethacin. J Am Soc Nephrol 1998; 9: 2308–17

    PubMed  CAS  Google Scholar 

  44. Plum J, Bunten B, Nemeth R, et al. Effects of the angiotensin Ii antagonist valsartan on blood pressure, proteinuria, and renal hemodynamics in patients with chronic renal failure and hypertension. J Am Soc Nephrol 1998; 9: 2223–4

    PubMed  CAS  Google Scholar 

  45. Lafayette RA, Mayer G, Park SK, et al. Angiotensin II receptor blockade limits glomerular injury in rats with reduced renal mass. J Clin Invest 1992; 90: 766–71

    Article  PubMed  CAS  Google Scholar 

  46. Ots M, Mackenzie HS, Troy JL, et al. Effects of combination therapy with enalapril and losartan on the rate of progression of renal injury in rats with 5/6 renal mass ablation. J Am Soc Nephrol 1998; 9: 224–30

    PubMed  CAS  Google Scholar 

  47. Allen TJ, Cao Z, Youssef S, et al. Role of angiotensin II and bradykinin in experimental diabetic nephropathy: functional and structural studies. Diabetes 1997; 46: 1612–8

    Article  PubMed  CAS  Google Scholar 

  48. Zoccali C, Valvo E, Russo D, et al. Antiproteinuric effect of losartan in patients with chronic renal diseases [letter]. Nephrol Dial Transplant 1997; 12: 234–5

    Article  PubMed  CAS  Google Scholar 

  49. Russo D, Pisani A, Balletta MM, et al. Additive antiproteinuric effect of converting enzyme inhibitor and losartan in normotensive patients with IgA nephropathy. Am J Kidney Dis 1999; 33: 851–6

    Article  PubMed  CAS  Google Scholar 

  50. Smith AC, Toto R, Bakris GL. Differential effects of calcium channel blockers on size selectivity of proteinuria in diabetic glomerulopathy. Kidney Int 1998; 54: 889–96

    Article  PubMed  CAS  Google Scholar 

  51. Bakris GL, Weir MR, De Quattro V, et al. Effects of an ACE inhibitor/calcium antagonist combination on proteinuria in diabetic nephropathy. Kidney Int 1998; 54: 1283–9

    Article  PubMed  CAS  Google Scholar 

  52. ter Wee PM, De Micheli AG, Epstein M. Effects of calcium antagonists on renal hemodynamics and progression of non-diabetic chronic renal disease. Arch Intern Med 1994; 154(11): 1185–202

    Article  PubMed  Google Scholar 

  53. Ruggenenti P, Perna A, Benini R, et al. Effects of dihydropyridine calcium channel blockers, angiotensin-converting enzyme inhibition, and blood pressure control on chronic, nondiabetic nephropathies. J Am Soc Nephrol 1998; 9(11): 2096–101

    PubMed  CAS  Google Scholar 

  54. Murray KM. Calcium-channel blockers for treatment of diabetic nephropathy. Clin Pharm 1991; 10: 862–5

    PubMed  CAS  Google Scholar 

  55. Donker AJ, Brentjens JR, van der Hem GK, et al. Treatment of the nephrotic syndrome with indomethacin. Nephron 1978; 22: 374–81

    Article  PubMed  CAS  Google Scholar 

  56. Michielsen P, Lambert PP. Effects du traitement par les corticosteroides et indomethacine sur la proteinurie. Bull Mem Soc Med Paris 1967; 118: 217–32

    CAS  Google Scholar 

  57. Tiggeler RGWL, Hulme B, Wigdeveld PGAB. Effect of indomethacin on glomerular permeability in the nephrotic syndrome. Kidney Int 1979; 16: 312–21

    Article  PubMed  CAS  Google Scholar 

  58. Velosa JA, Torres VE. Benefits and risks of nonsteroidal anti-inflammatory drugs in steroid-resistant nephrotic syndrome. Am J Kidney Dis 1986; 8: 345–50

    PubMed  CAS  Google Scholar 

  59. Vriesendorp R, Donker JM, de Zeeuw D, et al. Effects of nonsteroidal antiinflammatory drugs on proteinuria. Am J Med 1986; 81: 84–94

    Article  PubMed  CAS  Google Scholar 

  60. Golbetz H, Black V, Shemesh O, et al. Mechanism of the antiproteinuric effect of indomethacin in nephrotic humans. Am J Physiol 1989; 256: F44–F51

    PubMed  CAS  Google Scholar 

  61. Benigni A. Endothelin antagionists in renal disease. Kidney Int 2000; 57: 1778–94

    Article  PubMed  CAS  Google Scholar 

  62. Benigni A, Colosio V, Brena C, et al. Unselective inhibition of endothelin receptors reduces renal dysfunction in experimental diabetes. Diabetes 1998; 47: 450–6

    Article  PubMed  CAS  Google Scholar 

  63. Benigni A, Corna D, Maffi R, et al. Renoprotective effect of contemporary blocking of angiotensin II and endothelin-1 in rats with membranous nephropathy. Kidney Int 1998; 54: 353–9

    Article  PubMed  CAS  Google Scholar 

  64. Benigni A, Remuzzi G. Novel strategies to retard renal disease progression: combining ACE inhibition with endothelin receptor blocking? Nephrol Dial Transplant 1998; 13: 2734–8

    Article  PubMed  CAS  Google Scholar 

  65. Guler H, Eckardt K, Jurgen Z, et al. Insulin-like growth factor 1 increases glomerular filtration rate and renal plasma flow in man. Acta Endocrinol 1989; 121: 101–6

    PubMed  CAS  Google Scholar 

  66. O’Shea MH, Miller SB, Hammerman MR. Effects of IGF1 on renal function in patients with chronic renal failure. Am J Physiol 1993; 264: F917–F922

    PubMed  Google Scholar 

  67. Miller SB, Moulton M, O’Shea M, et al. Effects of IGF 1 on renal function in end-stage chronic renal failure. Kidney Int 1994; 46: 201–7

    Article  PubMed  CAS  Google Scholar 

  68. Ike JO, Fervenza FC, Hoffman AR, et al. Early experience with extended use of insulin-like growth factor 1 in advanced chronic renal failure. Kidney Int 1997; 51: 840–9

    Article  PubMed  CAS  Google Scholar 

  69. Vijayan A, Franklin SC, Behrend T, et al. Insulin-like growth factor 1 improves renal function in patients with end-stage chronic renal failure. Am J Physiol 1999; 276: R929–R934

    PubMed  CAS  Google Scholar 

  70. Vijayan A, Behrend T, Miller SB. Clinical use of growth factors in chronic renal failure. Curr Opin Nephrol Hypertens 2000; 9:5–10

    Article  PubMed  CAS  Google Scholar 

  71. Palla R, Panichi V, Finato V, et al. Effect of increasing doses of lisinopril on proteinuria of normotensive patients with IgA nephropathy and normal renal function. Int J Clin Pharm Res 1994; 14: 35–43

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Pisoni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pisoni, R., Ruggenenti, P. & Remuzzi, G. Renoprotective Therapy in Patients With Nondiabetic Nephropathies. Drugs 61, 733–745 (2001). https://doi.org/10.2165/00003495-200161060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200161060-00003

Keywords

Navigation