Skip to main content
Log in

Kinase Inhibitors in Cancer Therapy

A Look Ahead

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The most essential kinases involved in cell membrane receptor activation, signal transduction and cell cycle control or programmed cell death and their interconections are reviewed. In tumours, the genes of many of those kinases are mutated or amplified or the proteins are overexpressed.

The use of key kinases offers the possibility to screen in vitro for synthetic small molecule kinase inhibitors. In view of the many interconnections of cellular kinases, their role in preventing or inducing programmed cell death and the possibility that a considerable number of signal transducing proteins are still unknown, cellular test systems are recommended in which the respective key kinase or one of its main partner molecules are overexpressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Table III
Table IV
Table V
Table VI

Similar content being viewed by others

References

  1. Denn WA, Smaill JB, Fry DW, et al. Structure-activity relationships for 4-anilinoquinazoline and related pyridopyrimidine acrylamides as specific, irreversible inhibitors of the ATP site of the epidermal growth factor receptor [abstract]. Proc Am Assoc Cancer Res 1998; 39: 559

    Google Scholar 

  2. Hanks SK, Hunter T. The eukaryotic protein kinase superfamily. In: Hardie G, Hanks S, editors. The protein kinase facts book. New York: Academic Press, 1995; 7: 7–47

    Chapter  Google Scholar 

  3. Sedlacek HH, Hoffmann D, Schulz G, et al. The chemotherapy of malignant diseases: research perspectives. In: Sedlacek HH, Hoffmann D, Schulz G, et al., editors. Contributions to Oncology No. 34. München: Karger Verlag, 1989

    Google Scholar 

  4. Plowman GD, Green JM, Culouscou JM, et al. Heregulin induces tyrosine phosphorylation of HER4/P180 (erbB4). Nature 1993; 366: 473–5

    Article  PubMed  CAS  Google Scholar 

  5. Pusztal L, Lewis CE, Lorenzen J, et al. Growth factors: regulation of normal and neoplastic growth. J Pathol 1993; 169: 191–201

    Article  Google Scholar 

  6. Boyle WJ. Growth factors and tyrosine kinase receptors during development and cancer. Curr Opin Oncol 1992; 4: 156–62

    Article  PubMed  CAS  Google Scholar 

  7. Boulikas T. The phosphorylation connection to cancer (review). Int J Oncol 1995; 6: 271–8

    PubMed  CAS  Google Scholar 

  8. Cohen S, Ushiro H, Stoscheck C, et al. A native 170 000 epidermal growth factor receptor-kinase complex from shed plasma membrane vesicles. J Biol Chem 1982; 257: 1523–31

    PubMed  CAS  Google Scholar 

  9. Gale NW, Kaplan S, Lowenstein EJ, et al. Grb2 mediates the EGF-dependent activation of guanine nucleotide exchange on Ras. Nature 1993; 363: 88–90

    Article  PubMed  CAS  Google Scholar 

  10. Li X, Liu J, Park JK, et al. T cells from renal cell carcinoma patients exhibit an abnormal pattern of kappa B-specific DNA-binding activity: a preliminary report. Cancer Res 1994; 54: 5424–9

    PubMed  CAS  Google Scholar 

  11. Medema RH, De Vries-Smits AMM, Van Der Zon GCM, et al. Ras activation by insulin and epidermal growth factor through enhanced exchange of guanine nucleotides on p21ras. Mol Cell Biol 1993; 13: 155–62

    PubMed  CAS  Google Scholar 

  12. Ellis C, Moran M, McCormick F, et al. Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 1990; 343: 377–81

    Article  PubMed  CAS  Google Scholar 

  13. Fisher DA, Lakshmanan J. Metabolism and the effects of epidermal growth factor and related growth factors in mammals. Endocr Rev 1990 11: 418–45

    Article  PubMed  CAS  Google Scholar 

  14. Velu TJ, Beguinot L, Vass WC, et al. Epidermal growth factor dependent transformation by a human EGF receptor protooncogene. Science 1987; 238: 1408–10

    Article  PubMed  CAS  Google Scholar 

  15. Downward J, Yarden Y, Mayes E, et al. Close similarity of epidermal growth factor receptor and v-erbB oncogene protein sequence. Nature 1984; 307: 521–7

    Article  PubMed  CAS  Google Scholar 

  16. Fitzpatrick SL, Brightwell J, Wittliff J, et al. Epidermal growth factor binding by breast tumor biopsies and relationship to estrogen and progestin receptor levels. Cancer Res 1984; 44: 3448–53

    PubMed  CAS  Google Scholar 

  17. Klijn JGM, Berns PMJJ, Schmitz PIM, et al. The clinical significance of epidermal growth factor receptor (EGF-R) in human breast cancer: a review on 5232 patients. Endocr Rev 1992; 13: 3–15

    PubMed  CAS  Google Scholar 

  18. Salomon DS, Brandt R, Ciardiello F, et al. Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol 1995; 19: 183–232

    Article  CAS  Google Scholar 

  19. Khazaie K, Schirrmacher V, Lichtner R. EGF receptor in neoplasia and metastasis. Cancer Metast Rev 1993; 12: 255–74

    Article  CAS  Google Scholar 

  20. Aaronson SA. Growth factors and cancer. Science 1991; 254: 1145–53

    Article  Google Scholar 

  21. Fekete M, Wittliff JL, Schally AV Characteristics and distribution of receptors for [D-Trp6]-luteinizing hormone-releasing hormone, somatostatin, epidermal growth factor and sex steroids in 500 biopsy samples of human breast cancer. J Clin Lab Anal 1989; 3: 137–47

    Article  PubMed  CAS  Google Scholar 

  22. Srkalovic G, Wittliff JL, Schally AV. Detection and partial characterization of receptors for [D-Trp6]-luteinizing hormone-releasing hormone and epidermal growth factor in human endometrial carcinoma. Cancer Res 1990; 50: 1841–6

    PubMed  CAS  Google Scholar 

  23. Korc M, Meltzer P, Trent J. Enhanced expression of epidermal growth factor receptor correlates with alterations of chromosome 7 in human pancreatic cancer. Proc Natl Acad Sci U S A 1986; 83: 5141–4

    Article  PubMed  CAS  Google Scholar 

  24. Yamazaki H, Ohba Y, Tamaoki N, et al. A deletion mutation within the ligand binding domain is responsible for activation of epidermal growth factor gene in human brain tumors. Jpn J Cancer Res 1990; 81: 773–9

    Article  PubMed  CAS  Google Scholar 

  25. Moscatello DK, Holgado-Madruga M, Godwin AK, et al. Frequent expression of a mutant epidermal growth factor receptor in multiple human tumors. Cancer Res 1995; 55: 5536–9

    PubMed  CAS  Google Scholar 

  26. Wickstrand CJ, Hale LP, Batra SK, et al. Monoclonal antibodies against EGFRvIII are tumor specific and react with breast and lung carcinomas and malignant gliomas. Cancer Res 1995; 55: 3140–8

    Google Scholar 

  27. Myers MG, Sun XJ, Cheatham B, et al. IRS-1 is a common element in insulin and insulin-like growth factor-I signalling to the phosphatidylinositol 3′-kinase. Endocrinol 1993; 132: 1421–30

    Article  CAS  Google Scholar 

  28. Kern JA, Schwartz DA, Nordberg JE, et al. p185neu expression in human lung adenocarcinomas predicts shortened survival. Cancer Res 1990; 50: 5184–8

    PubMed  CAS  Google Scholar 

  29. Hall PA, Hughes CM, Staddon SL, et al. The c-erb B-2 protooncogene in human pancreatic cancer. J Pathol 1990; 161: 195–200

    Article  PubMed  CAS  Google Scholar 

  30. Berchuck A, Rodriguez G, Kinney RB, et al. Overexpression of HER-2/neu in endometrial cancer is associated with advanced stage disease. Am J Obstet Gynecol 1991; 164: 15–21

    PubMed  CAS  Google Scholar 

  31. Bergman CL, Hung MC, Weinberg RA. Multiple independent activation of the neu oncogene by point mutations altering the transmembrane domain of p 185. Cell 1984; 46: 649–57

    Google Scholar 

  32. Radinsky R. Paracrine growth regulation of human colon carcinoma organ-specific metastasis. Cancer Metast Rev 1993; 12: 345–61

    Article  CAS  Google Scholar 

  33. Kobrin MS, Yamanaka Y, Friess H, et al. Aberrant expression of the type I fibroblast growth factor receptor in human pancreatic adenocarcinomas. Cancer Res 1993; 53: 4741–4

    PubMed  CAS  Google Scholar 

  34. Rudland PS, Fernig DG, Smith JA. Growth factors and their receptors in neoplastic mammary glands. Biomed Pharmacother 1995; 49: 389–99

    Article  PubMed  CAS  Google Scholar 

  35. Kato J, Wanebo H, Calabresi P, et al. Basic fibroblast growth factor production and growth factor receptors as potential targets for melanoma therapy. Melanoma Res 1992; 2: 13–23

    Article  PubMed  CAS  Google Scholar 

  36. Shih IM, Herlyn M. Autocrine and paracrine roles for growth factors in melanoma. In Vivo 1994; 8: 113–24

    PubMed  CAS  Google Scholar 

  37. Helle SI, Lonning PE. Insulin-like growth factors in breast and prostatic cancer. Endocr Relat Cancer 1995; 2: 153–69

    Article  CAS  Google Scholar 

  38. Macaulay VM. Insulin-like growth factors and cancer. Br J Cancer 1992; 65: 311–20

    Article  PubMed  CAS  Google Scholar 

  39. Bergmann U, Funtomi H, Yokoyama M, et al. Insulin-like growth factor I overexpression in human pancreatic cancer: evidence for autocrine and paracrine roles. Cancer Res 1995; 55: 2007–11

    PubMed  CAS  Google Scholar 

  40. Baserga R. Controlling IGF-receptor function: a possible strategy for tumor therapy. Tibtech 1996; 14: 150

    Article  CAS  Google Scholar 

  41. Tanaka S, Wands JR. Insulin receptor substrate 1 overexpression in human hepatocellular carcinoma cells prevents transforming growth factor ß1-induced apoptosis. Cancer Res 1996; 56: 3391–4

    PubMed  CAS  Google Scholar 

  42. Ware JL. Growth factors and their receptors as determinants in the proliferation and metastasis of human prostate cancer. Cancer Metast Rev 1993; 12: 287–301

    Article  CAS  Google Scholar 

  43. Rodeck U, Herlyn M, Menssen HD, et al. Metastatic but not primary melanoma cells grow in vitro independently of exogenous growth factors. Int J Cancer 1987; 40: 687–90

    Article  PubMed  CAS  Google Scholar 

  44. Lee AV, Yee D. Insulin-like growth factors and breast cancer. Biomed Pharmacother 1995; 49: 415–21

    Article  PubMed  CAS  Google Scholar 

  45. Moody TW, Guttitta F. Growth factor and peptide receptors in small cell lung cancer. Life Sci 1993; 52: 1161–73

    Article  PubMed  CAS  Google Scholar 

  46. Rubin R, Baserga R. Insulin-like growth factor-I receptor: its role in cell proliferation, apoptosis, and tumorigenicity. Lab Invest 1995; 73: 311–31

    PubMed  CAS  Google Scholar 

  47. Ponzetto C, Giordano S, Della Valle G, et al. c-met is amplified but not mutated in a cell line with an activated met tyrosine kinase. Oncogene 1991; 6: 553–9

    PubMed  CAS  Google Scholar 

  48. Halaban R, Rubin JS, Funasaka Y, et al. Met and hepatocyte growth factor/scatter factor signal transduction in normal melanocytes and melanoma cells. Oncogene 1992; 7: 2195–206

    PubMed  CAS  Google Scholar 

  49. DiRenzo MF, Poulsom R, Olivero M, et al. Expression of the met/hepatocyte growth factor receptor in human pancreatic cancer. Cancer Res 1995; 55: 1129–38

    CAS  Google Scholar 

  50. DiRenzo MF, Olivero M, Ferro S, et al. Overexpression of the c-MET/HGF receptor gene in human thyroid carcinomas. Oncogene 1992; 7: 2549–53

    CAS  Google Scholar 

  51. Stracke ML, Engel JD, Wilson LW, et al. The type I insulin-like growth factor receptor is a motility receptor in human melanoma cells. J Biol Chem 1989; 264: 21544–9

    PubMed  CAS  Google Scholar 

  52. Nakagawara A, Azar CG, Scavarda NJ, et al. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol Cell Biol 1994; 14: 759–67

    PubMed  CAS  Google Scholar 

  53. Hermansson M, Funa K, Hartman M, et al. Platelet-derived growth factor and its receptors in human glioma tissue: expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 1992; 52: 3213–9

    Google Scholar 

  54. Nister M, Heldin CH, Wasteson A, et al. A glioma-derived analog to platelet-derived growth factor: demonstration of receptor dompeting activity and immunological crossreactivity. Proc Natl Acad Sci U S A 1984; 81: 926–30

    Article  PubMed  CAS  Google Scholar 

  55. Nister M, Libermann TA, Betsholtz C, et al. Expression of messenger RNAs for platelet-derived growth factor and transforming growth factor-alpha and their receptors in human malignant glioma cell lines. Cancer Res 1988; 48: 3910–8

    PubMed  CAS  Google Scholar 

  56. Claesson-Welsh L, Eriksson A, Westermark B, et al. cDNA cloning and expression of the human A-type platelet-derived growth factor (PDGF) receptor establishes structural similarity of the B-type PDGF receptor. Proc Natl Acad Sci U S A 1989; 86: 4917–21

    Article  PubMed  CAS  Google Scholar 

  57. Heldin CH, Johnsson A, Wennergren S, et l.A human osteosarcoma cell line secretes a growth factor structurally related to a homodimer of PDGF A-chains. Nature 1986; 310: 511–4

    Article  Google Scholar 

  58. Leveen P, Claesson-Welsh L, Heldin CH, et al. Expression of messenger RNAs for platelet-derived growth factor and its receptors in human sarcoma cell lines. Int J Cancer 1990; 46: 1066–70

    Article  PubMed  CAS  Google Scholar 

  59. Werner S, Hofschneider PH, Heldin CH, et al. Cultured Kaposi’s sarcoma-derived cells express functional PDGF A-type and B-type receptors. Exp Cell Res 1990; 187: 98–103

    Article  PubMed  CAS  Google Scholar 

  60. Tsai TF, Yauk YK, Chou CK, et al. Evidence of autocrine regulation in human hepatoma cell lines. Biochem Biophys Res Commun 1988; 153: 39–45

    Article  PubMed  CAS  Google Scholar 

  61. Herlyn M, Kath R, Williams N, et a1. Growth-regulatory factors for normal, premalignant, and malignant human cells in vitro. Adv Cancer Res 1990; 54: 213–34

    Article  PubMed  CAS  Google Scholar 

  62. Ito M, Yoshida K, Kyo E, et al. Expression of several growth factors and their receptor genes in human colon carcinomas. Virchows Archiv B Cell Pathol 1990; 59: 173–8

    Article  CAS  Google Scholar 

  63. Pantazis P, Sariban E, Bohan CA, et al. Synthesis of PDGF by cultured human T cells transformed with HTLV-I and II. Oncogene 1987; 1: 285–9

    PubMed  CAS  Google Scholar 

  64. Pantazis P, Kharbanda S, Goustin AS, et al. Coexpression of the genes for platelet-derived growth factor B-chain receptor and macrophage colony-stimulating factor 1 receptor during monocytic differentiation. Proc Natl Acad Sci U S A 1991; 88: 2481–5

    Article  PubMed  CAS  Google Scholar 

  65. Mäkelä TP, Alitalo R, Paulsson Y, et al. Regulation of platelet-derived growth factor gene expression by transforming growth factor beta and phorbol ester in human leukemia cell lines. Mol Cell Biol 1987; 7: 3656–62

    PubMed  Google Scholar 

  66. Maxwell M, Galanopoulos T, Hedley-Whyte ET, et al. Human meningiomas co-express platelet-derived growth factor (PDGF) and PDGF-receptor genes and their protein products. Int J Cancer 1990; 46: 16–21

    Article  PubMed  CAS  Google Scholar 

  67. Peres R, Betsholtz C, Westermark B, et al. Frequent expression of growth factors for mesenchymal cells in human mammary carcinoma cell lines. Cancer Res 1987; 47: 3425–9

    PubMed  CAS  Google Scholar 

  68. Ginsburg E, Vonderhaar BK. Stimulation of growth of human breast cancer cells (T47D) by platelet derived growth factor. Cancer Lett 1991; 58: 137–44

    Article  PubMed  CAS  Google Scholar 

  69. Barrett TB, Gajdusek CM, Schwartz SM, et al. Proc Natl Acad Sci U S A 1984; 81: 6772–4

    Article  PubMed  CAS  Google Scholar 

  70. Collins T, Pober JS, Gimbrone MA, et al. Cultured human endothelial cells express platelet-derived growth factor A chain. Am J Pathol 1987; 126:7–12

    PubMed  CAS  Google Scholar 

  71. Roussel MF, Downing JR, Rettenmier CW, et al. A point mutation in the extracellular domain of the human CSF-1 receptor (Fms proto-oncogene product) activates its transforming potential. Cell 1988; 55: 979–88

    Article  PubMed  CAS  Google Scholar 

  72. Yokoyama Y, Morishita S, Takahashi Y, et al. Modulation of c-fms proto-oncogene in an ovarian carcinoma cell line by a hammerhead ribozyme. Br J Cancer 1997; 76: 977–82

    Article  PubMed  CAS  Google Scholar 

  73. Suzuki M, Sekiguchi I, Ohwada M, et al. Expression of c-fms proto-oncogene product by ovarian cancer cell lines with effects of macrophage colony-stimulating factor on proliferation. Oncology 1996; 53: 99–103

    Article  PubMed  CAS  Google Scholar 

  74. Sapi E, Flick MB, Gilmore-Hebert M, et al. Transcriptional regulation of the c-fms (CSF-1R) proto-oncogene in human breast carcinoma cells by glucocorticoids. Oncogene 1995; 10: 529–42

    PubMed  CAS  Google Scholar 

  75. Chambers SK, Wang Y, Gilmore-Hebert M, et al. Post-transcriptional regulation of c-fms proto-oncogene expression by dexamethasone and of CSF-1 in human breast carcinomas in vitro. Steroids 1994; 59: 514–22

    Article  PubMed  CAS  Google Scholar 

  76. Scholl SM, Mosseri V, Tang R, et al. Expression of colony-stimulating factor-1 and its receptor (the protein product of c-fms) in invasive breast tumor cells: induction of urokinase production via this pathway? Ann N Y Acad Sci 1993; 698: 131–5

    Article  PubMed  CAS  Google Scholar 

  77. Kacinski BM, Scata KA, Carter D, et al. FMS (CSF-1 receptor) and CSF-1 transcripts and protein are expressed by human breast carcinomas in vivo and in vitro. Oncogene 1991; 6: 941–52

    PubMed  CAS  Google Scholar 

  78. Leiserowitz GS, Harris SA, Subramaniam M, et al. The protooncogene c-fms is overexpressed in endometrial cancer. Gynecol Oncol 1993; 49: 190–6

    Article  PubMed  CAS  Google Scholar 

  79. Storga D, Pecina-Slaus N, Pavelic J, et al. c-fms is present in primary tumours as well as in their metastases in bone marrow. Int J Exp Pathol 1992; 73: 527–33

    PubMed  CAS  Google Scholar 

  80. Qui F, Ray R, Brown K, et al. Primary structure of cKit: relationship with the CSF-1/PDGF receptor kinase family. Oncogenic activation of vKit involves deletion of extracellular domain and C-terminus. EMBO J 1988; 7: 1003–11

    Google Scholar 

  81. Funasaka Y, Boulton T, Cobb M, et al. c-kit-kinase induces a cascade of protein tyrosine phosphorylation in normal human melanocytes in response to mast cell growth factor in stimulates mitogen-activated protein kinase but is down-regulated in melanomas. Mol Biol Cell 1992; 3: 197–209

    PubMed  CAS  Google Scholar 

  82. Natali PG, Nicotra MR, Winkler AB, et al. Progression of human cutaneous melanoma is associated with loss of expression of c-kit proto-oncogene receptor. Int J Cancer 1992; 52: 197–201

    Article  PubMed  CAS  Google Scholar 

  83. Lassam N, Bickford S. Loss of c-kit expression in cultured melanoma cells. Oncogene 1992; 7: 51–6

    PubMed  CAS  Google Scholar 

  84. Charnock-Jones DS, Sharkey AM, Boocock AM, et al. Vascular endothelial growth factor receptor localization and activation in human trophoblast and choriocarcinoma cells. Biol Reproduct 1994; 51: 524–30

    Article  CAS  Google Scholar 

  85. Gitay-Goren H., Halaban R, Neufeld G, et al. Human melanoma cells but not nor normal melanocytes express vascular endothelial growth factor receptors. Biochem Biophys Res Commun 1993; 190: 702–9

    Article  PubMed  CAS  Google Scholar 

  86. Boocock CA, Charnock-Jones DS, Sharkey AM, et al. Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst 1995; 87: 506–16

    Article  PubMed  CAS  Google Scholar 

  87. Brown LF, Berse B, Jackman RW, et al. Increased expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in kidney and bladder carcinomas. Am J Pathol 1993; 143: 1255–62

    PubMed  CAS  Google Scholar 

  88. Enomoto T, Okamoto T, Sato JD. Vascular endothelial growth factor induces the disorganization of actin stress fibers accompanied by protein tyrosine phosphorylation and morphological change in Balb/C3T3 cells. Biochem Biophy Res Commun 1994; 202: 1716–23

    Article  CAS  Google Scholar 

  89. Katoh O, Tauchi H, Kawaishi K, et al. Expression of the vascular endothelial growth factor (VEGF) receptor gene, KDR, in hematopoietic cells and inhibitory effect of VEGF on apoptotic cell death caused by ionizing radiation. Cancer Res 1995; 55: 5687–92

    PubMed  CAS  Google Scholar 

  90. Soker S, Takahima S, Mia HQ, et al. Neuropilin-1 is expressed by endothelial and tumor cells as an isoform-specific receptor for vascular endothelial growth factor. Cell 1998; 735-45

  91. Koura AN, Liu W, Kitadai Y, et al. Regulation of vascular endothelial growth factor expression in human colon carcinoma cells by cell density. Cancer Res 1996; 56: 3891–4

    PubMed  CAS  Google Scholar 

  92. Brown K, Gerstbergre S, Carlson L, et al. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 1995; 267: 1485–8

    Article  PubMed  CAS  Google Scholar 

  93. Takahashi T, Shibuya M. The 230 kDa mature form of KDR/Flk-1 (VEGF receptor-2) activates the PLCγ pathway and partially induces mitotic signals in NIH3T3 fibroblasts. Oncogene 1997; 14: 2079–89

    Article  PubMed  CAS  Google Scholar 

  94. Berse B, Brown LF, Van De Water L, et al. Vascular permeability factor (vascular endothelial growth factor) gene is expressed differentially in normal tissues, macrophages, and tumors. Mol Biol Cell 1992; 3: 211–20

    PubMed  CAS  Google Scholar 

  95. Dhingra K, Horn S, Sahin A, et al. Expression of TIE-2 receptor and ligand in human cell lines and tumor biopsy specimens [abstract]. Proc Annu Meet Am Assoc Cancer Res 1997; 38: A3260

    Google Scholar 

  96. Chang J, Park K, Bang YJ, et al. Expression of transforming growth factor ß type II receptor reduces tumorigenicity in human gastric cancer cells. Cancer Res 1997; 57: 2856–9

    PubMed  CAS  Google Scholar 

  97. Markowitz S, Wang J, Myeroff L, et al. Inactivation of the type II TGF-ß receptor in colon cancer cells with microsatellite instability. Science 1995; 268: 1336–8

    Article  PubMed  CAS  Google Scholar 

  98. Kadin M, Cavaille-Coll MW, Gertz R, et al. Loss of receptors for transforming growth factor ß receptors: role in physiology and disease. J Biomed Sci 1996; 3: 143–58

    Article  Google Scholar 

  99. Kim IY, Ahn HJ, Zelner DJ, et al. Genetic change in transforming growth factor ß (TGF-ß) receptor type I gene correlates with insensitivity to RGF-ß1 in human prostate cancer cells. Cancer Res 1996; 56: 44–8

    PubMed  CAS  Google Scholar 

  100. Parsons R, Myerhoff LL, Liu BL, et al. Microsatellite instability and mutations of the transforming growth factor ß type II receptor gene in colorectal cancer. Cancer Res 1995; 55: 5548–50

    PubMed  CAS  Google Scholar 

  101. Myeroff LL, Parsons R, Kim SJ, et al. A transforming growth factor ß receptor type II gene mutation common in colon and gastric but rare in endomietric cancers with microsatellite instability. Cancer Res 1995; 55: 5545–7

    PubMed  CAS  Google Scholar 

  102. Easty DJ, Ganz SE, Farr CJ, et al. Novel and known protein tyrosine kinases and their abnormal expression in human melanoma. J Invest Dermatol 1993; 101: 679–84

    Article  PubMed  CAS  Google Scholar 

  103. Boyd AW, Ward LD, Wicks IP, et al. Isolation and characterization of a novel receptor-type protein tyrosine kinase (hek) from a human pre-B cell lines. J Biol Chem 1992; 267: 3262–7

    PubMed  CAS  Google Scholar 

  104. Wicks IP, Wilkinson D, Salvaris E, et al. Molecular cloning of HEK the gene encoding a receptor tyrosine kinase expressed by human lymphoid tumor cell lines. Proc Natl Acad Sci U S A 1992; 89: 1611–5

    Article  PubMed  CAS  Google Scholar 

  105. Easty DJ, Guthrie BA, Maung K, et al. Protein B61 as a new growth factor: expression of B61 and up-regulation of its receptor epithelial cell kinase during melanoma progression. Cancer Res 1995; 55: 2528–32

    PubMed  CAS  Google Scholar 

  106. Maru Y, Hirai H, Yoshida MC, et al. Evolution, expression and chromosomal location of a novel receptor tyrosine kinase gene. Mol Cell Biol 1988; 8: 3770–6

    PubMed  CAS  Google Scholar 

  107. Carlomagno F, Savatore D, Santoro M, et al. Point mutation of the RET proto-oncogene in the TT human medullary thyroid carcinoma cell line. Biochem Biophys Res Commun 1995; 207: 1022–8

    Article  PubMed  CAS  Google Scholar 

  108. Sugg SL, Zheng L, Rosen IB, et al. ret/PTC-1, -2, and -3 oncogene rearrangements in human thyroid carcinomas: implications for metastatic potential? J Clin Endocrin Metab 1996; 81: 3360–5

    Article  CAS  Google Scholar 

  109. Takaya K, Yoshimasa T, Arai H, et al. Expression of the RET proto-oncogene in normal human tissues, pheochromocytomas, and other tumors of neural crest origin. J Mol Med 1996; 74: 617–21

    Article  PubMed  CAS  Google Scholar 

  110. Nakamura T, Ishizaka Y, Nagao M, et al. Expression of the ret proto-oncogene product in human normal and neoplastic tissues of neural crest origin. J Pathol 1994; 172: 255–60

    Article  PubMed  CAS  Google Scholar 

  111. Ivanchuk S, Eng C, Myers S, et al. Expression of alternatively spliced RET transcripts in the developing human kidney and Wilm’s tumor. Am J Hum Genet 1995; 57: A302

    Google Scholar 

  112. Mapstone T, McMichael M, Goldthwait D. Expression of platelet-derived growth factors, transforming growth factors, and the ros gene in a variety of primary human brain tumors. Neurosurgery 1991; 28: 216–22

    Article  PubMed  CAS  Google Scholar 

  113. Watkins D, Dion F, Poisson M, et al. Analysis of oncogene expression in primary human gliomas: evidence for increased expression of the ros oncogene. Cancer Genet Cytogenet 1994; 72: 130–6

    Article  PubMed  CAS  Google Scholar 

  114. Wu JK, Chikaraishi DM, Differential expression of ros oncogene in primary human astrocytomas and astrocytoma cell lines. Cancer Res 1990; 50: 3032–5

    PubMed  CAS  Google Scholar 

  115. Dickson RB, Lippman ME. Growth factors in breast cancer. Endocrine Rev 1995; 16: 559

    CAS  Google Scholar 

  116. Nicholson RI, McClelland RA, Gee JMW, et al. Transforming growth factor-α and endocrine sensitivity in breast cancer. Cancer Res 1994; 54: 1684–9

    PubMed  CAS  Google Scholar 

  117. Barrett-Lee P, Travers M, Luqmani Y, et al. Transcripts fortransforming growth factors in human breast cancer: clinical correlates. Br J Cancer 1990; 61: 612–7

    Article  PubMed  CAS  Google Scholar 

  118. Murphy LC, Dotslaw H, Wong MSJ. Epidermal growth factor: receptor and ligand expression in human breast cancer. Semin Cancer Biol 1990; 1: 305–15

    PubMed  CAS  Google Scholar 

  119. Murray PA, Barrett-Lee P, Travers M, et al. The prognostic significance of transforming growth factors in human breast cancer. Br J Cancer 1993; 67: 1408–12

    Article  PubMed  CAS  Google Scholar 

  120. Semba K, Kamata N, Toyoshima K, et al. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma. Proc Natl Acad Sci U S A 1985; 82: 6497–501

    Article  PubMed  CAS  Google Scholar 

  121. Plowman GD, Culouscou JM, Whitney GS, et al. Ligand-specific activation of HER4/p180erbB4, a fourth member of the epidermal growth factor receptor family. Proc Natl Acad Sci US A 1993; 90: 1746–50

    Article  CAS  Google Scholar 

  122. Carraway KL, Cantley LC. A new acquaintance for erbB3 and erbB4: a role for receptor heterodimerization in growth signalling. Cell 1994; 78: 5–8

    Article  PubMed  CAS  Google Scholar 

  123. Goldman R, Levy RB, Peles E, et al. Heterodimerization of the erbB-1 and erbB-2 receptors in human breast carcinoma cells: a mechanism for receptor transregulation. Biochemistry 1990; 29: 11024–8

    Article  PubMed  CAS  Google Scholar 

  124. Qian X, Decker SJ, Greene MI. p185c-neu and epidermal growth factor receptor associate into a structure composed of activated kinases. Proc Natl Acad Sci U S A 1992; 89: 1330–4

    Article  CAS  Google Scholar 

  125. Soltoff SP, Carraway KL, Prigent SA, et al. ErbB3 is involved in activating phosphatidylinositol 3-kinase by epidermal growth factor. Mol Cell Biol 1994; 14: 3550–8

    PubMed  CAS  Google Scholar 

  126. Lee PL, Johnson DE, Cousens LS, et al. Purification and cDNA cloning of a receptor for basic fibroblast growth factor. Science 1989; 245: 57–60

    Article  PubMed  CAS  Google Scholar 

  127. Kornbluth S, Paulson DE, Hanafusa H. Novel tyrosine kinase identified by phosphotyrosine antibody screening of cDN libraries. Mol Cell Biol 1988; 8: 5541–4

    PubMed  CAS  Google Scholar 

  128. Keegan K, Johnson DE, Williams LT, et al. Isolation of an additional member of the fibroblast growth factor receptor family FGFR-3. Proc Natl Acad Sci U S A 1991; 88: 1095–9

    Article  PubMed  CAS  Google Scholar 

  129. Partanan J, Makla TP, Eerola E, et al. FGFR-4,, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J 1991; 10: 1347–54

    Google Scholar 

  130. Avivi A, Zimmer Y, Yayon A, et al. Flg-2, a new member of the family of fibroblast growth factor receptors. Oncogene 1991; 6: 1089–92

    PubMed  CAS  Google Scholar 

  131. Yan G, Fukabori Y, Nikolaropoulos S, et al. Heparin-binding keratinocyte growth factor is a candidate stromal-to-epithelial cell andromedin. Mol Endocrinol 1992; 6: 2123–8

    Article  PubMed  CAS  Google Scholar 

  132. Yan G, Fukabori Y, McBride G, et al. Exon switching and activation of stromal and embryonic fibroblast growth factor (FGF): FGF receptor genes in prostate epithelial cells accompany stromal independence and malignancy. Mol Cell Biol 1993; 13: 4513–22

    PubMed  CAS  Google Scholar 

  133. Dvorak HF, Sioussat TM, Brown LF, et al. Distribution of vascular permeability factor (vascular endothelial growth factor) in tumors: concentration in tumor blood vessels. J Exp Med 1991; 174: 1275–8

    Article  PubMed  CAS  Google Scholar 

  134. Plate KH, Breier G, Weich HA et al. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992; 359: 845–8

    Article  PubMed  CAS  Google Scholar 

  135. Heldin CH, Westermark B. Platelet-derived growth factor: mechanism of action and possible in vivo function. Cell Regul 1990; 1: 555–66

    PubMed  CAS  Google Scholar 

  136. Bywater M, Rorsman F, Bongcam-Rudloff E, et al. Expression of recombinant platelet-derived growth factor A- and B -chain homodimers in Rat-1 cells and human fibroblasts reveals differences in protein processing and autocrine effects. Mol Cell Biol 1988; 8: 2753–62

    PubMed  CAS  Google Scholar 

  137. Keating MT, Williams LT. Autocrine stimulation of intracellular PDGF receptors in v-sis transformed cells. Science 1988; 239: 914–6

    Article  PubMed  CAS  Google Scholar 

  138. Huang SS, Huang JS. Rapid turnover of the platelet-derived growth factor receptor in sis-transformed cells and reversal by suramin: implications for the mechanism of autocrine transformation. J Biol Chem 1988; 263: 12608–18

    PubMed  CAS  Google Scholar 

  139. Westermark B, Heldin CH. Platelet-derived growth factor in autocrine transformation. Cancer Res 51: 5087-92

  140. Ponten F, Ren Z, Nister M, et al. Epithelial-stromal interactions in basal cell cancer: the PDGF system. J Invest Dermatol 1994; 102: 304–9

    Article  PubMed  CAS  Google Scholar 

  141. Funa K, Papanicolaou V, Juhlin C, et al. Expression of platelet-derived growth factor beta-receptors on stromal tissue cells in human carcinoid tumors. Cancer Res 1990; 50: 748–53

    PubMed  CAS  Google Scholar 

  142. Chaudhry A, Panpanicolaou V, Oberg K, et al. Expression of platelet-derived growth factor and its receptors in neuroendocrine tumors of the digestive system. Cancer Res 1992; 52: 1006–12

    PubMed  CAS  Google Scholar 

  143. Sato N, Nariuchi H, Tsuruoka N, et al. Actions of TNF and IFN-gamma on angiogenesis in vitro.J Invest Dermatol 1990; 95: 85S–89S

    Article  PubMed  CAS  Google Scholar 

  144. Hermansson M, Nister M, Betsholtz C, et al. Endothelial cell hyperplasia in human glioblastoma: co-expression of mRNA for platelet-derived growth factor (PDGF) B chain and PDGF receptor suggests autocrine growth stimulation. Proc Natl Acad Sci U S A 1988; 85: 7748–52

    Article  PubMed  CAS  Google Scholar 

  145. Beitz JG, Kim IS, Calabrese P, et al. Human microvascular endothelial cells express receptors for platelet-derived growth factor. Proc Natl Acad Sci U S A 1991; 88: 2021–5

    Article  PubMed  CAS  Google Scholar 

  146. Shibuya M, Yamguchi S, Yamane A, et al. Nucleotide sequences and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fins family. Oncogene 1990; 5: 519–24

    PubMed  CAS  Google Scholar 

  147. DeVries C, Escobedo JA, Ueono H, et al. The fms-like tyrosine kinase, a receptor for vascular endothelial growth factor. Science 1992; 255: 989–91

    Article  CAS  Google Scholar 

  148. Terman BI, Dougher-Vermazen M, Carrion ME, et al. Identification of the KDR tyrosine kinase as a receptor for vascular endothelial cell growth factor. Biochem Biophys Res Commun 1992; 187: 1579–86

    Article  PubMed  CAS  Google Scholar 

  149. Millauer B, Wizigmann-Voos S, Schnurch H, et al. High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesis. Cell 1993; 72: 835–46

    Article  PubMed  CAS  Google Scholar 

  150. Joukov V, Pajusola K, Kaipainen A, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases [published errata appears in EMBO J 1996; 15: 1751]. EMBO J 1996; 15: 290–8

    PubMed  CAS  Google Scholar 

  151. Waltenberger J, Claesson-Welsh L, Siegbahn A, et al. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J Biol Chem 1994; 269: 26988–95

    PubMed  CAS  Google Scholar 

  152. Yoshida A, Anand-Apte B, Zetter BR. Differential endothelial migration and proliferation to basic fibroblast growth factor and vascular endothelial growth factor. Growth Factors 1996; 13: 57–64

    Article  PubMed  CAS  Google Scholar 

  153. Ferrara N, Davis-Smith T. The biology of vascular endothelial growth factor. Endocr Rev 1997; 18: 4–25

    Article  PubMed  CAS  Google Scholar 

  154. Peters KG, DeVries C, Williams LT. Vascular endothelial growth factor expression during embryogenesis and tissue repair suggests a role in endothelial differentiation and blood vessel growth. Proc Natl Acad Sci U S A 1993; 90: 8915–9

    Article  PubMed  CAS  Google Scholar 

  155. Fong GH, Rossant J, Gertsenstein M, et al. Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 1995; 376: 66–70

    Article  PubMed  CAS  Google Scholar 

  156. Guo D, Jia Q, Song HY, et al. Vascular endothelial cells growth factor promotes tyrosine phosphorylation of mediators of signal transduction that contain SH2 domains: association with endothelial cell proliferation. J Biol Chem 1995; 270: 6729–33

    Article  PubMed  CAS  Google Scholar 

  157. Kroll J, Waltenberger J. The vascular endothelial growth factor receptor KDR activates multiple signal transduction pathways in porcine aortic endothelial cells. J Biol Chem 1997; 272: 32521–7

    Article  PubMed  CAS  Google Scholar 

  158. Igarashi K, Shigeta K, Isohara T, et al. Sck interacts with KDR and Flt-1 via its SH2 domain. Biochem Biophys Res Commun 1998; 251: 77–82

    Article  PubMed  CAS  Google Scholar 

  159. Igarashi K, Isohara T, Kato T, et al. Tyrosine 1213 of Flt-1 is a major binding site of Nck and SHP-2. Biochem Biophys Res Commun 1998; 246: 95–9

    Article  PubMed  CAS  Google Scholar 

  160. Mukhopadhyay D, Nagy JA, Manseau EJ, et al. Vascular permeability factor/vascular endothelial growth factor-mediated signaling in mouse mesentery vascular endothelium. Cancer Res 1998; 58: 1278–84

    PubMed  CAS  Google Scholar 

  161. Clauss M, Gerlach M, Brett J, et al. Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. J Exp Med 1990; 172: 1535–45

    Article  PubMed  CAS  Google Scholar 

  162. Gruber BL, Marchese MJ, Kew R. Angiogenic factors stimulate mast-cell migration. Blood 1995; 86: 2488–93

    PubMed  CAS  Google Scholar 

  163. Barleon B, Sozzani S, Zhou D, et al. Migration of human monocytes in response to vascular endothelial growth factor (VEGF) is mediated via the VEGF receptor flt-1. Blood 1996; 87 3336–43

    PubMed  CAS  Google Scholar 

  164. Seetharam L, Gotoh N, Mara Y, et al. A unique signal transduction from FlT tyrosine kinase, a receptor for vascular endothelial growth factor VEGF. Oncogene 1995; 10: 135–47

    PubMed  CAS  Google Scholar 

  165. Keck PJ, Hauser SD, Krivi G, et al. Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science 1989; 246: 1309–12

    Article  PubMed  CAS  Google Scholar 

  166. Leung DL, Cachianes G, Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 1996; 246: 1306–9

    Article  Google Scholar 

  167. Plouet J, Schilling J, Gospodarowicz D. Isolation and characterization of newly identified endothelial cell mitogen produced by AtT-20 cells. EMBO J 1989; 8: 3801–6

    PubMed  CAS  Google Scholar 

  168. Midy V, Plouet J. Vasculotropin/vascular endothelial growth factor induces differentiation in cultured osteoblasts. Biochem Biophys Res Commun 1994; 199: 380–6

    Article  PubMed  CAS  Google Scholar 

  169. Ullrich A, Gray A, Tam AW, et al. Insulin-like growth factor 1 receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 1986; 5: 2503–12

    PubMed  CAS  Google Scholar 

  170. Werner H, Woloschak M, Stannard B, et al. The insulin-like growth factor receptor: molecular biology, heterogeneity and regulation. In: LeRoith D, editor. Insulin-like growth factors: molecular and cellular aspects. Boca Raton (FL): CRC Press, 1991: 17–47

    Google Scholar 

  171. Lowe WL. Biological actions of the insulin-like growth factors. In: Le Roith D, editor. Insulin-like growth factors: molecular and cellular aspects. Boca Raton (FL): CRC Press, 1991: 49–85

    Google Scholar 

  172. Huang S, Terstappen LWMM. Formation of haematopoietic microenvironment and haematopoietic stem cells from single human bone marrow stem cells. Nature 1992; 360: 745–9

    Article  PubMed  CAS  Google Scholar 

  173. Goldring MB, Goldring SR. Cytokines and cell growth control. Crit Rev Eukaryot Gene Expr 1991; 1: 301–26

    PubMed  CAS  Google Scholar 

  174. Condorelli G, Bueno R, Smith RJ. Two alternatively spliced forms of the human insulin-like growth factor I receptor have distinct biological activities and internalization kinetics. J Biol Chem 1994; 269: 8510–6

    PubMed  CAS  Google Scholar 

  175. Ota A, Wilson GL, Le Roith D. Insulin-like growth factor I receptors on mouse neuroblastoma cells: two beta subunits are derived from differences in glycosylation. Eur J Biochem 1988; 174: 521–30

    Article  PubMed  CAS  Google Scholar 

  176. Tavare JM, Siddle K. Mutational analysis of insulin receptor function: consensus and controversy. Biochim Biophys Acta 1993; 1178: 21–39

    Article  PubMed  CAS  Google Scholar 

  177. Siddle K, Soos, MA, Field CE, et al. Hybrid and atypical insulin/insulin-like growth factor I receptors. Hormone Res 1994; 41: 56–65

    Article  PubMed  CAS  Google Scholar 

  178. Sun XJ, Rothenberg P, Kahn CR, et al. The structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991; 352: 73–7

    Article  PubMed  CAS  Google Scholar 

  179. Sun XJ, Miralpeix M, Myers MG, et al. The expression and function of IRS-1 in insulin signal transmission. J Biol Chem 1992; 267: 22662–72

    PubMed  CAS  Google Scholar 

  180. Giorgetti S, Ballotti R, Kowalski-Chauvel A, et al. The insulin and insulin-like growth factor-1 receptor substrate IRS-1 associates with and activates phosphatidylinositol 3-kinase in vitro. J Biol Chem 1993; 268: 7358–64

    PubMed  CAS  Google Scholar 

  181. Yamauchi K, Pessin JE. Insulin receptor substrate-1 (IRSl)and Shc compete for a limited pool of Grb2 in mediating insulin downstream signalling. J Biol Chem 1994; 269: 31107–14

    PubMed  CAS  Google Scholar 

  182. Sasaoka T, Rose DW, Jhun BH, et al. Evidence for a functional role of Shc proteins in mitogenic signalling induced by insulin, insulin-like growth factor-1, and epidermal growth factor. J Biol Chem 1994; 269: 13689–94

    PubMed  CAS  Google Scholar 

  183. Heitner-Johnson D, LeRoith D. Insulin-like growth factor-I stimulated tyrosine phosphorylation of endogenous c-Crk. J Biol Chem 1995; 290: 5187–90

    Google Scholar 

  184. Matsuda M, Hshimoti Y, Muroya K, et al. CRK protein binds to two guanine nucleotide-releasing proteins for the Ras family and modulates nerve growth factor-induced activation of Ras in PC12 cells. Mol Cel Biol 1994; 14: 5495–500

    CAS  Google Scholar 

  185. Clemmons DR, Van Wyk JJ. Somatomedin: physiological control and effects on cell proliferation. In: Baserga R, editor. Tissue growth factors. Berlin: Springer-Verlag KG, 1981; 161

    Chapter  Google Scholar 

  186. Clemmons DR, Shaw DS. Variables controlling somatomedin production by cultured human fibroblasts. J Cell Physiol 1983; 115: 137–42

    Article  PubMed  CAS  Google Scholar 

  187. Baserga R, Sell C, Porcu P, et al. The role of the IGF-I receptor in the growth and transformation of mammalian cells. Cell Prolif 1994; 27: 63–71

    Article  PubMed  CAS  Google Scholar 

  188. Pietrzkowski Z, Wernicke D, Porcu P, et al. Inhibition of cell proliferation by peptide analogs of IGF-1. Cancer Res 1992; 52: 6447

    PubMed  CAS  Google Scholar 

  189. Travali S, Reiss K, Ferber A, et al. Constitutively expressed c-myb abrogates the requirement for insulin-like growth factor I in 3T3 fibroblasts. Mol Cell Biol 1991; 11: 731–6

    PubMed  CAS  Google Scholar 

  190. Reiss K, Ferger A, Travali S, et al. The proto-oncogene c-myb increases the expression of insulin-like growth factor 1 and insulin-like growth factor 1 receptor messenger RNAs by a transcriptional mechanism. Cancer Res 1991; 51: 5997–6000

    PubMed  CAS  Google Scholar 

  191. Pietrzkowski Z, Lammers, R, Carpenter G, et al. Constitutive expression of insulin-like growth factor 1 and insulin-like growth 1 receptor abrogates all requirements for exogenous growth factors. Cell Growth Differ 1992; 3: 199–205

    PubMed  CAS  Google Scholar 

  192. Porcu P, Ferber A, Pietrzkowski Z, et al. The growth-stimulatory effect of Simian virus 40 T antigen requires the interaction of insulin-like growth factor 1 with its receptor. Mol Cell Biol 1992; 12: 5069–77

    PubMed  CAS  Google Scholar 

  193. Reiss K, Porcu P, Sell C, et al. The insulin-like growth factor 1 receptor is required for the proliferation of hematopoietic cells. Oncogene 1992; 7: 2243–8

    PubMed  CAS  Google Scholar 

  194. Resnicoff M, Sell C, Rubini M, et al. Rat glioblastoma cells expressing an antisense RNA to the insulin-like growth factor-I (IGF-I) receptor are non-tumorigenic and induce of wild type tumors. Cancer Res 1994; 54: 2218–22

    PubMed  CAS  Google Scholar 

  195. Pietrzkowski Z, Mulholland G, Gomella L, et al. Inhibition of growth of prostatic cancer cell lines by peptide analogs of IGF-1. Cancer Res 1993; 53: 1102–6

    PubMed  CAS  Google Scholar 

  196. Sell C, Rubini M, Rubin R, et al. Simian viras 40 large tumor antigen is unable to transform mouse embryonic fibroblasts lacking type-I IGF receptor. Proc Natl Acad Sci U S A 1993; 90: 11217–21

    Article  PubMed  CAS  Google Scholar 

  197. Baserga R, Sell C, Porcu P, et al. The role of the IGF-I receptor in the growth and transformation of mammalian cells. Cell Prolif 1994; 27: 63–71

    Article  PubMed  CAS  Google Scholar 

  198. Kan M, Zhang G, Zarnegar R, et al. Hepatocyte growth factor/hepatopoietin A stimulates the growth of rat kidney proximal tubule epithelial cells (RPTE), rat nonparenchymal liver cells, human melanoma cells, mouse keratinocytes and stimulates anchorage-independent growth of SV40-transformed RPTE. Biochem Biophys Res Commun 1991; 174: 331–7

    Article  PubMed  CAS  Google Scholar 

  199. Stoker M, Gherardi E, Perryman M, et al. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility. Nature 1987; 327: 239–342

    Article  PubMed  CAS  Google Scholar 

  200. Bussolino F, Di Renzo MF, Ziche M, et al. Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. J Cell Biol 1992; 119: 629–41

    Article  PubMed  CAS  Google Scholar 

  201. Grant DS, Kleinman, HK, Goldberg ID, et al. Scatter factor induces blood vessel formation in vivo. Proc Natl Acad Sci U S A 1993; 90: 1937–41

    Article  PubMed  CAS  Google Scholar 

  202. Weidner KM, Behrens J, Vanderkerckhone J, et al. Scatter factor: molecular characteristics and effect on the invasiveness of epithelial cells. J Cell Biol 1990; 111: 2907–11

    Article  Google Scholar 

  203. Weidner KM, Hartmann G, Naldini L, et al. Molecular characteristics of HGF/SF and its role in cell motility and invasion. EXS 1993; 65: 311–28

    PubMed  CAS  Google Scholar 

  204. Giordano S, Ponzetto D, Di Renzo MF, et al. Tyrosine kinase receptor indistinguishable from the c-met protein. Nature 2989; 339: 155–6

    Article  Google Scholar 

  205. Gonzatti-Haces M, Seth A, Park M, et al. Characterization of the TPR-MET oncogene p65 and the MET protooncogene p140 protein tyrosine kinases. Proc Natl Acad Sci U S A 1988; 85: 21–5

    Article  PubMed  CAS  Google Scholar 

  206. Prat M, Crepaldi T, Gandino L, et al. C-terminal truncated forms of Met, the hepatocyte growth factor receptor. Mol Cell Biol 1991; 11: 5954–60

    PubMed  CAS  Google Scholar 

  207. Crepaldi T, Prat M, Giordano S, et al. Generation of a truncated hepatocyte growth factor receptor in the endoplasmic reticulum. J Biol Chem 1994; 269: 1750–5

    PubMed  CAS  Google Scholar 

  208. Cooper CS. HGFR. In: Hardie G, Hanks S, editors. The protein kinase facts book. New York: Academic Press, 1995: 218–20

    Chapter  Google Scholar 

  209. Cooper JA, Howell B. The when and how of Src regulation. Cell 1993; 73: 1051–4

    Article  PubMed  CAS  Google Scholar 

  210. Callard RE, Gearing AJH. The cytokine facts book. London: Academic Press, 1994

    Google Scholar 

  211. Lin H, Wang XF, Ng-Eaton E, et al. Expression cloning of the TGF-ß type II receptor a functional transmembrane serine/threonine kinase. Cell 1992; 68: 775–85

    Article  PubMed  CAS  Google Scholar 

  212. Wrana JL, Attisano L, Carcamo J, et al. TGF-ß signals through a heteromeric protein kinase receptor complex. Cell 1992; 71: 1003–14

    Article  PubMed  CAS  Google Scholar 

  213. Kekow J, Wiedemann GJ. Transforming growth factor ß: a cytokine with multiple actions in oncology and potential clinical applications [review]. Int J Oncol 1995; 7: 177–82

    PubMed  CAS  Google Scholar 

  214. Heldin CH, Miyazono K, ten Dijke P. TGFß-signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465–71

    Article  PubMed  CAS  Google Scholar 

  215. Yamashita H, ten Dijke P, Franzen P, et al. Formation of heterooligomeric complexes of type I and type II receptors for transforming growth factor-ß. J Biol Chem 1994; 269: 20172–8

    PubMed  CAS  Google Scholar 

  216. Souchelnytskyi S, Tamaki K, Engstom U, et al. Phosphorylation of Ser465 and Ser467 in the C-terminus of Smad2 mediates interaction with Smad4 and is required for TGF-ß signalling. J Biol Chem 1997; 272: 28107–15

    Article  PubMed  CAS  Google Scholar 

  217. Nakao A, Afrakhte M, Moren A, et al. Identification of Smad7, a TGFß-inducible antagonist of TGF-ß signalling. Nature 1997; 389: 631–5

    Article  PubMed  CAS  Google Scholar 

  218. Imamura T, Takase M, Nishihara A, et al. Smad6 inhibits signalling by the TGF-ß superfamily. Nature 1997; 389: 622–6

    Article  PubMed  CAS  Google Scholar 

  219. Whitman M. Signal transduction: feedback from inhibitory SMADs. Nature 1997; 389: 549–51

    Article  PubMed  CAS  Google Scholar 

  220. Powell SM, Harper JC, Hamilton SR, et al. Inactivation of Smad4 in gastric carcinomas. Cancer Res 1997; 57: 4221–4

    PubMed  CAS  Google Scholar 

  221. Riggins GJ, Kinzler KW, Vogelstein B, et al. Frequency of Smad gene mutations in human cancers. Cancer Res 1997; 57: 2578–80

    PubMed  CAS  Google Scholar 

  222. Battegay EJ, Raines EW, Seifert RA, et al. TGF-ß induces bimodal proliferation of connective tissue cells via complex control of an autocrine PDGF loop. Cell 1990; 63: 515–24

    Article  PubMed  CAS  Google Scholar 

  223. Luttrell DK, Lee A, Lansing TJ, et al. Involvement of pp60c-src with two major signaling pathways in human breast cancer. Proc Natl Acad Sci U S A 1994; 91: 83–7

    Article  PubMed  CAS  Google Scholar 

  224. Maa MC, Leu TH, McCarley DJ, et al. Potentiation of epidermal growth factor receptor-mediated oncogenesis by c-Src: Implications for the etiology of multiple human cancers. Proc Natl Acad Sci U S A 1995; 92: 6981–5

    Article  PubMed  CAS  Google Scholar 

  225. Wilson LK, Luttrell DK, Parsons JT, et al. pp60c-src tyrosine kinase, myristylation, and modulatory domains are required for enhanced mitogenic responsiveness to epidermal growth factor seen in cells overexpressing c-src. Mol Cell Biol 1989; 9: 1536–44

    PubMed  CAS  Google Scholar 

  226. Bolen JB. Nonreceptor tyrosine protein kinases. Oncogene 1993; 8: 2025–31

    PubMed  CAS  Google Scholar 

  227. Chang JH, Wilson LK, Moyers JS, et al. Increased levels of p21ras-GTP and enhanced DNA synthesis accompany elevated tyrosyl phosphorylation of GAP-associated proteins, p190 and p62, in c-src overexpressors. Oncogene 1993; 8: 959–67

    PubMed  CAS  Google Scholar 

  228. Maa MC, Wilson LK, Moyers JS, et al. Identification and characterization of a cytoskeleton-associated, epidermal growth factor sensitive pp60c-src substrate. Oncogene 1992; 7: 2429–38

    PubMed  CAS  Google Scholar 

  229. Hardie G, Hanks S, editors. The protein kinase facts book. New York: Academic Press, 1995

    Google Scholar 

  230. Zhang W, Sloan-Lancaster J, Kitchen J, et al. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. Cell 1998; 92: 83–92

    Article  PubMed  CAS  Google Scholar 

  231. Cartwright CA, Kamps MP, Meisler AI, et al. pp60c-src activation in human colon carcinoma. J Clin Invest 1989; 3: 2025–33

    Article  Google Scholar 

  232. Ottenholf-Kaliff AE, Rijksen G, van Beurden EA, et al. Characterization of protein tyrosine kinases from human breast cancer: involvement of the c-src oncogene product. Cancer Res 1992; 52: 4773–8

    Google Scholar 

  233. Rosen N, Bolen JB, Schwartz AM, et al. Analysis of pp60c-src protein kinase activity in human tumor cell lines and tissues. J Biol Chem 1986; 261: 13754–9

    PubMed  CAS  Google Scholar 

  234. Park J, Cartwright CA. Src activity increases and Yes activity decreases during mitosis of human colon carcinoma cells. Mol Cell Biol 1995; 15: 2374–82

    PubMed  CAS  Google Scholar 

  235. Park J, Meisler AI, Cartwright CA. c-Yes tyrosine kinase activity in human colon carcinoma. Oncogene 1993; 8: 2627–35

    PubMed  CAS  Google Scholar 

  236. Han NM, Curley SA, Gallick GE. Differential activation of pp60c-src and pp62c-yes in human colorectal carcinoma liver metastases. Clin Cancer Res 1996; 2: 1397–404

    PubMed  CAS  Google Scholar 

  237. Willman CL, Stewart CC, Longacre TL, et al. Expression of the c-fgr and hck protein-tyrosine kinases in acute myeloid leukemic blasts is associated with early commitment and differentiation events in the monocytic and granulocytic lineages. Blood 1991; 77: 726–34

    PubMed  CAS  Google Scholar 

  238. Krueger J, Zhao YH, Murphy D, et al. Differential expression of p62c-yes in normal, hyperplastic and neoplastic human epidermis. Oncogene 1991; 6: 933–40

    PubMed  CAS  Google Scholar 

  239. Seki T, Fujii G, Mori S, et al. Amplification of c-yes-1 protooncogene in a primary human gastric cancer. Jpn J Cancer Res 1985; 76: 907–10

    PubMed  CAS  Google Scholar 

  240. Abts H, Juecker M, Diehl V, et al. Human chronic lymphocytic leukemia cells regularly express mRNAs of the protooncogenes lck and c-fgr. Leuk Res 1991; 15: 987–97

    Article  PubMed  CAS  Google Scholar 

  241. von Knethen A, Abts H, Kube D, et al. The expression of the P56-LCK proto-oncogene in B-cell lineage neoplasias. Ann Hematol 1993; 67: A66

    Google Scholar 

  242. Rouer E, Dreyfus F, Melle J, et al. Selective increase of alternatively spliced Lck transcripts from the proximal promoter in hematopoietic malignancies. Leukemia 1993; 7: 246–50

    PubMed  CAS  Google Scholar 

  243. Juecker M, Abts H, Eick D, et al. Over-expression of lck in Burkitt’s lymphoma cell lines [letter]. Leukemia 1991; 5: 528–30

    Google Scholar 

  244. Burnett RC, David JC, Harden AM, et al. The LCK gene is involved in the t(1;7)(p34;q34) in the T-cell acute lymphoblastic leukemia derived cell line, HSB-2. Genes, Chromosomes Cancer 1991; 3: 461–7

    Article  PubMed  CAS  Google Scholar 

  245. Koga Y, Kimura N, Minowada J, et al. Expression of the human T-cell-specific tyrosine kinase YT16 (lck) message in leukemic T-cell lines. Cancer Res 1988; 48: 856–9

    PubMed  CAS  Google Scholar 

  246. Nakamura K, Chijiiwa Y, Nawata H. Augmented expression of LCK message directed from the downstream promoter in human colorectal cancer specimens. Eur J Cancer 1996; 32A: 1401–7

    Article  PubMed  CAS  Google Scholar 

  247. Mayer K, Ballhausen WG. Expression of alternatively spliced lck transcripts from the proximal promoter in colorectal cancer derived cell lines. Anticancer Res 1996; 16: 1733–7

    PubMed  CAS  Google Scholar 

  248. Veilette A, Foss FM, Sausville EA, et al. Expression of the lck tyrosine kinase gene in human colon carcinoma and other non-lymphoid human tumor cell lines. Oncogene Res 1987; 1: 357–74

    Google Scholar 

  249. McCracken S, Kim CS, Xu Y, et al. An alternative pathway of expression of p56-lck from type I promoter transcripts in colon carcinoma. Oncogene 1997; 15: 2929–37

    Article  PubMed  CAS  Google Scholar 

  250. Foss FM, Veillette A, Sartor O, et al. Alterations in the expression of pp60(c-src) an p56(lck) associated with butyrate-induced differentiation of human colon carcinoma cells. Oncogen Res 1989; 5: 13–23

    CAS  Google Scholar 

  251. Nowell PC, Hungerford DA. A minute chromosome in human granulocyte leukemia. Science 1960; 132: 1497–500

    Google Scholar 

  252. Zarn JA, Zimmermann SM, Pass MK, et al. Association of CD24 with the kinase c-fgr in a small cell lung cancer cell line and with the kinase lyn in an erythroleukemia cell line. Biochem Biophys Res Commun 1996; 225: 384–91

    Article  PubMed  CAS  Google Scholar 

  253. Tesch H, Abst H, Juecker M, et al. Expression of c-fgr in EBV positive and negative B cell tumors. Leukemia 1989; 3: 897–8

    PubMed  CAS  Google Scholar 

  254. Cheah MS, Ley TJ, Tronick SR, et al. fgr proto-oncogene mRNA induced in B lymphocytes by Epstein-Barr virus infection. Nature 1986; 319: 238–40

    Article  PubMed  CAS  Google Scholar 

  255. Faulkner L, Katz DR, Brickell PM. Retinoic acid induces changes in c-fgr proto-oncogene mRNA levels in Burkitt’s lymphoma cells. Immunobiology 1993; 188: 460–8

    Article  PubMed  CAS  Google Scholar 

  256. Sharp NA, Luscombe MJ, Clemens MJ. Regulation of c-fgr proto-oncogene expression in Burkitt’s lymphoma cells: effect of interferon treatment and relationship to EBV status and c-myc mRNA levels. Oncogene 1989; 4: 1043–6

    PubMed  CAS  Google Scholar 

  257. Nishio H, Nakamura S, Horai T, et al. Clinical and histopathologic evaluation of the expression of Ha-ras and fes oncogene products in lung cancer. Cancer 1992; 69: 1130–6

    Article  PubMed  CAS  Google Scholar 

  258. Goldman J, Kowalczuk MM, Lafuze JE. Detection of a putative fusion product formed from tumor necrosis factor receptor (TNFR) and the FES/FPS oncogene from probing of two adolescent T-cell ALL substracted cDNA libraries [abstract]. Proc Am Assoc Cancer Res 1994; 35: A3483

    Google Scholar 

  259. Morris C, Heisterkamp N, Hao QL, et al. The human tyrosine kinase gene (FER) maps to chromosome 5 and is deleted in myeloid leukemias with a del(5q). Cytogenics Cell Genet 1990; 53: 196–200

    Article  CAS  Google Scholar 

  260. Takemoto S, Mulloy JC, Cereseto A, et al. Proliferation of adult T cell leukemia/lymphoma cells is associated with the constitutive activation of JAK/STAT proteins. Proc Natl Acad Sci US A 1997; 94: 13897–902

    Article  CAS  Google Scholar 

  261. Meydan N, Grunberger T, Dadi H, et al. Inhibition of acute lymphoblastic leukaemia by a Jak-2 inhibitor. Nature 1996; 379: 645–8

    Article  PubMed  CAS  Google Scholar 

  262. Ratovitski EA, Kotzbauer PT, Milbrandt J, et al. Midkine induces tumor cell proliferation and binds to a high affinity signaling receptor associated with JAK tyrosine kinases. J Biol Chem 1998; 273: 3654–60

    Article  PubMed  CAS  Google Scholar 

  263. Murata T, Noguchi PD, Puri RK. IL-13 induces phosphorylation and activation of Jak2 Janus kinase in human colon carcinoma cell lines: similarities between IL-4 and IL-12 signaling. J Immunol 1996; 156: 2972–8

    PubMed  CAS  Google Scholar 

  264. Okamoto H, Nakamori S, Ohigashi H, et al. Involvement of focal adhesion kinase (FAK) in endothelial cell retraction during cancer cell invasion [abstract]. Proc Annu Meet Am Assoc Cancer Res 1997; 38: A349

    Google Scholar 

  265. Hubbard SL, Dirks P, Murakami M, et al. Expression of focal adhesion kinase (FAK) in human astrocytoma cell lines and brain tumors [abstract]. Proc Annu Meet Am Assoc Cancer Res 1996; 37: A315

    Google Scholar 

  266. Weiner TM, Liu ET, Cance WG. Overexpression of the focal adhesion kinase (FAK) gene in primary and metastatic human tumors [abstract]. 46th Annual Cancer Symposium of the Society of Surgical Oncology in Conjunction with Society of Head and Neck Surgeons; 1993 March 18–21; Los Angeles: 7

  267. Owens LV, Xu L, Craven RJ, et al. Overexpression of the focal adhesion kinase (p125-FAK) in invasive human tumors. Cancer Res 1995; 55: 2752–5

    PubMed  CAS  Google Scholar 

  268. Han NM, Fleming RYD, Curley SA, et al. Overexpression of focal adhesion kinase (P125(FAK)) in human colorectal-carcinoma liver metastases: independence from c-src or c-yes activation. Ann Surg Oncol 1997; 4: 264–8

    Article  PubMed  CAS  Google Scholar 

  269. Judson PL, He X, Cance WG, et al. FAK, a tyrosine kinase implicated in invasion and metastasis, is overexpressed in ovarian carcinoma. Gynecol Oncol 1998; 68: 82

    Google Scholar 

  270. Jenq WM, Cooper DR, Ramirez G. Integrin expression on cell adhesion function and up-regulation of P125-FAK and paxillin in metastatic renal carcinoma cells. Mol Biol Cell 1996; 7: 424A

    Google Scholar 

  271. Tremblay L, Hauck W, Aprikian AG, et al. Focal adhesion kinase (pp125-FAK) expression, activation and association with paxillin and p50-csk in human metastatic prostate carcinoma. Int J Cancer 1996; 68: 164–71

    Article  PubMed  CAS  Google Scholar 

  272. Akasaka T, Van Leeuwen RL, Yoshinaga IG, et al. Focal adhesion kinase (p125(FAK)) expression correlates with motility of human melanoma cell lines. J Invest Dermatol 1995; 105: 104–8

    Article  PubMed  CAS  Google Scholar 

  273. McCormack SJ, Brazinski SE, Moore JL, et al. Activation of the focal adhesion kinase signal transduction pathway in cervical carcinoma cell lines and human genital epithelial cells immortalized with human papillomavirus type 18. Oncogene 1997; 15: 265–74

    Article  PubMed  CAS  Google Scholar 

  274. Cotter TG. BCR-ABL: an anti-apoptosis gene in chronic myelogenous leukemia. Leuk Lymph 1995; 18: 231–6

    Article  CAS  Google Scholar 

  275. Van Etten RA, Jackson P, Baltimore D. The mouse type IVc-abl gene product is a nuclear protein, and activation of transforming ability is associated with cytoplasmic localization. Cell 1989; 58: 669–78

    Article  PubMed  Google Scholar 

  276. Kipreos ET, Wang JYJ. Cell cycle-regulated binding of c-Abl tyrosine kinase to DNA. Science 1992; 256: 382–5

    Article  PubMed  CAS  Google Scholar 

  277. Jackson P, Baltimore D. N-terminal mutations activates the leukemogenic potential of the myristoylated form of c-abl. EMBOJ 1989; 8: 449–56

    CAS  Google Scholar 

  278. Muller AJ, Young JC, Pendergast AM, et al. BCR first exon sequences specifically activates the BCR/ABL tyrosine kinase oncogene of Philadelphia chromosome positive human leukemias. Mol Cell Biol 1991; 11: 1785–92

    PubMed  CAS  Google Scholar 

  279. Oppi C, Shore SK, Reddy EP. Nucleotide sequence of testis-derived cDNAs: implications for testis specific transcription and abl oncogene activation. Proc Natl Acad Sci U S A 1987; 84: 8200–4

    Article  PubMed  CAS  Google Scholar 

  280. Sawyers CL, McLaughlin J, Goga A, et al. The nuclear tyrosine kinase c-Abl negatively regulates cell growth. Cell 1994; 77: 121–31

    Article  PubMed  CAS  Google Scholar 

  281. Yuan ZM, Huang Y, Whang Y, et al. Role for c-Abl tyrosine kinase in growth arrest response to DNA damage. Nature 1996; 382: 272–4

    Article  PubMed  CAS  Google Scholar 

  282. Okabe M, Uehara Y, Nishima T, et al. in vivo antitumor activity of herbimycin A, a tyrosine kinase inhibitor, targeted against bcr/abl oncoprotein in mice bearing bcr/abl-transfected cells. Leuk Res 1994; 18: 867–73

    Article  PubMed  CAS  Google Scholar 

  283. Hanks S, Quinn AM, Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 1988; 241: 42–52

    Article  PubMed  CAS  Google Scholar 

  284. Pawson T, Gish GD. SH2 and SH3 domains: from structure to function. Cell 1992; 71: 359–62

    Article  PubMed  CAS  Google Scholar 

  285. Ihle JN, Witthuhn BA, Quelle FW, et al. Signalling by the cytokine receptor superfamily: JAKs and STATs. Trends Biochem Sci 1994; 19: 222–7

    Article  PubMed  CAS  Google Scholar 

  286. Silvennoinen O, Schindler C, Schlessinger J, et al. Ras-independent growth factor signalling by transcription factor tyrosine phosphorylation. Science 1993; 261: 1736–9

    Article  PubMed  CAS  Google Scholar 

  287. Stahl N, Yancopoulos GD. The alphas, betas, and kinases of cytokine receptor complexes. Cell 1993; 74: 587–90

    Article  PubMed  CAS  Google Scholar 

  288. Velazquez L, Fellous M, Stark GR, et al. A protein tyrosine kinase in the interferon alpha/beta signalling pathway. Cell 1992; 70: 313–22

    Article  PubMed  CAS  Google Scholar 

  289. Watling D, Guschin D, Muller M, et al. Complementation by the protein tyrosine kinase JAK2 of a mutant cell line defective in the interferon-gamma signal transduction pathway. Nature 1993; 366: 166–70

    Article  PubMed  CAS  Google Scholar 

  290. Muller M, Briscoe J, Laxton C, et al. The protein tyrosine kinase JAK1 complements defects in interferon-alpha/beta and — gamma signal transduction. Nature 1993; 366: 129–35

    Article  PubMed  CAS  Google Scholar 

  291. Cance WG, Craven RJ, Weiner TM, et al. Novel protein kinases expressed in human breast cancer. Int J Cancer 1993; 54: 571–7

    Article  PubMed  CAS  Google Scholar 

  292. Miyazaki T, Kawahara A, Fujii H, et al. Functional activation of Jak1 and Jak3 by selective association with IL-2 receptor subunits. Science 1994; 266: 1045–7

    Article  PubMed  CAS  Google Scholar 

  293. Rodig S, Meraz MA, White JM, et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998; 93: 373–83

    Article  PubMed  CAS  Google Scholar 

  294. Parganas E, Wang, D, Stravopodis D, et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998; 93: 385–95

    Article  PubMed  CAS  Google Scholar 

  295. Neubauer H, Cumao A, Müller M, et al. Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998; 93: 397–409

    Article  PubMed  CAS  Google Scholar 

  296. Shuai K, Stark GR, Kerr TM, et al. A single phosphotyrosine residue of Stat91 required for gene activation by interferon-gamma. Science 1993; 261: 1744–6

    Article  PubMed  CAS  Google Scholar 

  297. Leung S, Li X, Stark GR. STATs find that hanging together can be stimulating. Science 1996; 273: 750

    Article  PubMed  CAS  Google Scholar 

  298. Lutticken C, Wegenka UM, Yuan J, et al. Association of transcription factor APRF and protein kinase Jak1 with the interleukin-6 signal transducer gp 130. Science 1994; 263: 89–92

    Article  PubMed  CAS  Google Scholar 

  299. Pearse RN, Feinman R, Shuai K, et al. Interferon gamma-induced transcription of the high-affinity Fc receptor for IgG requires assembly of a complex that includes the 91-kDa subunit of transcription factor ISGF 3. Proc Natl Acad Sci U S A 1993; 90: 4314–8

    Article  PubMed  CAS  Google Scholar 

  300. Silvennoinen W, Witthuhn BA, Quelle FW, et al. Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci U S A 1993; 90: 8429–33

    Article  PubMed  CAS  Google Scholar 

  301. Sadowski HB, Shuai K, Darnell JE, et al. A common nuclear signal transduction pathway activated by growth factor and cytokine receptors. Science 1993; 261: 1739–44

    Article  PubMed  CAS  Google Scholar 

  302. Ruff-Jamison S, Chen K, Cohen S. Induction by EGF and interferon-gamma of tyrosine phosphorylated DNA binding proteins in mouse liver nuclei. Science 1993; 261: 1733–6

    Article  PubMed  CAS  Google Scholar 

  303. Zachary I, Rozengurt E. Focal adhesion kinase (p125FAK): a point of convergence in the action of neuropeptides, integrins, and oncogenes. Cell 1992; 71: 891–4

    Article  PubMed  CAS  Google Scholar 

  304. Schaller MD, Hildebrand JD, Shannon JD, et al. Autophosphorylation of the focal adhesion kinase, pp125FAK, directs SH2-dependent binding of pp60src. Mol Cell Biol 1994; 14: 1680–8

    PubMed  CAS  Google Scholar 

  305. Hanks SK, Calalb MB, Harper MC, et al. Focal adhesion protein-tyrosine kinase phosphorylated in response to cell attachment to fibronectin. Proc Natl Acad Sci U S A 1992; 89: 8487–91

    Article  PubMed  CAS  Google Scholar 

  306. Tani T, Von Koskull H, Virtanan I. Focal adhesion kinase pp125-FAK is associated with both intercellular junctions and matrix adhesion sites in vivo. Histochem Cell Biol 1996; 105: 17–25

    Article  PubMed  CAS  Google Scholar 

  307. Aprikian AG, Tremblay L, Han K, et al. Bombesin stimulates the motility of human prostate-carcinoma cells through tyrosine phosphorylation of focal adhesion kinase and of integrin-associated proteins. Int J Cancer 1997; 72: 498–504

    Article  PubMed  CAS  Google Scholar 

  308. Duncan MD, Harmon JW, Duncan KLK. Actin disruption inhibits bombesin stimulation of focal adhesion kinase (pp125-FAK) in prostate carcinoma. J Surg Res 1996; 63: 359–63

    Article  PubMed  CAS  Google Scholar 

  309. Matsumoto K, Matsumoto J, Nakamura T, et al. Hepatocyte growth factor-scatter factor induces tyrosine phosphorylation of focal adhesion kinase (p125-FAK) and promotes migration and invasion by oral squamous cell carcinoma cells. J Biol Chem 1994; 269: 31807–13

    PubMed  CAS  Google Scholar 

  310. Jiang WG, Hiscox S, Nakamura T, et al. Hepatocyte growth factor induces tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin and enhances cell-matrix interactions. Oncol Rep 1996; 3: 819–23

    PubMed  CAS  Google Scholar 

  311. Canbay E, Norman M, Kilic E, et al. Prolactin stimulates the JAK2 and focal adhesion kinase pathways in human breast carcinoma T47-D cells. Biochem J 1997; 324: 231–6

    PubMed  CAS  Google Scholar 

  312. Yu G, Smithgall TE, Glazer RI. K562 leukemia cells transfected with the human c-fes gene acquire the ability to undergo myeloid differentiation. J Biol Chem 1989; 264: 10276–81

    PubMed  CAS  Google Scholar 

  313. Van de Ven WJM. The protein kinases: Fes/Fps. In: Hardie G, Hanks S, editors. The protein kinase facts book. New York: Academic Press, 1995: 92–4

    Google Scholar 

  314. Hao QL, Heisterkamp N, Groffen J. Isolation and sequence analysis of a novel human tyrosine kinase. Mol Cell Biol 1989; 9: 1587–93

    PubMed  CAS  Google Scholar 

  315. Feldman RA, Gabrilove JL, Tam JP, et al. Specific expression of the human cellular fps/fes-encoded protein NCP92 in normal and leukemic myeloid cells. Proc Natl Acad Sci U S A 1985; 82: 2379–83

    Article  PubMed  CAS  Google Scholar 

  316. MacDonald I, Levy J, Pawson T. Expression of the mammalian c-fes protein in hematopoietic cells and identification of a distinct fes-related protein. Mol Cell Biol 1985; 5: 2543–51

    PubMed  CAS  Google Scholar 

  317. Slamon D, de Kemion JR, Verma IM, et al. Expression of cellular oncogenes in human malignancies. Science 1984; 224: 256–62

    Article  PubMed  CAS  Google Scholar 

  318. Greer P, Haigh J, Mbamalu G, et al. The fps/fes protein-tyrosine kinase promotes angiogenesis in transgenic mice. Mol Cell Biol 1994; 14: 6755–63

    PubMed  CAS  Google Scholar 

  319. Sithanandam G, Kolch W, Duh FM, et al. Complete coding sequence of a human B-raf cDNA and detection of B-raf protein kinase with isozyme specific antibodies. Oncogene 1990; 5: 1775–80

    PubMed  CAS  Google Scholar 

  320. Marais R, Light Y, Paterson HF, et al. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic Ras and tyrosine kinases. J Biol Chem 1997; 272: 4378–83

    Article  PubMed  CAS  Google Scholar 

  321. Bernards A. Neurofibromatosis type I and Ras-mediated signalling: filling in the GAPs. Biochim Biophys Acta 1995; 1242: 43–59

    PubMed  Google Scholar 

  322. Adari H, Lowy DR, Willumsen BF, et al. Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 1988; 240: 518–21

    Article  PubMed  CAS  Google Scholar 

  323. Rodriguez-Viciana P, Warne PH, Dhand R, et al. Phosphatidylinositol-3-OH kinase as a direct target of ras. Nature 1994; 370: 527–32

    Article  PubMed  CAS  Google Scholar 

  324. Willumsen BM, Vass WC, Velu TJ, et al. Mutational analysis of a ras catalytic domain. Mol Cell Biol 1991; 11: 6026–33

    PubMed  CAS  Google Scholar 

  325. Amar S, Glozman A, Chung D, et al. Selective inhibition of oncogenic ras-p21 in vivo by agents that block its interaction with jun-N-kinase (JNK) and jun proteins: implications for the design of selective chemotherapeutic agents. Cancer Chemother Pharmacol 1997; 41: 79–85

    Article  PubMed  CAS  Google Scholar 

  326. Hiwasa T. Ras inhibitors [review]. Oncol Rep 1994; 3: 7–14

    Google Scholar 

  327. Marais R, Light Y, Mason C, et al. Requirement of Ras-GTP-Raf complexes for activation of Raf-1 by protein kinase C [published erratum appears in Science 1998; 280: 987]. Science 1998; 280: 109–12

    Article  PubMed  CAS  Google Scholar 

  328. Blagosklonny MV, Giannakakou P, El-Deiry WS, et al. Raf-1/bcl-2 phosphorylation: a tep from microtubule damage to cell death. Cancer Res 1997; 57: 103–5

    Google Scholar 

  329. Wang HG, Rapp UR, Reed JC. Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996; 87: 629–38

    Article  PubMed  CAS  Google Scholar 

  330. Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis [published erratum appears in Nat Med 1997; 3: 934]. Nat Med 1997; 3: 614–20

    Article  PubMed  CAS  Google Scholar 

  331. Reed JC. Double identity for proteins of the Bcl-2 family. Nature 1997; 387: 773–6

    Article  PubMed  CAS  Google Scholar 

  332. Ouyang H, Furukawa T, Abe T, et al. The Bax gene, the promoter of apoptosis, is mutated in genetically unstable cancers of the colorectum, stomach and endometrium. Clin Cancer Res 1998; 4: 1071–4

    PubMed  CAS  Google Scholar 

  333. Brimmell M, Mendiola R, Mangion J, et al. Bax frameshift mutations in cell lines derived from human haematopoietic malignancies are associated with resistance to apoptosis and microsatellite instability. Oncogene 1998; 16: 1803–12

    Article  PubMed  CAS  Google Scholar 

  334. Bos JL. ras oncogenes in human cancer: a review. Cancer Res 1989; 49: 4682–9

    PubMed  CAS  Google Scholar 

  335. Kiaris H, Spandidos DA. Mutations or ras genes in human tumours [review]. Int J Oncol 1995; 7: 413–21

    PubMed  CAS  Google Scholar 

  336. Ravi R, Bedi A, Fuchs EJ, et al. CD95 (Fas)-induced caspase-mediated proteolysis of NF-κB. Cancer Res 1998; 58: 882–6

    PubMed  CAS  Google Scholar 

  337. Sithanandam G, Dean M, Brennscheidt U, et al. Loss of heterozygosity at the c-raf locus in small cell lung carcinoma. Oncogene 1989; 4: 451–5

    PubMed  CAS  Google Scholar 

  338. Berger DH, Jardines, LA, Chang H, et al. Activation of Rf-1 in human pancreatic adenocarcinoma. J Surg Res 1997; 69: 199–204

    Article  PubMed  CAS  Google Scholar 

  339. Callans LS, Naama H, Khandelwal M, et al. Raf-1 protein expression in human breast cancer cells. Anns Surg Oncol 1995; 2: 38–42

    Article  CAS  Google Scholar 

  340. Patel BK, Ray S, Whiteside TL, et al. Correlation of constitutive activation of raf-1 with morphological transformation and abrogation of tyrosine phosphorylation of distinct sets of proteins in human squamous carcinoma cells. Mol Carcinogen 1993; 18: 1–6

    Article  Google Scholar 

  341. Riva C, Lavieille JP, Reyt E, et al. Differential c-myc, c-jun, c-raf and p53 expression in squamous cell carcinoma of the head and neck: implication in drug and radioresistance. Eur J Cancer Oral Oncol 1995; 31B (Pt B): 384–91

    Article  CAS  Google Scholar 

  342. Eggstein S, Manthey G, Hirsch T, et al. Raf-1 kinase, epidermal growth factor receptors, and mutant Ras proteins in colonic carcinomas. Dig Dis Sci 1996; 41: 1069–75

    Article  PubMed  CAS  Google Scholar 

  343. Okuda K, Matulonis U, Salgia R, et al. Factor independence of human myeloid leukemia cell lines is associated with increased phosphorylation of the proto-oncogene Raf-1. Exp Hematol 1994; 22: 1111–7

    PubMed  CAS  Google Scholar 

  344. Schmidt CA, Oettle H, Ludwig WD, et al. Overexpression of the Raf-1 proto-oncogene in human myeloid leukemia. Leuk Res 1994; 18:409–13

    Article  PubMed  CAS  Google Scholar 

  345. Callans LS, Naama H, Khandelwal M, et al. Raf-1 phosphorylation in human breast cancer cells (Meeting abstract). Soc. Surg. Oncol., 46th Annual Cancer Symposium in Conjunction with Society of Head and Neck Surgeons; 1993 March 18–21, Los Angeles (CA), 20

  346. Patel BK, Kasid U. Nucleotide sequence analysis of c-raf-1 cDNA and promoter from a radiation-resistant human squamous carcinoma cell line: deletion within exon 17. Mol Carcinogen 1993; 8: 7–12

    Article  CAS  Google Scholar 

  347. Storm SM, Rapp UR. Oncogene activation: c-raf-1 gene mutations in experimental and naturally occurring tumors. Toxicology Lett 1993; 67: 201–10

    Article  CAS  Google Scholar 

  348. Teyssier JR, Henry I, Dozier C, et al. Recurrent deletion of the short arm of chromosome 3 in human renal cell carcinoma: shift of the c-raf 1 locus. J Natl Cancer Inst 1986; 77: 1187–95

    PubMed  CAS  Google Scholar 

  349. Ikeda S, Sumii H, Akiyama K, et al. Amplification of both c-myc and c-raf-1 oncogenes in a human osteosarcoma. Jpn J Cancer Res 1989; 80: 6–9

    Article  PubMed  CAS  Google Scholar 

  350. Xerri L, Charpin C, Hassoun J, et al. Mos oncogene expression in human ovarian tumors. Anticancer Res 1991; 11: 1629–34

    PubMed  CAS  Google Scholar 

  351. Lidereau R, Mathieu-Mahul D, Theillet C, et al. Presence of an allelic EcoRI restriction fragment of the c-mos locus in leukocyte and tumor cell DNAs of breast cancer patients. Proc Natl Acad Sci U S A 1985; 82: 7068–70

    Article  PubMed  CAS  Google Scholar 

  352. Parkar MH, Seid JM, Stringer BM, et al. Abnormal expression of the MOS proto-oncogene in human thyroid medullary carcinoma. Cancer Lett 1988; 15: 185–9

    Article  Google Scholar 

  353. Lidereau R, Cole ST, Larsen CJ, et al. A single point mutation responsible for c-mos polymorphism in cancer patients. Oncogene 1987; 1: 235–7

    PubMed  CAS  Google Scholar 

  354. Csaikl F, Mullauer L, Schwabe M, et al. Mutations of c-myc and c-mos genes lead to aberrant transcription of c-myc [abstract]. Blut 1987; 55: 244

    Google Scholar 

  355. Staal SP Molecular cloning of the AKT oncogene and its human homologous AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci U S A 1987; 84: 5034–7

    Article  PubMed  CAS  Google Scholar 

  356. Ahmad S, Singh N, Bellacosa A, et al. Endogenous regulation of the protooncogene protein serine-threonine kinase, c-AKT by estradiol and insulin growth factor-1 in MCF-7 breast carcinoma cells [abstract]. Proc Am Assoc Cancer Res 1998; 38: 232

    Google Scholar 

  357. Schmidt CM, McKillop IH, Cahill PA, et al. Functionally significant Gi-protein linked MAPK pathway in primary human hepatocellular carcinoma [abstract]. Hepatol 1997; 26: 263A

    Article  Google Scholar 

  358. Takahashi T, Murohashi I, Kishimoto K, et al. Hyperexpression of mitogen-activated protein kinase (p42-p44 MAPK) in malignant lymphoid neoplasms [abstract]. Blood 1997; 90: 165B

    Google Scholar 

  359. Attar BM, Atten MJ, Holian O. MAPK activity is down-regulated in human colon adenocarcinoma: correlation with PCK activity. Anticancer Res 1996; 16: 395–9

    PubMed  CAS  Google Scholar 

  360. Frexes-Steed M, Woodard B A, Kern S, et al. Growth regulation by the ras-MAPK pathway in human pancreatic ductal carcinoma [abstract]. Gastroenterol 1997; 112: A564

    Google Scholar 

  361. Yee D, Gooch JL, Jackson JG. IGF-I, insulin, and IL4 activated IRS 1 in human breast cancer cells: Differential IRS 1 tyrosine phosphorylation by IGF-I is associated with increased MAPK and PI3K activation [abstract]. Proc Am Assoc Cancer Res Ann Meeting 1997; 38: 435

    Google Scholar 

  362. Sun SC, Elwood J, Beraud C, et al. Human T-cell leukemia-virus type-I tax activation of NF-kappa-B/Rel involves phosphorylation and degradation of I-kappa-B-alpha and rela (p65)-mediated induction of the c-rel gene. Mol Cell Biol 1994; 14: 7377–84

    PubMed  CAS  Google Scholar 

  363. Bours V, Dejardin E, Goujon-Letawe F, et al. The NF-kappa B transcription factor and cancer: high expression of NF-kappa B- and I kappa B-related proteins in tumor cell lines. Biochem Pharmacol 1994; 47: 145–9

    Article  PubMed  CAS  Google Scholar 

  364. Gilmore TD. Role of rel family genes in normal and malignant lymphoid cell growth. Cancer Surv 1992; 15: 69–87

    PubMed  CAS  Google Scholar 

  365. Feuillard J, Korner M, Israel A, et al. Differential nuclear localization of p50, p52, and RelB proteins in human accessory cells of the immune response in situ. Eur J Immunol 1996; 26: 2547–51

    Article  PubMed  CAS  Google Scholar 

  366. Sovak MA, Bellas RE, Kim DW, et al. Aberrant nuclear factor-kappa-B-Rel expression and the pathogenesis of breast cancer. J Clin Invest 1997; 100: 2952–60

    Article  PubMed  CAS  Google Scholar 

  367. Dejardin E, Bonizzi G, Bellahcene A, et al. Highly-expressed p100/p52 (NFKB2) sequesters other NF-kappa B -related proteins in the cytoplasm of human breast cancer cells. Oncogene 1995; 11: 1835–41

    PubMed  CAS  Google Scholar 

  368. Maxwell SA, Johnson M, Mukhopadhyay T. Expression and regulation of nuclear factor-kappa B (NFκ-B)/REL in non-small cell lung carcinoma and transformed cell lines [abstract]. Int J Oncol 1995; 7: 984

    Google Scholar 

  369. Visconti R, Cerutti J, Battista S, et al. Expression of the neoplastic phenotype by human thyroid carcinoma cell lines requires NF-kappa-B p65 protein expression. Oncogene 1997; 15: 1987–94

    Article  PubMed  CAS  Google Scholar 

  370. Mukhopadhyay T, Roth JA, Maxwell SA. Altered expression of the p50 subunit of the NF-kappa B transcription factor complex in non-small cell lung carcinoma. Oncogene 1995; 11: 999–1003

    PubMed  CAS  Google Scholar 

  371. Maxwell SA, Mukhopadhyay T. A novel NF-kappa B p65 spliced transcript lacking exons 6 and 7 in a non-small cell lung carcinoma cell line. Gene 1995; 166: 399–400

    Article  Google Scholar 

  372. Bargou RC, Emmerich F, Krappmann D, et al. Constitutive nuclear factor-kappa-B-RelA activation is required for proliferation and survival of Hodgkin’s disease tumor cells. J Clin Invest 1997; 100: 2961–9

    Article  PubMed  CAS  Google Scholar 

  373. Nakshatri H, Bhat-Nakshatri P, Martin DA, et al. Constitutive activation of NF-kappa-B during progression of breast cancer to hormone-independent growth. Mol Cell Biol 1997; 17: 3629–39

    PubMed  CAS  Google Scholar 

  374. Trecca D, Guerrini L, Frachhiolla NS, et al. Identification of a tumor-associated mutant of the NF-kappa B RelA gene with reduced DNA-binding and transactivating activities. Oncogene 1997; 14: 791–9

    Article  PubMed  CAS  Google Scholar 

  375. Yew N, Strobel M, Vande Woude GF. Mos and the cell cycle: the molecular basis of the transformed phenotype. Curr Opin Genet Devel 1993; 3: 19–25

    Article  CAS  Google Scholar 

  376. Sagata N, Watanabe N, Vande Woude GF, Ikawa Y. The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. Nature 1989; 342: 512–8

    Article  PubMed  CAS  Google Scholar 

  377. Vande Woude GF. Mos gen products (vertrebrates). In: Hardie G, Hanks S, editors. The protein kinase facts book. New York: Academic Press, 1995: 358–60

    Google Scholar 

  378. Nebreda AR, Hill C, Gomez N, et al. The protein kinase mos activates MAP kinase kinase in vitro and stimulates the MAP kinase pathway in mammalian somatic cells in vivo. FEBS Lett 1993; 333: 183–7

    Article  PubMed  CAS  Google Scholar 

  379. Pham CD, Arlinghaus RB, Zheng CF, et al. Characterization of mek1 phosphorylation by the v-mos protein. Oncogene 1995; 10: 1683–8

    PubMed  CAS  Google Scholar 

  380. Marshall CJ. MAP kinase kinase kinase, MAP kinase kinase and MAP kinase. Curr Opin Genet Dev 1994; 4: 82–9

    Article  PubMed  CAS  Google Scholar 

  381. Davis RJ. MAPKs: new JNK expands the group. Trends Biochem 1994; 19: 470–3

    Article  CAS  Google Scholar 

  382. Waskiewicz AJ, Cooper JA. Mitogen and stress response pathways: MAP kinase cascades and phosphatase regulation in mammals and yeast. Curr Opin Cell Biol 1995; 7: 798–805

    Article  PubMed  CAS  Google Scholar 

  383. Matsuda S, Kawasaki H, Moriguchi T, et al. Activation of protein kinase cascades by osmotic shock. J Biol Chem 1995; 270: 12781–6

    Article  PubMed  CAS  Google Scholar 

  384. Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways. Science 1997; 275: 90–4

    Article  PubMed  CAS  Google Scholar 

  385. Maeda T, Takekawa M, Saito H. Activation of yeast PBS2 MAPKK by MAPKKKs or by binding of an SH3-containing osmosensor. Science 1995; 269: 554–8

    Article  PubMed  CAS  Google Scholar 

  386. Wang TH, Henley DC, Ichijo H, et al. Involvement of Ras and apoptosis signal-regulating kinase (ASK-1) in activation of the JNK/SAPK cascade by treatment with paclitaxel or vinblastine [abstract]. Proc Am Assoc Cancer Res 1998; 39: 89

    Google Scholar 

  387. Saitoh M, Nishitoh H, Fuji M, et al. Mammalian thioredoxin is a direct inhibitor of apoptosis signal-regulating kinase (ASK) 1. EMBO J 1998; 17(9): 2596–606

    Article  PubMed  CAS  Google Scholar 

  388. Ko YG, Seol WG, Kim TH, et al. Functional interaction or human glutaminyl-t RNA synthetase and apoptosis signal-structure kinsase (Ask) 1 [abstract]. Mol Biol Cell 1999; 10: 1909

    Google Scholar 

  389. Alessi DR, Saito Y, Campbell DG, et al. Identification of the sites in MAP kinase kinase-1 phosphorylated by p74raf−1. EMBO J 1994; 13: 1610–9

    PubMed  CAS  Google Scholar 

  390. Vaillancourt RR, Gardner AM, Johnson GL. B-Raf-dependent regulation of the MEK-1/mitogen-activated protein kinase pathway in PC12 cells and regulation by cyclic AMP. Mol Cell Biol 1994; 14: 6522–30

    PubMed  CAS  Google Scholar 

  391. Papin CA, Eychene A, Brunet G, et al. B-raf protein isoforms interact with and phosphorylate mek-1 on serine residue-218 and residue 222. Oncogene 1995; 10: 1647–51

    PubMed  CAS  Google Scholar 

  392. Seger R, Ahn NG, Posada J, et al. Purification and characterization of mitogen-activated protein kinase activator(s) from epidermal growth factor-stimulated A431 cells. J Biol Chem 1992; 257: 14373–81

    Google Scholar 

  393. Anderson NG, Mailer JL, Tonks NK, et al. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 1990; 343: 651–3

    Article  PubMed  CAS  Google Scholar 

  394. Evan G, Wyllie A, Gilbert C, et al. Induction of apoptosis in fibroblasts by the c-myc protein. Cell 1992; 69: 119–25

    Article  PubMed  CAS  Google Scholar 

  395. Hall A. A biochemical function for ras — at last. Science 1994; 264: 1413–4

    Article  PubMed  CAS  Google Scholar 

  396. Franke TF, Kaplan DR, Cantley LC. P13’K: downstream AKTion blocks apoptosis. Cell 1997; 88: 435–7

    Article  PubMed  CAS  Google Scholar 

  397. Datta SR, Dudek H, Tao X, et al. Akt phosphorylation of BAD couples survival signals to the cell intrinsic death machinery. Cell 1997; 91: 231–41

    Article  PubMed  CAS  Google Scholar 

  398. Marte BM, Downward J. PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 1997; 22: 355–8

    Article  PubMed  CAS  Google Scholar 

  399. Van Antwerp DJ, Martin SJ, Kafri T, et al. Suppression of TNF-α-induced apoptosis by NF-κB. Science 1996; 274: 787–89

    Article  PubMed  Google Scholar 

  400. Malinin NL, Boldin MP, Kovalenko AV, et al. MAP3K-related kinase involved in NF-κB induction by TNF, CD95 and IL-1. Nature 1997; 385: 540–4

    Article  PubMed  CAS  Google Scholar 

  401. Maniatis T. Catalysis by a multiprotein IκB kinase complex. Science 1997; 278: 818–9

    Article  PubMed  CAS  Google Scholar 

  402. Woronicz JD, Gao X, Cao Z, et al. IκB kinase-ß: NF-κB activation and complex formation with IkB kinase-α and NIK. Science 1997; 278: 866–9

    Article  PubMed  CAS  Google Scholar 

  403. Verma IM, Stevenson JK, Schwartz EM, et al. Rel/NF kappa B/I kappa B family: intimate tales of association and disassociation. Genes Dev 1995; 9: 2723–35

    Article  PubMed  CAS  Google Scholar 

  404. Beuerle PA, Baltimore D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell 1988; 53: 211–7

    Article  Google Scholar 

  405. Haskill S, Berg AA, Tompkins SM, et al. Characterization of an immediate-early gene induced in adherent monocytes that encodes I kappa B-like activity. Cell 1991; 65: 1281–9

    Article  PubMed  CAS  Google Scholar 

  406. Ganchi PA, Sun SC, Greene WC, et al. I kappa B/MAD-3 masks the nuclear localization signal of NF-kappa B p65 and requires the transactivation domain to inhibit NF-kappa B p65 DNA binding. Mol Biol Cell 1992; 3: 1339–52

    PubMed  CAS  Google Scholar 

  407. Brown LF, Berse B, Jackman RW, et al. Expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in breast cancer. Hum Pathol 1995; 26: 86–91

    Article  PubMed  CAS  Google Scholar 

  408. Brockman JA, Scherer DC, McKinsey TA, et al. Coupling of a signal response domain in I kappa B alpha to multiple pathways for NF-kappa B activation. Mol Cell Biol 1995; 15: 2809–18

    PubMed  CAS  Google Scholar 

  409. Traenckner EB, Pahl HL, Henkel T, et al. Phosphorylation of human I kappa B-alpha on serines 32 and 36 controls I kappa B-alpha proteolysis and NF-kappa B activation in response to diverse stimuli. EMBO J 1995; 14: 2876–83

    PubMed  CAS  Google Scholar 

  410. Chen Z, Hagler J, Palombella VJ, et al. Signal-induced site-specific phosphorylation targets I kappa B alpha to the ubiquitin-proteasome pathway. Genes Dev 1995; 9: 1586–97

    Article  PubMed  CAS  Google Scholar 

  411. Mercurio F, Zhu H, Murray BW, et al. IKK-1 and IKK-2: cytokine-activated IκB kinases essential for NF-κB activation. Science 1997; 278: 860–6

    Article  PubMed  CAS  Google Scholar 

  412. DiDonato JA, Hayakawa M, Rothwarf DM, et al. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 1997; 388: 548–54

    Article  PubMed  CAS  Google Scholar 

  413. Chen RH, Tung R, Abate C, et al. Cytoplasmic to nuclear signal transduction by mitogen-activated protein kinase and 90 kDa ribosomal S6 kinase. Biochem Soc Trans 1993; 21: 895–900

    PubMed  CAS  Google Scholar 

  414. Xing J, Ginty DD, Greenberg ME. Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 1996; 273: 969–3

    Article  Google Scholar 

  415. Ghoda L, Lin X, Greene WC. The 90-kDa ribosomal S6 kinase (pp90rsk) phosphorylates the N-terminal regulatory domain of IκBα and stimulates its degradation in vitro. J Biol Chem 1997; 272: 21281–8

    Article  PubMed  CAS  Google Scholar 

  416. Boldin M, Varfolomeev EE, Pancer Z, et al. A novel protein that interacts with the death domain of Fas/APO 1 contains a sequence motif related to the death domain. J Biol Chem 1995; 270: 7795–8

    Article  PubMed  CAS  Google Scholar 

  417. Peter ME, Kischkel FC, Hellrandt S, et al. CD95 (APO-1/Fas)-associating signaling proteins. Cell Death Differ 1996; 3: 161–70

    PubMed  CAS  Google Scholar 

  418. Alnemri ES, Livingson DJ, Nicholson DW, et al. Human ICE/CED-3 protease nomenclature [letter]. Cell 1996; 87: 171

    Article  PubMed  CAS  Google Scholar 

  419. Muzio M, Chinnaiyan AM, Kischkel FC, et al. FLICE, a novel FADD-homologous ICE/CED-3-like protease, is recruited to the CD95 (Fas/APO-1) death-inducing signaling complex. Cell 1996; 85: 817–27

    Article  PubMed  CAS  Google Scholar 

  420. Boldin MP, Goncharov TM, Goltsev YV, et al. Involvement of MACH, a novel MORT-1/FADD-interacting protease, in Fas/APO-1 and TNF receptor-induced cell death. Cell 1996; 85: 803–15

    Article  PubMed  CAS  Google Scholar 

  421. Kischkel FC, Hellbrandt S, Behrmann I, et al. Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins (CAP) form a death-inducing signaling complex (DISC) with the receptor. EMBO J 1995; 14: 5579–88

    PubMed  CAS  Google Scholar 

  422. Medema JP, Scaffidi C, Kischkel FC, et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). EMBO J 1997; 16: 2794–804

    Article  PubMed  CAS  Google Scholar 

  423. Froelich CJ, Dixit VM, Yang X. Lymphocyte granule-mediated apoptosis: matters of viral mimicry and deadly proteases. Immunol Today 1998; 19: 30–6

    Article  PubMed  CAS  Google Scholar 

  424. Müller R, Mumberg D, Lucibello FC. Signals and genes in the control ofthe cell cycle progression. BBA 1993; 1155: 151–79

    PubMed  Google Scholar 

  425. Müller R. Transcriptional regulation during the mammalian cell cycle. Trends Genet 1995; 11: 173–8

    Article  PubMed  Google Scholar 

  426. Bürger C, Wick M, Brüsselbach S, et al. Differential induction of ‘metabolic genes’ after mitogen stimulation and during normal cell cycle progression. J Cell Sci 1994; 107: 241–52

    PubMed  Google Scholar 

  427. Hartwell LH, Kastan MB. Cell cycle control and cancer. Science 1994; 266: 1821–8

    Article  PubMed  CAS  Google Scholar 

  428. Murray A. Cell cycle checkpoints. Curr Opin Cell Biol 1994; 6: 872–6

    Article  PubMed  CAS  Google Scholar 

  429. Hunter T, Pines J. Cyclins and cancer. II: Cyclin D and cdk inhibitors come of age. Cell 1994; 79: 573–82

    Article  PubMed  CAS  Google Scholar 

  430. Peter M, Herskowitz I. Joining the complex: cyclin-dependent kinase inhibitory proteins and the cell cycle. Cell 1984; 79: 181–4

    Article  Google Scholar 

  431. Hannon GF, Beach D. p15INK4B is a potential effector of TGFfl-induced cell cycle arrest. Nature 1994; 371: 257–61

    Article  PubMed  CAS  Google Scholar 

  432. Guan KL, Jenkins CW, Li Y, et al. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related cdk6 inhibitor, correlates with wild-type pRb function. Genes Dev 1994; 8: 2939–52

    Article  PubMed  CAS  Google Scholar 

  433. Noda A, Ning Y, Venable SF, Pereira-Smith OM, et al. Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. Exp Cell Res 1994; 211: 90

    Article  PubMed  CAS  Google Scholar 

  434. DeBondt HL, Rosenblatt J, Jancarik J, et al. Crystal structure of cyclin-dependent kinase 2. Nature 1993; 363: 595–602

    Article  CAS  Google Scholar 

  435. Lees EM, Harlow E. Sequences within the conserved cyclin box of human cyclin A are sufficient for binding to and activation of cdc2 kinase. Mol Cell Biol 1993; 13: 1194–201

    PubMed  CAS  Google Scholar 

  436. Endicott JA, Nurse P, Johnson LN. Mutational analysis supports a structural model for the cell cycle kinase p 34. Protein Eng 1994; 7: 243–53

    Article  PubMed  CAS  Google Scholar 

  437. Solomon MJ. The function(s) of CAK, the p34cdc2-activating kinase. Trends Biochem Sci 1994; 19: 496–500

    Article  PubMed  CAS  Google Scholar 

  438. Ducommun B, Brambilla P, Felix MA, et al. cdc2 phosphorylation is required for its interaction with cyclin. EMBO J 1991 10: 3311–9

    PubMed  CAS  Google Scholar 

  439. Desai D, Wessling HC, Fisher RP, et al. Effects of phosphorylation by CAK on cyclin binding by cdc2 and cdk 2. Mol Cell Biol 1995; 15: 345–50

    PubMed  CAS  Google Scholar 

  440. Zhang J, Sanchez RJ, Wang S, et al. Substrate specificity of cdc2 kinase from human HeLa cells as determined with synthetic peptides and molecular modelling. Arch Biochem Biophys 1994; 351: 415–24

    Article  Google Scholar 

  441. Rickert P, Seghezzi W, Shanahan F, et al. Cyclin C/cdk8 is a novel CTD kinase associated with RNA polymerase II. Oncogene 1996; 12: 2631–40

    PubMed  CAS  Google Scholar 

  442. Galaktionov K, Beach D. Specific activation of cdc25 tyrosine phosphatases by B-type cyclin: evidence for multiple roles of mitotic cyclins. Cell 1991; 67: 1181–94

    Article  PubMed  CAS  Google Scholar 

  443. Zheng XF, Ruderman JV. Functional analysis of the P box, a domain in cyclin B required for the activation of Cdc 25. Cell 1993; 78: 155–64

    Google Scholar 

  444. Karp JE, Broder S. Molecular foundations of cancer: new targets for intervention. Nat Med 1995; 1: 309–20

    Article  PubMed  CAS  Google Scholar 

  445. Soufir N, Avril MF, Chompret A, et al. Prevalence of p16 and CDK4 germline mutations in 48 melanoma-prone families in France. Human Mol Genetics 1998; 7: 209–16

    Article  CAS  Google Scholar 

  446. Wölfel T, Hauer M, Schneider J, et al. A p16INK4a insensitive CDK4 mutant targeted by cytolytic T lymphocyte in a human melanoma. Science 1995; 269: 2181–4

    Article  Google Scholar 

  447. Keyomarsi K, Pardee AB. Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci U S A 1993; 90: 1112–26

    Article  PubMed  CAS  Google Scholar 

  448. Keyomarsi K, O’Leary N, Molnar G, et al. Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 1994; 54: 380–5

    PubMed  CAS  Google Scholar 

  449. Weinberg RA. The retinoblastoma protein and cell cycle control. Cell 1995; 81: 323–30

    Article  PubMed  CAS  Google Scholar 

  450. Mulligan GJ, Jacks T. The retinoblastoma gene family: cousins with overlapping interests. Trends Genet 1998; 14: 223

    Article  PubMed  CAS  Google Scholar 

  451. Grana X, Garriga J, Mayol X. Role of the retinoblastoma protein family, pRb, p107 and p130 in the negative control of cell growth. Oncogene 1998; 17: 3365–83

    Article  PubMed  Google Scholar 

  452. Sedlacek HH, Czech J, Naik R, et al. Flavopiridol (L86-8275; NSC 64890), a new kinase inhibitor for tumor therapy. Int J Oncol 1996; 9: 1143–68

    PubMed  CAS  Google Scholar 

  453. Lipson KE, Wang X, Chen H, et al. SU101, and not its major metabolite, inhibits PDGF-dependent receptor tyrosine phosphorylation, cell cycle progression, and human tumor cell growth. Proc Am Assoc Cancer Res 1998; 39: 558

    Google Scholar 

  454. Blaskovich MA, Wang H, Hamilton AD, et al. Selective inhibition of PDGF-dependent receptor tyrosine phosphorylation and MAP kinase activation by tryptophan derivatives [abstract]. Proc Am Assoc Cancer Res 1998; 39: 559

    Google Scholar 

  455. Vincent PW, Akinson BE, Zhou H, et al. Characterization of the in vivo activity of a novel EGF receptor family kinase inhibitor, PD 169414 [abstract]. Proc Am Assoc Cancer Res 1998; 39: 560

    Google Scholar 

  456. Miller PE, Robinson J, Moyer JD, et al. CP-358,774, a selective EGFR kinase inhibitor, inhibits phosphorylation of SHC and retinoblastoma protein in human tumor xenografts [abstract]. Proc Am Assoc Cancer Res 1998; 39: 560

    Google Scholar 

  457. Mett H, Buchdunger E. Müller M. CGP 59326, a potent protein tyrosine kinase (PTK) inhibitor which selectively blocks growth of epidermal growth factor receptor (EGFR) expressing tumor cells [abstract]. Proc Am Assoc Cancer Res 1998; 39: 560

    Google Scholar 

  458. Fong TAT, Shawver LK, App H, et al. SU5416: a potent and selective Flk-1/KDR kinase inhibitor that blocks Flk-1 phosphorylation, endothelial cell mitogenesis and tumor growth. Proc Am Assoc Cancer Res 1998; 39: 560

    Google Scholar 

  459. Kraker AJ, Moore CW, Hartl BG, et al. Effects of c-src selective pyrido[2,3-d]-pyrimidine tyrosine kinase inhibitors on the phophorylation of p130cas, paxillin, and STAT3 and on proliferation in human carcinoma cell lines [abstract]. Proc Am Assoc Cancer Res 1998; 39: 559

    Google Scholar 

  460. Gay B, Furet P, Fretz H, et al. Design of a highly potent inhibitor of Grb2 SH2 domain with cellular and in vivo activity [abstract]. Proc Am Assoc Cancer Res 1998; 39: 559

    Google Scholar 

  461. Buchdunger E, Cioiffi C, Cozens R, et al. Preclinical evaluation of CGP 57148, a potent protein-tyrosine kinase inhibitor as a therapeutic agent for PH+ leukemias and solid tumors [abstract]. Proc Am Assoc Cancer Res 1998; 39: 559

    Google Scholar 

  462. Heimbrook DC, Huber HE, Stordivant SM, et al. Identification of potent, selective kinase inhibitors of Raf Proc Am Assoc Cancer Res 1998; 39: 558

    Google Scholar 

  463. Meyer T, Zimmermann J, Geiger T, et al. CGP 60474, a protein kinase inhibitor with potent antitumor activity in vivo at well tolerated doses [abstract]. Proc Am Assoc Cancer Res 1998; 39: 558

    Google Scholar 

  464. Senderowicz A, Headlee D, Stinson S, et al. Phase I trial of a novel cyclin-dependent kinase inhibitor flavopiridol in patients with refractory neoplasms. Clin Oncol 1998; 16(9): 2986–99

    CAS  Google Scholar 

  465. Werner JL, Kelsen DP, Karpeh M, et al. The cyclin dependent kinase inhibitor flavopiridol is an active and unexpectedly toxic agent in advanced gastric cancer [abstract]. Proceedings of the 34th Annual Meeting of the American Society of Clinical Oncology: 1998 May 16–19; Los Angeles, 234a

  466. Schwartz GK, Werner JL, Maslak P, et al. Flavopiridol enhances the biological effects of paclitaxel: a phase I trial in patients with advance solid tumors. Proceedings of the 34th Annual Meeting of the American Society of Clinical Oncology: 1998 May 16–19; Los Angeles, 188a

  467. Parker BW, Senderowicz AM, Nieves-Neira W, et al. DNA fragmentation and apoptosis of lymphoma and prostate cancer cell lines after flavopiridol treatment [abstract]. Proc Am Assoc Cancer Res 1996; 37: 398

    Google Scholar 

  468. Schwartz GK, Farsi K, Danso D, et al. The protein kinase C inhibitors UCN-01 and flavopiridol significantly enhance the cytotoxic effect of chemotherapy by promoting apoptosis in gastric and breast cancer cells [abstract]. Proc Am Soc Oncol 1996; 15: 501

    Google Scholar 

  469. Brüsselbach S, Nettelbeck DM, Sedlacek HH, et al. Cell cycle-independent induction of apoptosis by the anti-tumor drug Flavopiridol in endothelial cells. Int J Cancer 1998; 77: 146–52

    Article  PubMed  Google Scholar 

  470. Bible KC, Kaufmann SM. Flavopiridol: a cytotoxic flavone that induces cell death in noncycling A549 human lung carcinoma cells. Cancer Res 1996; 56: 4856–61

    PubMed  CAS  Google Scholar 

  471. Simizu S, Imoto M, Masuda N, et al. Involvement of hydrogen peroxide production in erbstatin-induced apoptosis in human small cell lung carcinoma cells. Cancer Res 1996; 56: 4978–82

    PubMed  CAS  Google Scholar 

  472. Palumbo GA, Yarom N, Gazit A, et al. The tyrphostin AG17 induces apoptosis and inhibition of cdk2 activity in a lymphoma cell line that overexpresses bcl-2. Cancer Res 1997; 57: 2434–9

    PubMed  CAS  Google Scholar 

  473. Moyer JD, Barbacci EG, Iwata KK, et al. Induction of apoptosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res 1997; 57: 4838–48

    PubMed  CAS  Google Scholar 

  474. Wei Y, Zhao X, Kariya Y, et al. Induction of apoptosis by quercetin: involvement of heat shock protein. Cancer Res 1994; 54: 4952–7

    PubMed  CAS  Google Scholar 

  475. Akiyama T, Ishida J, Nakagawa S, et al. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987; 262: 5592–5

    PubMed  CAS  Google Scholar 

  476. Yamashita Y, Kawada S, Nakano H. Induction of mammalian topoisomerase II-dependent DNA cleavage by non-intercalative flavonoids, genistein, and phorbol. Biochem Pharmacol 1990; 39: 187–93

    Article  Google Scholar 

  477. Constantinou A, Kiguchi K, Hubennan E. Induction of differentiation and DNA strand breakage in human HL-60 and K-562 leukemia cells by genistein. Cancer Res 1990; 50: 2618–24

    PubMed  CAS  Google Scholar 

  478. Okura A, Arakawa H, Oka H, et al. Effect of genistein on topoisomerase activity and on the growth of (Val 12) Ha-rastransformed NHI-3T3 cells. Biochem Biophys Res Commun 1988; 157: 183–9

    Article  PubMed  CAS  Google Scholar 

  479. Rao CV, Wang CX, Simi B, et al. Enhancement of experimental colon cancer by genistein. Cancer Res 1997; 57: 3717–22

    PubMed  CAS  Google Scholar 

  480. Zava DT, Duwe G. Estrogenic and antiproliferative properties of genistein and other flavonoids in human breast cancer cells in vitro. Nutr Cancer 1997; 27: 31–40

    Article  PubMed  CAS  Google Scholar 

  481. Sato S, Kohno K, Izumi H, et al. Differential effects of pKI H-7 on activation of human MDRI promoter. Cell Pharmacol 1995; 2: 153–7

    CAS  Google Scholar 

  482. Li JJ, Westergaard C, Ghosh P, et al. Inhibitors of both nuclear factor-kappaB and activator protein-1 activation block the neoplastic transformation response. Cancer Res 1997; 57: 3569–76

    PubMed  CAS  Google Scholar 

  483. Monia BP, Sasmor H, Johnston JF, et al. Sequence-specific antitumor activity of a phosphorothioate oligodeoxyribonucleotide targeted to human C-raf kinase supports an antisense mechanism of action in vivo. Proc Natl Acad Sci U S A 1996; 93: 15481–4

    Article  PubMed  CAS  Google Scholar 

  484. Monia BP, Johnston JF, Geiger T, et al. Antitumor activity of a phosphorothioate antisense oligodeoxynucleotide targeted against C-raf kinase. Nat Med 1996; 2: 668–75

    Article  PubMed  CAS  Google Scholar 

  485. Filgueira W, De Azevedo jr, Mueller-Dieckmann HJ, et al. Structural basis for specific and potency of a flavonoid inhibitor of human cdk2, a cell cycle kinase. Proc Natl Acad Sci U S A 1996; 93: 2735

    Article  Google Scholar 

  486. Pollman MJ, Hall JL, Mann MJ, et al. Inhibition of neointimal cell bcl-x expression induces apoptosis and regression of vascular disease. Nature Med 1998; 4: 222–7

    Article  PubMed  CAS  Google Scholar 

  487. Kraemer HP, Sedlacek HH. The human tumor clonogenic assay for the prediction of tumor sensitivity. In: Beger HG, Büchler M, Reisfeld RA, et al., editors. Cancer therapy. Berlin: Springer Verlag, 1989: 244–7

    Google Scholar 

  488. Jäger W, Zembsch B, Wolschann P, et al. Metabolism of the anticancer drug flavopiridol, a new inhibitor of cyclin dependent kinases, in rat liver. Life Sci 1998; 62: 1861–73

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The author is indepted to Professor Rolf Müller, Institute for Molecular Biology and Tumour Research, University of Marburg, with whom he intensively discussed the network of cell signal transduction, cellular screening systems for cytostatics and the possibility of improving the present test systems for kinase inhibitors and who thereby considerable contributed to this review.

In addition, the author thanks Ms Manuela Rogala for her skilful secretarial assistance in preparing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. H. Sedlacek.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedlacek, H.H. Kinase Inhibitors in Cancer Therapy. Drugs 59, 435–476 (2000). https://doi.org/10.2165/00003495-200059030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200059030-00004

Navigation