Skip to main content
Log in

In Vitro Fertilisation

A Review of Drug Therapy and Clinical Management

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Since the first in vitro fertilisation (IVF) pregnancy was delivered in 1978, this procedure has resulted in thousands of pregnancies and opened a vast new frontier of research and treatment for the infertile couple. Pregnancy rates with IVF improve as the number of high quality embryos available for transfer increases; therefore, ovarian stimulation agents to produce multiple oocytes for IVF are advantageous. Clomifene (clomiphene citrate), human menopausal gonadotrophin (hMG; menotropins), and subsequent generations of products are commonly used as stimulation agents. In conjunction with the stimulation agents, gonadotrophin-releasing hormone (GnRH) agonists and human chorionic gonadotrophin (hCG) serve as adjuvants for successful control of all events in the induction process. Clomifene, an estrogen agonist/antagonist, occupies the estrogen receptor for a longer period of time than estrogen (weeks versus hours). Because this signal is interpreted as low estrogen, GnRH is released, which produces a rise in circulating levels of follicle-stimulating hormone (FSH) and luteinising hormone (LH) and subsequent ovarian follicular development.

Menotropins is collected by passing urine from menopausal donors over a Sepharose column, followed by removal of high molecular weight impurities by chromatography. The mixture of FSH and LH is biologically standardised. This product stimulates multiple ovarian follicular development. Urofollitrophin is produced using antibodies to hCG anchored to a separation column. LH then can be excluded from the eluate by binding to the hCG antibodies (LH immunoaffinity column). Highly purified FSH is obtained by passing menopausal urine over a column with monoclonal antibodies to FSH. The isolated FSH is then eluted from the column by a highly basic solution and crystallised. This product delivers FSH at a 90% purity and can be administered subcutaneously rather than intramuscularly. Dosage is standardised on a mg/kg basis. Recombinant human FSH is completely free of LH and offers the advantages of better batch consistency, greater purity, and absence of any human contaminants. It may be given both subcutaneously and intravenously. Genetically engineered FSH combines portions of the native protein with another protein (hCG) which enhances its potency and extends the half-life compared with wild-type FSH. Short, medium and ultra-long activity analogues of genetically engineered FSH may be used to tailor stimulation protocols in various clinical situations.

Growth hormone is an adjuvant to ovarian stimulation which results in a decreased number of ampoules of menotropins being required to achieve ovulation in poor responders. Ovulation triggers include both hCG and GnRH agonists. Progesterone supplementation is generally used in the luteal phase of the IVF cycle and is administered by intramuscular injection or vaginal suppository.

It appears that conscious sedation with midazolam, pethidine (meperidine) and fentanyl is nontoxic for oocyte recovery. If full anaesthesia is required for gamete intrafallopian tube transfer (GIFT) or zygote intrafallopian tube transfer (ZIFT), balanced anaesthesia with nitrous oxide and an opioid appears to be the most appealing option.

Appropriate information on the clinical use of the drugs used in IVF greatly reduces patient stress associated with the complex multidrug regimens associated with the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steptoe PC, Edwards RG. Reimplantation of a human embryo with subsequent tubal pregnancy. Lancet 1976; I: 880–2

    Article  Google Scholar 

  2. Steptoe PC, Edwards RG. Birth after the reimplantation of a human embryo. Lancet 1978; II: 336

    Google Scholar 

  3. Davis OK, Rosenwaks Z. In vitro fertilization. In: Adashi EY, Rock JA, Rosenwaks Z, editors. Reproductive endocrinology, surgery and technology. Philadelphia: Lippincott-Raven Publishers, 1996: 2319–34

    Google Scholar 

  4. Van den Eede B. Investigation and treatment of infertile couples: ESHRE guidelines for good clinical and laboratory practice. Hum Reprod 1995; 10: 1251–70

    Google Scholar 

  5. de Ziegler D, Cedars MI, Randle D, et al. Suppression of the ovary using a gonadotropin releasing-hormone agonist prior to stimulation for oocyte retrieval. Fertil Steril 1987; 48: 807–10

    PubMed  Google Scholar 

  6. Tan SL, Manconochie N, Doyle P, et al. Cumulative conception and live birth rates after in vitro fertilization with and without the use of long, short, and ultrashort regimens of the gonadotropin-releasing hormone agonist buserelin. Am J Obstet Gynecol 1994; 171: 513–20

    PubMed  CAS  Google Scholar 

  7. Lutjen P, Trounson A, Leeton J, et al. The establishment and maintenance of pregnancy using in vitro fertilization and embryo donation in a patient with primary ovarian failure. Nature 1984; 307: 174–5

    Article  PubMed  CAS  Google Scholar 

  8. Asch RH, Ellsworth LR, Balmaceda JP, et al. Pregnancy after translaparoscopic gamete intrafallopian transfer. Lancet 1984; 2: 1034–5

    Article  PubMed  CAS  Google Scholar 

  9. Blackledge DG, Matson PL, Wilcox DL, et al. Pronuclear stage transfer and modified gamete intrafallopian transfer techniques for oligospermic cases [letter]. Med J Aust 1986; 145: 173–4

    PubMed  CAS  Google Scholar 

  10. Trounson AO, Mohr L. Human pregnancy following cryo-preservation, thawing and transfer of an eight-cell embryo. Nature 1983; 305: 707–9

    Article  PubMed  CAS  Google Scholar 

  11. Chen C. Pregnancy after human oocyte cryopreservation. Lancet 1986; I: 884–6

    Article  Google Scholar 

  12. Speroff L, Glass RH, Kase NG (eds): Clinical Gynecologic Endocrinology and Infertility, 5th ed. Baltimore: Williams and Wilkins, 1994: 185, 191

    Google Scholar 

  13. Collins JA, Hughes EG. Pharmacological interventions for the induction of ovulation. Drugs 1995; 50: 480–94

    Article  PubMed  CAS  Google Scholar 

  14. Olive DL. The role of gonadotropins in ovulation induction. Am J Obstet Gynecol 1995; 172: 759–65

    Article  PubMed  CAS  Google Scholar 

  15. Clark JH, Markaverich BM. The agonistic-antagonistic properties of clomiphene: a review. Pharmacol Ther 1982; 15: 467–519

    Article  Google Scholar 

  16. Adashi EY. Clomiphene citrate-initiated ovulation: a clinical update. Seminars Reprod Endocrinol 1986; 4: 255–64

    Article  Google Scholar 

  17. Kerin JF, Liu JH, Phillipou G, et al. Evidence for a hypothalamic site of action of clomiphene citrate in women. J Clin Endocrinol Metab 1985; 61: 265–8

    Article  PubMed  CAS  Google Scholar 

  18. Kettel LM, Roseff SJ, Berga SL, et al. Hypothalamic-pituitary-ovarian response to clomiphene citrate in women with polycystic ovarian syndrome. Fertil Steril 1993; 59: 532–8

    PubMed  CAS  Google Scholar 

  19. Derman SG, Adashi EY. Adverse effects of fertility drugs. Drug Saf 1994; 11: 408–21

    Article  PubMed  CAS  Google Scholar 

  20. Sokol RZ. Prevention and management of complications occurring during treatment with clomifene. Drug Saf 1990; 5: 313–6

    Article  PubMed  CAS  Google Scholar 

  21. Scialli AR. The reproductive toxicity of ovulation induction. In: Wallach EE, Kempers RD, editors. Modern trends in infertility and conception control. Chicago: Year Book Medical Publishers, 1988: 81–9

    Google Scholar 

  22. Rossing MA, Daling JR, Weiss NS, et al. Ovarian tumors in a cohort of infertile women. N Engl J Med 1994; 331: 771–6

    Article  PubMed  CAS  Google Scholar 

  23. Shoham Z, Zosmer A, Insler V. Early miscarriage and fetal malformations after induction of ovulation (by clomiphene citrate and/or human menotropins), in vitro fertilization, and gamete intrafallopian transfer. Fertil Steril 1991; 55: 1–11

    PubMed  CAS  Google Scholar 

  24. Werler M, Louik C, Shapiro S, et al. Ovulation induction and risk of neural tube defects. Lancet 1994; 344: 445–6

    Article  PubMed  CAS  Google Scholar 

  25. Navot D, Relou A, Birkenfeld A, et al. Risk factors and prognostic variables in the ovarian hyperstimulation syndrome. Am J Obstet Gynecol 1988; 159: 210–5

    PubMed  CAS  Google Scholar 

  26. Gemzell C, Guillome J, Wang C. Ectopic pregnancy following treatment with gonadotropins. Am J Obstet Gynecol 1982; 143: 761–5

    PubMed  CAS  Google Scholar 

  27. McBain JC, Evans JH, Pepperell RJ, et al. An unexpectedly high rate of ectopic pregnancy following the induction of ovulation with human pituitary and chorionic gonadotropin. Br J Obstet Gynaecol 1980; 87: 5–9

    Article  PubMed  CAS  Google Scholar 

  28. Oelsner G, Menashe Y, Tur-Kaspa I, et al. The role of gonadotropins in the etiology of ectopic pregnancy. Fertil Steril 1989; 52: 514–6

    PubMed  CAS  Google Scholar 

  29. Coney S. Auckland inquest into death after IVF. Lancet 1995; 345: 849

    Article  Google Scholar 

  30. Aune B, Oian P, Osterud B. Enhanced sensitivity of the extrinsic coagulation system during ovarian stimulation for in-vitro fertilization. Hum Reprod 1993; 8(9): 1349–52

    PubMed  CAS  Google Scholar 

  31. Lox C, Canez M, DeLeon F, et al. Hyperestrogenism induced by menotropins alone or in conjunction with leuprolide acetate in in vitro fertilization cycles: the impact on hemostasis. Fertil Steril 1995; 63(3): 566–70

    PubMed  CAS  Google Scholar 

  32. Whittemore AS, Harris R, Intyre J, et al. Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. II: invasive epithelial ovarian cancers in white women. Am J Epidemiol 1992; 136: 1184–203

    PubMed  CAS  Google Scholar 

  33. Caro JJ, Johannes CB, Hartz SC, et al. Re: characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. II: invasive epithelial ovarian cancers in white women. Am J Epidemiol 1993; 137: 928–9

    PubMed  CAS  Google Scholar 

  34. Cohen J, Forman R, Harlap S, et al. IFFS expert group report on the Whittemore study related to the risk of ovarian cancer associated with the use of infertility agents. Hum Reprod 1993; 8: 996–9

    PubMed  CAS  Google Scholar 

  35. Spirtas R, Kaufman SC, Alexander NJ. Fertility drugs and ovarian cancer: red alert or red herring? Fertil Steril 1993; 59: 291–3

    PubMed  CAS  Google Scholar 

  36. Negri E, Franceschi S, Tzonou A, et al. Pooled analysis of three European case-controlled studies: I. Reproductive factors and risk of epithelial ovarian cancer. Int J Cancer 1991; 49: 50–6

    Article  PubMed  CAS  Google Scholar 

  37. Lunenfeld B, Sulimovici S, Rabau E, et al. L’induction de l’ovulation dans les amenorrhées hypophysaires par un traitement combiné de gonatotrophines urinaires ménopausiques et de gonadtotrophines chorioniques. C R Soc Française Gynecol 1962; 5: 346–51

    Google Scholar 

  38. Stokman PG, de Leeuw R, van den Wijngaard HA, et al. Human chorionic gonadotropin in commercial human menopausal gonadotropin preparations. Fertil Steril 1993; 60(1): 175–8

    PubMed  CAS  Google Scholar 

  39. Seibel MM, McArdle C, Smith D, et al. Ovulation induction in polycystic ovary syndrome with urinary follicle-stimulating hormone or human menopausal gonadotropins. Fertil Steril 1985; 43: 703–8

    PubMed  CAS  Google Scholar 

  40. Dobbs KE, Dumesic DA, Dumesic JA, et al. Differences in serum follicle-stimulating hormone uptake after intramuscular and subcutaneous human menopausal gonadotropin injection. Fertil Steril 1994; 62(5): 978–83

    PubMed  CAS  Google Scholar 

  41. Gast MJ. Evolution of clinical agents for ovulation induction. Am J Obstet Gynecol 1995; 172: 753–9

    Article  PubMed  CAS  Google Scholar 

  42. Howies CM, Loumaye E, Giroud D, et al. Multiple follicular development and ovarian steroidogenesis following subcutaneous administration of a highly purified urinary FSH preparation in pituitary desensitized women undergoing IVF: a multicenter European phase III study. Hum Reprod 1994; 9: 424–30

    Google Scholar 

  43. Devroey P, Filippo U, Smitz J, et al. Recombinant follicle stimulating hormone. Assisted Reproduction Reviews 1994; 4(1): 2–9

    Google Scholar 

  44. LeCotonnec J-Y, Porchet HC, Beltrami V, et al. Clinical pharmacology of recombinant follicle-stimulating hormone: II. Single doses and steady state pharmacokinetics. Fertil Steril 1994; 61: 679–86

    Google Scholar 

  45. Mannaerts B, Shohan Z, Schort D, et al. Single dose pharmacoki-netics and pharmacodynamics of recombinant human follicle-stimulating hormone (Org 32489) in gonadotropin-deficient volunteers. Fertil Steril 1993; 59: 108–14

    PubMed  CAS  Google Scholar 

  46. O’Dea L, Loumaye H, Liu H. A comparative, multicenter clinical trial of recombinant and urinary human FSH in in vitro fertilization and embryo transfer (IVF-ET) [abstract]. Conjoint Meeting of the American Fertility Society and the Canadian Fertility and Andrology Society; 1993 Oct 11-14: Montreal. Birmingham (AL): American Fertility Society, 1993: S50

    Google Scholar 

  47. Fares FA, Suganuma N, Nishimari K, et al. Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotropin β subunit to the follitropin β subunit. Proc Natl Acad Sci USA 1992; 89: 4304–8

    Article  PubMed  CAS  Google Scholar 

  48. Medical Research International and Society for Assisted Reproductive Technology, American Society of Reproductive Medicine. In vitro fertilization and embryo transfer in the United States: 1990 results from the IVF-ET Registry. Fertil Steril 1992; 57: 15–24

    Google Scholar 

  49. Trounson AO, Leeton JF, Wood C, et al. Pregnancies in humans by fertilization in vitro and embryo transfer in the controlled ovulatory cycle. Science 1981; 212: 681–2

    Article  PubMed  CAS  Google Scholar 

  50. Cook CL, Schroeder JA, Yassman MA, et al. Induction of luteal phase defect with clomiphene citrate. Am J Obstet Gynecol 1984; 149: 613–6

    PubMed  CAS  Google Scholar 

  51. Laufer N, Grunfield L, Garris J. In vitro fertilization. In: Serbell MM, editors. Infertility: a comprehensive text. Norwalk (CT): Appleton and Lange, 1990; 481

    Google Scholar 

  52. Lopata A, Gronow MJ, Johnston WIH, et al. In vitro fertilization and embryo implantation. In: Insler V, Lunenfeld B, editors. Infertility: male and female. Edinburgh: Churchill Livingstone, 1986: 496

    Google Scholar 

  53. Jones GS, Acosta AA, Garcia JE, et al. The effect of follicle stimulating hormone without additional luteinizing hormone on follicular stimulation and oocyte development in normal ovulatory women. Fertil Steril 1985; 43: 696–702

    PubMed  CAS  Google Scholar 

  54. Edelstein MC, Bryzyski RG, Jones GS, et al. Equivalency of human menopausal gonadotropin and follicle-stimulating hormone stimulation after gonadotropin-releasing hormone agonist suppression. Fertil Steril 1990; 53: 103–6

    PubMed  CAS  Google Scholar 

  55. Tanbo T, Dale PO, Kjekshus E, et al. Stimulation with human menopausal gonadotropin versus follicle stimulating hormone after pituitary suppression in polycystic ovarian syndrome. Fertil Steril 1990; 53: 798–803

    PubMed  CAS  Google Scholar 

  56. Daya S, Gunby J, Hughes EG, et al. Follicle stimulating hormone versus human menopausal gonadotropin for in vitro fertilization cycles: a meta-analysis. Fertil Steril 1995; 64: 347–54

    PubMed  CAS  Google Scholar 

  57. Benshusan A, Ezra Y, Simon A, et al. The effect of gonadotropin-releasing hormone agonist on embryo quality and pregnancy rate following cryopreservation. Fertil Steril 1993; 59: 1065–9

    Google Scholar 

  58. Kubik CJ, Guzick DS, Berga SL, et al. Randomized, prospective trial of leuprolide acetate and conventional superovulation in first cycles of in vitro fertilization and gamete intrafallopian transfer. Fertil Steril 1990; 54: 836–41

    PubMed  CAS  Google Scholar 

  59. Tummon IS, Daniel SAJ, Kaplan BR, et al. Randomized, prospective comparison of luteal leuprolide acetate and gonadotropins in 408 first cycles of in vitro fertilization. Fertil Steril 1992; 58: 563–8

    PubMed  CAS  Google Scholar 

  60. Hughes EG, Fedorkow DM, Daya S, et al. The routine use of gonadotropin-releasing hormone agonists prior to in vitro fertilization and gamete intrafallopian transfer: a meta-analysis of randomized clinical trials. Fertil Steril 1992; 58: 888–96

    PubMed  CAS  Google Scholar 

  61. Hazout A, de Ziegler D, Cornel C, et al. Comparison of short 7-day and prolonged treatment with gonadotropin-releasing hormone agonist desensitization for controlled ovarian hyperstimulation. Fertil Steril 1993; 59: 596–600

    PubMed  CAS  Google Scholar 

  62. Schally AV, McCann SM. The privileges of a Nobel laureate. Fertil Steril 1995; 64: 452–3

    PubMed  CAS  Google Scholar 

  63. Diedrich K, Diedrich C, Santos E, et al. Suppression of the endogenous luteinizing hormone surge by the gonadotrophin-releasing hormone antagonist Cetrorelix during ovarian stimulation. Hum Reprod 1994; 9(5): 788–91

    PubMed  CAS  Google Scholar 

  64. Jia XC, Kaiman J, Hsueh AJW. Growth hormone enhances follicle-stimulating hormone-induced differentiation of cultured rat granulosa cells. Endocrinology 1986; 118: 1401–9

    Article  PubMed  CAS  Google Scholar 

  65. Zapf J, Rinderknecht F, Humbel RE, et al. Nonsuppressible insulin-like activity (NSILA) from human serum: reac-complishments and their physiological implications. Metabolism 1978; 27: 1803–28

    Article  PubMed  CAS  Google Scholar 

  66. Speroff L, Glass RH, Kase NG, editors. Clinical gynecologic endocrinology and infertility. Baltimore: Williams and Wilkins, 1994: 897–930

    Google Scholar 

  67. Adashi EY, Resnick CE, Hernandez ER, et al. Insulin-like growth factor-I as an amplifier of follicle stimulating hormone action: studies on mechanisms and site(s) of action in cultivated rat granulosa cells. Endocrinology 1988; 122: 1583–91

    Article  PubMed  CAS  Google Scholar 

  68. Owen EJ, Shohan Z, Mason B, Jacobs HS. Co-treatment with growth hormone to buserelin and human menopausal gonadotropins for superovulation during IVF-ET cycles. 7th Annual Meeting of ESHRE, Paris. Hum Reprod 1991; 6: 155

    Google Scholar 

  69. Hugues J-N, Torresani T, Herve F, et al. Interest of growth hormone-releasing hormone administration for improvement of ovarian responsiveness to gonadotropins in poor responder women. Fertil Steril 1991; 55: 945–51

    PubMed  CAS  Google Scholar 

  70. Dor J, Ben-Shlomo I, Lunenfeld B, et al. Insulin-like growth factor-I (IGF-I) may not be essential for ovarian follicular development; evidence from IGF-I deficiency. J Clin Endocrinol Metab 1992; 75: 969–71

    Article  PubMed  CAS  Google Scholar 

  71. Blumenfeld Z, Dirnfeld M, Gonen Y, et al. Growth hormone co-treatment for ovulation induction may enhance conception in the co-treatment and succeeding cycles, in clonidine negative but not clonidine positive patients. Hum Reprod 1994; 9(2): 209–13

    PubMed  CAS  Google Scholar 

  72. Hughes SM, Huang ZH, Morris ID, et al. A double-blind crossover controlled study to evaluate the effect of human biosynthetic growth hormone on ovarian stimulation in previous poor responders to in-vitro fertilization. Hum Reprod 1994; 9(1): 13–8

    PubMed  CAS  Google Scholar 

  73. Shulman A, Maymon R, Bahary C, et al. Growth hormone — non multum sed multa (quality, not quantity). Int J Fertil Menopausal Stud 1993; 38(5): 289–95

    PubMed  CAS  Google Scholar 

  74. Kemmann E, Tavakoli F, Sheldon RM, et al. Induction of ovulation with menotropins in women with polycystic ovary syndrome. Am J Obstet Gynecol 1981; 141: 58–64

    PubMed  CAS  Google Scholar 

  75. Dale PO, Tanbo T, Henriksen T, et al. Gonadotropin therapy of female infertility. Acta Endocrinol 1989; 120: 395–9

    PubMed  CAS  Google Scholar 

  76. Schenker JG, Weinstein D. Ovarian hyperstimulation syndrome: a current survey. Fertil Steril 1978; 30: 255–68

    PubMed  CAS  Google Scholar 

  77. Blankenstien J, Shoulev J, Saadon T, et al. Ovarian hyper-stimulation syndrome: production by number and size of preovulatory ovarian follicles. Fertil Steril 1987; 47: 597–602

    Google Scholar 

  78. Scaramuzzi RJ, Davidson WG, Van Look PFA. Increasing ovulation rate in sheep by active immunization against ovarian steroid androstenedione. Nature 1977; 169: 817–8

    Article  Google Scholar 

  79. Lovet JP, Harman SM, Schreiber JR, et al. Evidence for a role of androgen in follicular maturation. Endocrinology 1975; 97: 366–72

    Article  Google Scholar 

  80. Chany RJ, Laufer LR, Medrum DR, et al. Steroid secretion in polycystic ovarian disease after ovarian suppression by a long-acting GnRH agonist. J Clin Endocrinol Metab 1983; 56: 897–903

    Article  Google Scholar 

  81. Tanbo T, Abyholm T, Magnus O, et al. Gonadotropin and ovarian steroid production in polycystic ovarian syndrome during suppression with a GnRH agonist. Gynecol Obstet Invest 1989; 28: 147–51

    Article  PubMed  CAS  Google Scholar 

  82. Lanzone A, Fulghesce AM, Spince MA, et al. Successful induction of ovulation and conception with combined gonadotropin-releasing hormone agonist plus highly purified follicle stimulation hormone in patients with polycystic ovarian disease. J Clin Endocrinol Metab 1987; 65: 1253–8

    Article  PubMed  CAS  Google Scholar 

  83. Fleming R, Haxton MJ, Hamilton MPR, et al. Successful treatment of infertile women with oligomenorrhea using a combination of an LH-RH agonist and exogenous gonadotropins. Br J Obstet Gynaecol 1985; 92: 369–73

    Article  PubMed  CAS  Google Scholar 

  84. Dodson WC, Hughes CL, Whitesides DB, et al. The effect of leuprolide acetate on ovulation induction with human menopausal gonadotropins in polycystic ovary syndrome. J Clin Endocrinol Metab 1987; 65: 95–100

    Article  PubMed  CAS  Google Scholar 

  85. Charbonnel B, Krempf M, Blanchard P, et al. Induction of ovulation in polycystic ovary syndrome with a combination of a luteinizing hormone-releasing hormone analog and exogenous gonadotropins. Fertil Steril 1987; 47: 920–24

    PubMed  CAS  Google Scholar 

  86. Stuckey BGA, Keogh EJ, Pullan PT, et al. Continuous gonadotropin releasing hormone for ovulation induction in polycystic ovarian disease. Fertil Steril 1987; 48: 1055–7

    PubMed  CAS  Google Scholar 

  87. Buckler HM, Phillips SE, Kovacs GT, et al. GnRH agonist administration in polycystic ovary syndrome. Clin Endocrinol 1989; 31: 151–65

    Article  CAS  Google Scholar 

  88. Dodson WC, Hughes CL, Yancy SE, et al. Clinical characteristics of ovulation induction with human menopausal gonadotropins with and without leuprolide acetate in polycystic ovary syndrome. Fertil Steril 1989; 52: 915–8

    PubMed  CAS  Google Scholar 

  89. Homburg R, Levy T, Berkovitz D, et al. Gonadotropin-releasing hormone agonist reduces the miscarriage rate for pregnancies achieved in women with polycystic ovarian syndrome. Fertil Steril 1993; 59: 527–31

    PubMed  CAS  Google Scholar 

  90. Fulghesa AM, Lanzone A, Guida C, et al. Ovulation induction with human menopausal gonadotropins versus follicle stimulating hormone after pituitary suppression with gonadotropin releasing hormone agonist in polycystic ovary disease: a crossover study. J Reprod Med 1992; 37: 834–40

    Google Scholar 

  91. Sher G, Salem R, Feinman M, et al. Eliminating the risk of life endangering complications following overstimulation with menotropin fertility agents: a report on women undergoing in vitro fertilization and embryo transfer. Obstet Gynecol 1993; 81: 1009–11

    PubMed  CAS  Google Scholar 

  92. Wallach EE. Induction of ovulation: general concepts. In: Wallach EE, Zacur HA, editors. Reproductive medicine and surgery. St Louis: Mosby, 1995: 555–68

    Google Scholar 

  93. Abdalla HI, Ah-Moye M, Brinsden P, et al. The effect of the dose of human chorionic gonadotropin and the type of gonad-otropin stimulation on oocyte recovery rates in an in vitro fertilization program. Fertil Steril 1987; 48: 958–63

    PubMed  CAS  Google Scholar 

  94. Balash J, Tur R, Creus M, et al. Triggering of ovulation by a gonadotropin releasing hormone agonist in gonadotropin-stimulated cycles for prevention of ovarian hyperstimulation syndrome and multiple pregnancy. Gynecol Endocrinol 1994; 8(1): 7–12

    Article  Google Scholar 

  95. Shoham Z, Schachter M, Loumaye E, et al. The luteinizing hor-mone surge — the final stage in ovulation induction: modern aspects of ovulation triggering. Fertil Steril 1995; 64: 237–51

    PubMed  CAS  Google Scholar 

  96. Yen SSC, Llenera G, Little B, et al. Disappearance rate of en-dogenous luteinizing hormone and chorionic gonadotropin in man. J Clin Endocrinol Metab 1968; 28: 1763–7

    Article  PubMed  CAS  Google Scholar 

  97. Damewood MD, Shen W, Zacur HA, et al. Disappearance of exogenously administered human chorionic gonadotropin. Fertil Steril 1989; 52: 398–400

    PubMed  CAS  Google Scholar 

  98. Hoff JD, Quigley ME, Yen SSC. Hormonal dynamics at mid-cycle: a re-evaluation. J Clin Endocrinol Metab 1983; 57: 792–6

    Article  PubMed  CAS  Google Scholar 

  99. Gidley-Baird AA, O’Neill C, Sinosich MJ, et al. Failure of im-plantation in human in vitro fertilization and embryo transfer patients: the effects of altered progesterone/estrogen ratios in human and mice. Fertil Steril 1986; 45: 69–74

    PubMed  CAS  Google Scholar 

  100. Forman R, Fries N, Testart J, et al. Evidence for and adverse effect of elevated serum estradiol concentrations on embryo implantation. Fertil Steril 1988; 49: 118–22

    PubMed  CAS  Google Scholar 

  101. Moor RM, Osborn JC, Cran OG, et al. Selective effect of go-nadotropins on cell coupling, nuclear maturation and protein synthesis in mammalian oocytes. J Embryol Exp Morphol 1981; 61: 347–65

    PubMed  CAS  Google Scholar 

  102. Casper RF, Sheehan KL, Yen SSC. Gonadotropin-estradiol re-sponses to a superactive luteinizing hormone-releasing hormone agonist in women. J Clin Endocrinol Metab 1980; 50: 179–81

    Article  PubMed  CAS  Google Scholar 

  103. Dericks-Tan JSE, Hammer E, Taubert HD. The effect of D-Ser (TBU)6-LH-RH- EA 10 upon gonadotropin release in normally cyclic women. J Clin Endocrinol Metab 1977; 45: 597–600

    Article  PubMed  CAS  Google Scholar 

  104. Lemay A, Faure N, Labrie F, et al. Gonadotroph and corpus luteum responses to two successive intranasal doses of a luteinizing hormone-releasing hormone agonist at different days after the midcycle luteinizing hormone surge. Fertil Steril 1983; 39: 661–6

    PubMed  CAS  Google Scholar 

  105. Monroe SE, Henzl MR, Martin MC, et al. Ablation of folliculogenesis in women by a single dose of gonadotropin-releasing hormone agonist: significance of time in cycle. Fertil Steril 1985; 43: 361–8

    PubMed  CAS  Google Scholar 

  106. Itskovitz J, Boldes R, Levron J, et al. Induction of preovulatory luteinizing hormone surge and prevention of ovarian hyperstimulation syndrome by gonadotropin-releasing hor-mone agonist. Fertil Steril 1991; 56: 213–20

    PubMed  CAS  Google Scholar 

  107. Itskovitz-Eldor J, Levron J, Kol S. Use of gonadotropin-releas-ing hormone agonist to cause ovulation and prevent the ovar-ian hyperstimulation syndrome. Clin Obstet Gynecol 1993; 36: 701–10

    Article  PubMed  CAS  Google Scholar 

  108. Schenker JG, Weinstein D. Ovarian hyperstimulation syn-drome: a current survey. Fertil Steril 1978; 30: 255–68

    PubMed  CAS  Google Scholar 

  109. Bassil S, Godin PA, Stallaert S, et al. Ovarian hyperstimulation syndrome: a review. Assist Reprod Rev 1995; 5: 90–6

    Google Scholar 

  110. Navot D, Bergh PA, Laufer N. Ovarian hyperstimulation syn-drome in novel reproductive technologies: prevention and treatment. Fertil Steril 1992; 58: 249–61

    PubMed  CAS  Google Scholar 

  111. Dahl CA, Wheeler CA, Frishman GN, et al. Early and late presentation of the ovarian hyperstimulation syndrome: two distinct entities with different risk factors. Hum Reprod 1994; 9: 792–9

    Google Scholar 

  112. Franks S, Mason HD, Poloson DW, et al. Mechanism and man-agement of ovulatory failure in women with polycystic ovary syndrome. Hum Reprod 1988; 3: 531–44

    PubMed  CAS  Google Scholar 

  113. Schenker JG. Prevention and treatment of ovarian hyper-stimulation. Rev Hum Reprod 1993; 8: 653–9

    CAS  Google Scholar 

  114. Delvigne A, Dubois M, Battheu B, et al. The ovarian hyperstimulation syndrome in in vitro fertilization: a Belgian multicentric study: II. Multiple dixriminent analysis for risk prediction. Hum Reprod 1993; 8: 1361–6

    PubMed  CAS  Google Scholar 

  115. Haning Jr RV, Austin CW, Carlson IH, et al. Plasma estradiol is superior to ultrasound and urinary estriol glycuronide as a predictor of ovarian hyperstimulation during induction of ovulation with menotropins. Fertil Steril 1983; 40: 31–6

    PubMed  Google Scholar 

  116. Edwards RG, Steptoe PC, Purdy JM. Establishing three term human pregnancies using cleaving embryos grown in vitro. Br J Obstet Gynaecol 1980; 87: 737–9

    Article  PubMed  CAS  Google Scholar 

  117. Dlugi A, Laufer N, Decherney A, et al. The periovulatory and luteal phase of conception cycles following in vitro fertilization. Fertil Steril 1984; 41: 530–7

    PubMed  CAS  Google Scholar 

  118. Andrews W. Luteal phase defects. Fertil Steril 1979; 32: 501

    PubMed  CAS  Google Scholar 

  119. Pados G, Devroey P. Luteal phase support. Assist Reprod Rev 1992; 2: 148–53

    Google Scholar 

  120. Ohara A, Mori T, Taii S, et al. Functional differentiation in steroidogenesis of two types of luteal cell isolated from mature corpora lutea of menstrual cycle. J Clin Endocrinol Metab 1987; 65: 1192–200

    Article  PubMed  CAS  Google Scholar 

  121. Frydman R, Testart J, Giacomini P, et al. Hormonal and histological study of the luteal phase in women following aspiration of the preovulatory follicle. Fertil Steril 1982; 38: 312–7

    PubMed  CAS  Google Scholar 

  122. Garcia J, Jones G, Acosta A, et al. Corpus luteum function after follicle aspiration for oocyte retrieval. Fertil Steril 1981; 36: 565–72

    PubMed  CAS  Google Scholar 

  123. Kemeter P, Feichtinger W, Neumark J, et al. Influence of laparo-scopic follicular aspiration under general anesthesia on corpus luteum progesterone secretion in normal and clomiphene-stimulated cycles. Br J Obstet Gynaecol 1982; 89: 948–50

    Article  PubMed  CAS  Google Scholar 

  124. Oskowitz S, Seibel M, Smith D, et al. Luteal phase serum progesterone levels after follicle aspiration with and without clomiphene citrate treatment. Fertil Steril 1986; 46: 461–5

    PubMed  CAS  Google Scholar 

  125. Hutchinson-Williams KA, DeCherney AH, Levy G, et al. Lu-teal rescue in in vitro fertilization-embryo transfer. Fertil Steril 1990; 53: 495–501

    PubMed  CAS  Google Scholar 

  126. Penzias A. Luteal phase support. Semin Reprod Endocrinol 1995; 13: 32–8

    Article  Google Scholar 

  127. Hargrove JT, Maxson WS, Wentz AC. Absorption of oral pro-gesterone is influenced by vehicle and particle size. Am J Obstet Gynecol 1999; 161(4): 948–51

    Google Scholar 

  128. Khalifu EAM, Tucker MJ. Partial thinning of the zona pellucida for more successful enhancement of blastocyst hatching in the mouse. Hum Reprod 1992; 7: 532–44

    Google Scholar 

  129. Lia HC, Cohen J, Alikani M, et al. Assisted hatching facilitates earlier implantation. Fertil Steril 1993; 60: 871–5

    Google Scholar 

  130. Cohen J, Alilcani M, Rein AM, et al. Selective assisted hatching of embryos. Ann Acad Med 1992; 21: 565–70

    CAS  Google Scholar 

  131. Palermo G, Jaris H, Devroey P, et al. Pregnancies after in-tracytoplasmic injection of single spermatozoon into an oocyte. Lancet 1992; 340: 17–8

    Article  PubMed  CAS  Google Scholar 

  132. Harai O, Bourne H, McDonald M, et al. Intracytoplasmic sperm injection: a major advance in the management of severe male subfertility. Fertil Steril 1995; 64: 360–8

    Google Scholar 

  133. Paulson RJ. Human in vitro fertilization and related assisted reproductive techniques In: Mishell Jr DR, Davajan V, Lobo RA, editors. Infertility, contraception, and reproductive endo-crinology. Cambridge: Blackwell Publishers, 1991: 807–23

    Google Scholar 

  134. Speroff L, Glass RH, Kase NG, editors. Clinical gynecologic endocrinology and infertility. Baltimore: Williams and Wilkins, 1994: 931–46

    Google Scholar 

  135. Van der Elst J, Camus M, Van den Abbeel E, et al. Prospective randomized study on the cryopreservation of human embryos with dimethylsulfoxide or 1,2-propanediol protocols. Fertil Steril 1995; 63(1): 92–100

    PubMed  Google Scholar 

  136. Sauer MV. Oocyte donation: reviewing a decade of growth and development. Semin Reprod Endocrinol 1995; 13(1): 79–84

    Article  Google Scholar 

  137. Sauer MV, Paulson RJ, Lobo RA. Pregnancy after age 50: application of oocyte donation to women after natural menopause. Lancet 1993; 341: 321–3

    Article  PubMed  CAS  Google Scholar 

  138. Antinori S, Versaci C, Gholami GH, et al. Oocyte donation in menopausal women. Hum Reprod 1993; 8: 1487–90

    PubMed  CAS  Google Scholar 

  139. Flamingni C, Borini A, Violini F, et al. Oocyte donation: com-parison between recipients from different age groups. Hum Reprod 1993; 8: 2088–92

    Google Scholar 

  140. Burton G, Abdalla HI, Kirkland A, et al. The role of oocyte donation in women who are unsuccessful with in vitro fertilization treatment. Hum Reprod 1992; 7: 1103–5

    PubMed  CAS  Google Scholar 

  141. American Fertility Society. Guidelines for oocyte donation. Fertil Steril 1993; 59: 5S–9S

    Google Scholar 

  142. Steingold K, Stumpf P, Kreiner D, et al. Estradiol and proges-terone replacement regimens for the induction of endometrial receptivity. Fertil Steril 1989; 52: 756–60

    PubMed  CAS  Google Scholar 

  143. Yaron Y, Amit A, Mani A, et al. Uterine preparation with estrogen for oocyte donation: assessing the effect of treatment duration on pregnancy rates. Fertil Steril 1995; 63: 1284–6

    PubMed  CAS  Google Scholar 

  144. Steptoe PC, Edwards RG, Purdy JM. Clinical aspects of preg-nancies established with cleaving embryos grown in vitro. Br J Obstet Gynaecol 1980; 87: 757–60

    Article  PubMed  CAS  Google Scholar 

  145. Lenton EA, Woodward B. Natural-cycle versus stimulated-cycle IVF: is there a role for IVF in the natural cycle? J Assist Reprod Genet 1993; 10: 406–8

    Article  PubMed  CAS  Google Scholar 

  146. Foulot H, Ranoux C, Dubuisson JB, et al. in vitro fertilization without ovarian stimulation: a simplified protocol applied in 80 cycles. Fertil Steril 1989; 52: 617–21

    PubMed  CAS  Google Scholar 

  147. Paulson RJ, Sauer MV, Francis MM, et al. in vitro fertilization in unstimulated cycles: a clinical trial utilizing hCG for timing of follicle aspiration. Obstet Gynecol 1990; 76 (5 Pt 1): 788–91

    Article  PubMed  CAS  Google Scholar 

  148. Seibel MM, Kearnan M, Kiessling A. Parameters that predict success for natural cycle in vitro fertilization-embryo transfer. Fertil Steril 1995; 63: 1251–4

    PubMed  CAS  Google Scholar 

  149. Paulson RJ. IVF in unstimulated cycles. Semin Reprod En-docrinol 1995; 13: 16–21

    Article  Google Scholar 

  150. Chetkowski RJ, Nass TE. Anesthesia and antibiotics in assisted reproduction. Assist Reprod Rev 1992; 2: 36–41

    Google Scholar 

  151. Boyers SP, Lavy G, Russel JB, et al. A paired analysis of in vitro fertilization and cleavage rate of first- versus last-recovered preovulatory human oocytes exposed to varying intervals of 100% CO2 pneumoperitoneum and general anesthesia. Fertil Steril 1987; 48: 969–74

    PubMed  CAS  Google Scholar 

  152. Hayes MF, Sacco AG, Savoy-Moore RT, et al. Effect of general anesthesia on fertilization and cleavage of human oocytes in vitro. Fertil Steril 1987; 48: 975–81

    PubMed  CAS  Google Scholar 

  153. Endler GC, Stout M, Magyar DM, et al. Follicular fluid concen-trations of thiopental and thiamylal during laparoscopy for oocyte retrieval. Fertil Steril 1987; 48: 828–33

    PubMed  CAS  Google Scholar 

  154. Vincent Jr RD, Syrop CH, Bradley J, et al. An evaluation of the effect of anesthetic technique on reproductive success after laparoscopic pronuclear stage transfer: propofol/nitrous oxide versus isoflurane/nitrous oxide. Anesthesiology 1995; 82: 352–358

    Article  PubMed  Google Scholar 

  155. Hood A, Brown J, Serafini P, et al. The effect of anesthesia on GIFT outcome [abstract no. 121]. 44th Annual Meeting of the American Fertility Society; 1988 Oct 10–13: Atlanta (GA). Birmingham (AL): American Fertility Society, 1988: 121

    Google Scholar 

  156. Palot M, Harika G, Visseaux H, et al. Use of nitric oxide in general anaesthesia for oocyte retrieval [in French]. Ann Fr Anesth Reanim 1989; 8 Suppl.: R147

    Article  PubMed  Google Scholar 

  157. Palot M, Harika G, Lamiable D, et al. General anaesthesia with propofol alone for oocyte removal: concentration of follicular liquid and rate of cleavage [in French]. Ann Fr Anesth Reanim 1989; 8 Suppl.: R68

    PubMed  Google Scholar 

  158. Chetkowski RJ, Nass TE. Isofluorane inhibits early mouse embryo development in vitro. Fertil Steril 1988; 49: 171–3

    PubMed  CAS  Google Scholar 

  159. Matt DW, Steingold KA, Dastvan CM, et al. Effects of sera from patients given various anesthetics on preimplantation mouse embryo development in vitro. J In Vitro Fert Embryo Transfer 1991; 8: 191

    Article  CAS  Google Scholar 

  160. Palot M, Harika G, Pigeon F, et al. Propofol in general anesthesia for IVF (by vaginal and transurethral route): follicular fluid concentration and cleavage rates. Anesthesiology 1988; 69: A573

    Article  Google Scholar 

  161. Dupypere HT, Dhont M, De Sutter P, et al. The influence of propofol on in vitro fertilization in mice. Program of the 7th World Congress on IVF and Assisted Procreations; 1991 Jun 30–Jul 3: Paris. World Congress on In Vitro Fertilization and Assisted Procreations, 1991: 151

    Google Scholar 

  162. Warren JR, Shaw B, Steinkampf MP. Effects of nitrous oxide on preimplantation mouse embryo cleavage and development. Biol Reprod 1990; 43: 158–61

    Article  PubMed  CAS  Google Scholar 

  163. Schoeffler PF, Levron JC, Hany L, et al. Follicular concentration of fentanyl during laparoscopy for oocyte retrieval — cor-relation with in vitro fertilization results. Anesthesiology 1988; 69: A663

    Article  Google Scholar 

  164. Schnell VL, Ataya K, Sacco A, et al. Midazolan at physiological levels does not adversely affect mouse in vitro fertilization, embryo development, and cleavage rate [abstract]. Proceedings of the 45th Meeting of the American Fertility Society; 1989 Nov 11–16: San Francisco (CA). Birmingham (AL): American Fertility Society, 1989: 109

    Google Scholar 

  165. Chapineau J, Bazin J-E, Terrisse M-P, et al. Assay for midazolam in liquor folliculi during in vitro fertilization under anesthesia. Clin Pharm 1993; 12: 770–73

    Google Scholar 

  166. Endler GC, Magyar DM, Hayes MR, et al. Use of spinal anesthesia in laparoscopy for in vitro fertilization. Fertil Steril 1985; 43: 809–10

    PubMed  CAS  Google Scholar 

  167. Lefebver G, Vauthier D, Seebacher J, et al. in vitro fertilization: a comparative study of cleavage rates under epidural and general anesthesia — interest for gamete intrafallopian transfer. J In Vitro Fert Embryo Transfer 1988; 5: 305

    Article  Google Scholar 

  168. Manica VS, Bader AM, Fragneto R, et al. Anesthesia for in vitro fertilization: a comparison of 1.5% and 5% spinal lidocaine for ultrasonically guided oocyte retrieval. Anesth Analg 1993; 77: 453–6

    Article  PubMed  CAS  Google Scholar 

  169. Schnell V, Sacco AG, Moore RT, et al. Effects of oocyte expo-sure to local anaesthetics on in vitro fertilization and embryo development in the mouse. Reprod Toxicol 1992; 6: 323–7

    Article  PubMed  CAS  Google Scholar 

  170. Bailey-Pridham DD, Reshef E, Drury D, et al. Follicular fluid lidocaine levels during transvaginal oocyte retrieval. Fertil Steril 1990; 53: 171–3

    PubMed  CAS  Google Scholar 

  171. Szalay S, Feichtinger W, Kemeter P, et al. Changes in hormonal parameters under different kinds of general laparoscopic oocyte recovery. In: Edwards RG, Purdy JM, editors. Human conception in vitro. New York: Academic Press, 1982: 105

    Google Scholar 

  172. Lehtinen A-M, Laatikainen T, Koskimies AI, et al. Modifying effects of epidural analgesia or general anesthesia on the stress hormone response to laparoscopy for in vitro fertilization. J In Vitro Fert Embryo Transfer 1987; 4: 23

    Article  CAS  Google Scholar 

  173. Naito Y, Tamai S, Fukata J, et al. Comparison of endocrinological stress response associated with transvaginal ultrasound-guided ooctye pick-up under halothane anaesthesia and neuroleptanaesthesia. Can J Anaesth 1989; 36: 633–6

    Article  PubMed  CAS  Google Scholar 

  174. Steptoe PC, Webster J. Laparoscopy of the normal and disordered ovary. In: Edwards RG, Purdy JM, editors. Human conception in vitro. New York: Academic Press, 1982: 97

    Google Scholar 

  175. Meldrum DR, Chetkowski RJ, Steingold KA, et al. Evolution of a highly successful in vitro fertilization-embryo transfer program. Fertil Steril 1987; 48: 86–93

    PubMed  CAS  Google Scholar 

  176. Chetkowski RJ, Moore D, Nass TE. Cefazolin inhibits early mouse embryo development. Program of the Seventh World Congress on In vitro Fertilization and Assisted Procreations; 1991 Jun 30–Jul 3: Paris. Paris: World Congress on In vitro Fertilization and Assisted Procreations, 1991: 293

  177. Peterson CM, Hatasaka HH, Jones KP. Ovulation induction with gonadotropins and intrauterine insemination compared with in vitro fertilization and no therapy: a prospective, nonrandomized, cohort study and meta-analysis. Fertil Steril 1994; 62(3): 535–44

    PubMed  CAS  Google Scholar 

  178. Guzick DS, Wilkes C, Jones Jr HW. Cumulative pregnancy rates for in vitro fertilization. Fertil Steril 1986; 46: 663–7

    PubMed  CAS  Google Scholar 

  179. Tan SL, Royston P, Campbell S, et al. Cumulative conception and livebirth rates after in-vitro fertilisation. Lancet 1992; 339: 1390–4

    Article  PubMed  CAS  Google Scholar 

  180. Golombok S. Psychological functioning in infertility patients. Hum Reprod 1992; 7(2): 208–12

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jennings, J.C., Moreland, K. & Peterson, C.M. In Vitro Fertilisation. Drugs 52, 313–343 (1996). https://doi.org/10.2165/00003495-199652030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199652030-00002

Keywords

Navigation