Skip to main content
Log in

Local Myocardial Biochemical and Ionic Alterations During Myocardial Ischaemia and Reperfusion

  • Published:
Drugs Aims and scope Submit manuscript

Summary

Acute myocardial ischaemia and reperfusion result in a series of inhomogeneous metabolic, ionic and neurohumoral events that explain the associated mechanical and electrical events, including cardiac death. The time course of the hydrolysis of high energy phosphates, the rise in extracellular potassium and the fall in intracellular and extracellular pH induced by acute no-flow ischaemia have been well characterised. However, the time course of the changes in intracellular sodium, calcium and magnesium levels is less clear. It appears that the changes in intracellular calcium may be pivotal to many of the biochemical and electrophysiological changes produced by the abrupt cessation of coronary arterial inflow and the associated interruption of venous washout. Consequently, agents that modify the handling of calcium by the sarcolemma and the sarcoplasmic reticulum have a significant impact on many of the metabolic, ionic and electrical abnormalities characterising acute ischaemia and reperfusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akita H, Creer MH, Yamada KA, Sobel BE, Corr PB. Electrophysiologic effects of intracellular lysophosphoglycerides and their accumulation in cardiac lymph with myocardial ischemia in dogs. Journal of Clinical Investigation 78: 271–280, 1986

    Article  CAS  PubMed  Google Scholar 

  • Allen DG, Lee JA, Smith GL. The consequences of simulated ischaemia on intracellular Ca2+ and tension in isolated ferret ventricular muscle. Journal of Physiology 410: 297–323, 1989

    CAS  PubMed  Google Scholar 

  • Balke CW, Kaplinsky E, Michelson EL, Naito M, Dreifus LS. Reperfusion ventricular tachyarrhythmias: correlation with antecedent coronary artery occlusion tachyarrhythmias and duration of myocardial ischemia. American Heart Journal 101: 449–456, 1981

    Article  CAS  PubMed  Google Scholar 

  • Barry WH, Peeters GA, Rasmussen Jr CAF, Cunningham MJ. Role of changes in [Ca2+]i in energy deprivation contracture. Circulation Research 61: 726–734, 1987

    Article  CAS  PubMed  Google Scholar 

  • Bourdillon PD, Poole-Wilson PA. Effects of ischaemia and reperfusion on calcium exchange and mechanical function in isolated rabbit myocardium. Cardiovascular Research 15: 121–130, 1981

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet E, Storms L, Vereecke J. The ATP-dependent K-channel and metabolic inhibition. In Zipes D, Jalife J (Eds) Cardiac electrophysiology, W.B. Saunders Co., Philadelphia, 1990

    Google Scholar 

  • Case RB, Felix A, Castellana FS. Rate of rise of myocardial PC02 during early myocardial ischemia in the dog. Circulation Research 45: 324–330, 1979

    Article  CAS  PubMed  Google Scholar 

  • Coronel R, Fiolet JWT, Wilms-Schopman FJG, Schaapherder AF, Johnson TA, et al. Distribution of extracellular potassium and its relation to electrophysiologic changes during acute myocardial ischemia in the isolated perfused porcine heart. Circulation 77: 1125–1138, 1988

    Article  CAS  PubMed  Google Scholar 

  • Corr PB, Dobmeyer DJ. Amphipathic lipid metabolites and arrhythmogenesis: a perspective. In Rosen MR, Palti Y (Eds) Lethal arrhythmias resulting from myocardial ischemia and infarction, pp. 91–104, Kluwer Academic Publishers, Boston, 1989

    Chapter  Google Scholar 

  • Corr PB, Witkowski FX. Potential electrophysiologic mechanisms responsible for dysrhythmias associated with reperfusion of ischemic myocardium. Circulation 68(Suppl. 1): 16–24, 1983

    CAS  Google Scholar 

  • Corr PB, Yamada KA, Creer MH, Sharma AD, Sobel BE. Lysophosphoglycerides and ventricular fibrillation early after onset of ischemia. Journal of Molecular and Cellular Cardiology 19: 45–53, 1987

    Article  CAS  PubMed  Google Scholar 

  • Deitmer JW, Ellis D. The intracellular sodium activity of cardiac Purkinje fibers during inhibition and reaction of the Na-K pump. Journal of Physiology 284: 241–259, 1978

    CAS  PubMed  Google Scholar 

  • Fleet WF, Johnson TA, Graebner CA, Engle CL, Gettes LS. Effects of verapamil on ischemia-induced changes in extracellular K+ pH, and local activation in the pig. Circulation 73: 837–846, 1986

    Article  CAS  PubMed  Google Scholar 

  • Gettes LS. Effect of ischemia on cardiac electrophysiology. In Fozzard HA (Ed.) The heart and cardiovascular system, pp. 1317–1337, Raven Press, New York, 1986

    Google Scholar 

  • Hayashi H, Ponnambalam C, McDonald TF. Arrhythmic activity in reoxygenated guinea pig papillary muscles and ventricular cells. Circulation Research 61: 124–133, 1987

    Article  CAS  PubMed  Google Scholar 

  • Hearse DJ, Tosaki A. Free radicals and calcium: simultaneous interaction triggers as determinants of vulnerability to reperfusion-induced arrhythmias in the rat heart. Journal of Molecular and Cellular Cardiology 20: 213–223, 1988

    Article  CAS  PubMed  Google Scholar 

  • Hill JL, Gettes LS. Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation 61: 768–778, 1980

    Article  CAS  PubMed  Google Scholar 

  • Hirche HJ, Franz C, Bos L, Bissig R, Lang R, et al. Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion in pigs. Journal of Molecular and Cellular Cardiology 12: 579–593, 1980

    Article  CAS  PubMed  Google Scholar 

  • Inoue H, Zipes DP. Time course of denervation of efferent sympathetic and vagal nerves after occlusion of the coronary artery in the canine heart. Circulation Research 62: 1111–1120, 1988

    Article  CAS  PubMed  Google Scholar 

  • Janse MJ, Cinca J, Moréna H, Fiolet JW, Kléber AG, et al. The ‘border zone’ in myocardial ischemia: an electrophysiological, metabolic, and histochemical correlation in the pig heart. Circulation Research 44: 576–588, 1979

    Article  CAS  PubMed  Google Scholar 

  • Janse MJ, van Capelle FJL, Morsink H, et al. Flow of ‘injury’ current and patterns of excitation during early ventricular arrhythmias in acute regional myocardial ischemia in isolated porcine and canine hearts. Evidence for two different arrhythmogenic mechanisms. Circulation Research 47: 151–165, 1980

    Article  CAS  PubMed  Google Scholar 

  • Johnson TA, Engle CL, Boyd LM, Koch GG, Gwinn M, et al. The magnitude and time course of extracellular potassium inhomogenities during acute ischemia in the pig: the effect of verapamil. Circulation, in press

  • Kabell G. Modulation of conduction slowing in ischemic rabbit myocardium by calcium-channel activation and blockade. Circulation 77: 1385–1394, 1988

    Article  CAS  PubMed  Google Scholar 

  • Kaumann AJ, Aramendia P. Prevention of ventricular fibrillation induced by coronary ligation. Journal of Pharmacology and Experimental Therapeutics 164: 326–332, 1968

    CAS  PubMed  Google Scholar 

  • Kihara Y, Grossman W, Morgan JP. Direct measurement of changes in intracellular calcium transients during hypoxia, ischemia, and reperfusion of the intact mammalian heart. Circulation Research 65: 1029–1044, 1989

    Article  CAS  PubMed  Google Scholar 

  • Kleber AG, Janse MJ, van Capelle FJL, Durrer D. Mechanism and time course of S-T and T-Q segment changes during acute regional myocardial ischemia in the pig heart determined by extracellular and intracellular recordings. Circulation Research 42: 603–613, 1978

    Article  CAS  PubMed  Google Scholar 

  • Knabb MT, Saffitz JE, Corr PB, Sobel BE. The dependence of electrophysiological derangements on accumulation of endogenous long-chain acyl carnitine in hypoxic neonatal rat myocytes. Circulation Research 58: 230–240, 1986

    Article  CAS  PubMed  Google Scholar 

  • Lammerant J, De Herdt P, De Schryver C. Direct release of myocardial catecholamines into the left heart chambers: the enhancing effect of acute coronary occlusion. Archives Internationales de Pharmacodynamie et de Therapie 163: 219–226, 1966

    CAS  PubMed  Google Scholar 

  • Lathers CM, Kelleher GJ, Roberts J, Beasley AB. Nonuniform cardiac sympathetic nerve discharge. Mechanism for coronary occlusion and digitalis-induced arrhythmia. Circulation 57: 1058–1065, 1978

    Article  CAS  PubMed  Google Scholar 

  • Lazdunski M, Freiin C, Vigne P. The sodium/hydrogen exchange system in cardiac cells: its biochemical and pharmacological properties and its role in regulating internal concentrations of sodium and internal pH. Journal of Molecular and Cellular Cardiology 17: 1029–1042, 1985

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Mohabir R, Smith N, Franz MR, Clusin WT. Effect of ischemia on calcium-dependent fluorescence transients in rabbit hearts containing indo 1. Correlation with monophasic action potentials and contraction. Circulation 78: 1047–1059, 1988

    Article  CAS  PubMed  Google Scholar 

  • Lubbe WF, Daries PS, Opie LH. Ventricular arrhythmias associated with coronary artery occlusion and reperfusion in the isolated perfused rat heart: a model for assessment of antifibrillatory action of antiarrhythmic agents. Cardiovascular Research 12: 212–220, 1978

    Article  CAS  PubMed  Google Scholar 

  • Manning AS, Hearse DJ. Reperfusion-induced arrhythmias: mechanisms and prevention. Journal of Molecular and Cellular Cardiology 16: 497–518, 1984

    Article  CAS  PubMed  Google Scholar 

  • Marban E, Kitakaze M, Kusuoka H, Porterfield JK, Yue DT, et al. Intracellular free calcium concentration measured with 19F NMR spectroscopy in intact ferret hearts. Proceedings of the National Academy of the Sciences of the United States of America 84: 6005–6009, 1987

    Article  CAS  Google Scholar 

  • Murphy E, Steenbergen C, Levy L, Raju B, London R. Cytosolic free magnesium levels during myocardial ischemia. Journal of Molecular and Cellular Cardiology 20(Suppl. III): 52, 1988

    Google Scholar 

  • Nayler WG, Ferrari R, Williams A. Protective effect of pretreatment with verapamil, nifedipine, and propranolol on mitrochondrial function in the ischemic and reperfused myocardium. American Journal of Cardiology 46: 242–248, 1980

    Article  CAS  PubMed  Google Scholar 

  • Neubauer S, Baischi JA, Springer CS, Smith TW, Ingwall JS. Intracellular Na+ accumulation in hypoxic vs ischemic rat heart: evidence for Na+-H+ exchange. Circulation 76(Suppl. IV): 56, 1987

    Google Scholar 

  • Noma A. ATP-regulated K+ channels in cardiac muscle. Nature 305: 147–148, 1983

    Article  CAS  PubMed  Google Scholar 

  • Pike MM, Kitakase M, Marban E. Increase in intracellular free sodium concentration during ischemia revealed by 23Na NMR in perfused ferret hearts. Circulation 78(Suppl. II): 151, 1988

    Google Scholar 

  • Pogwizd SM, Corr PB. Mechanisms underlying the development of ventricular fibrillation during early myocardial ischemia. Circulation Research 66: 672–695, 1990

    Article  CAS  PubMed  Google Scholar 

  • Reimer KA, Jenning RB. Myocardial ischemia, hypoxia and infarction. In Fozzard et al. The heart and cardiovascular system. Scientific Foundations, pp. 1133–1201, Raven Press, New York, 1986

    Google Scholar 

  • Reuter H, Scholz H. The influence of external Ca concentration on membrane potential and tension during graded depolarization of isolated myocardium preparations. Pflügers Archives 300: 87–107, 1968

    Article  CAS  Google Scholar 

  • Schomig A, Dart AM, Dietz R, Mayer E, Kubler W. Release of endogenous catecholamines in the ischemic myocardium of the rat. Part A: locally mediated release. Circulation Research 55: 689–701, 1984

    Article  CAS  PubMed  Google Scholar 

  • Steenbergen C, Murphy E, Levy L, London RE. Elevation in cytosolic free calcium concentration early in myocardial ischemia in perfused rat heart. Circulation Research 60: 700–707, 1987

    Article  CAS  PubMed  Google Scholar 

  • Steenbergen C, Murphy E, Watts JA, London RE. Correlation between cytosolic free calcium, contracture, ATP, and irreversible ischemic injury in perfused rat heart. Circulation Research 66: 135–146, 1990

    Article  CAS  PubMed  Google Scholar 

  • Tani M, Neely JR. Role in intracellular Na+ in Ca2+ overload and depressed recovery of ventricular function of reperfused ischemic rat hearts: possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circulation Research 65: 1045–1056, 1989

    Article  CAS  PubMed  Google Scholar 

  • Thandroyen FT, McCarthy J, Burton KP, Opie LH. Ryanodine and caffeine prevent ventricular arrhythmias during acute myocardial ischemia and reperfusion in rat heart. Circulation Research 62: 306–314, 1988

    Article  CAS  PubMed  Google Scholar 

  • Trautwein W, Kassebaum DG. On the mechanism of spontaneous impulse generation in the pacemaker of the heart. Journal of General Physiology 45: 317–330, 1961

    Article  CAS  PubMed  Google Scholar 

  • Vleugels A, Vereecke J, Carmeliet E. Ionic currents during hypoxia in voltage-clamped cat ventricular muscle. Circulation Research 47: 501–508, 1980

    Article  CAS  PubMed  Google Scholar 

  • Wilde AAM, Kleber AG. The combined effects of hypoxia, high K+, and acidosis on the intracellular sodium activity and resting potential in guinea pig papillary muscle. Circulation Research 58: 249–256, 1986

    Article  CAS  PubMed  Google Scholar 

  • Wilensky RL, Tranum-Jensen J, Coronel R, Wilde AAM, Fiolet JWT, et al. The subendocardial border zone during acute ischemia of the rabbit heart: an electrophysiologic, metabolic, and morphologic correlative study. Circulation 74: 1137–1146, 1986

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gettes, L.S., Cascio, W.E., Johnson, T. et al. Local Myocardial Biochemical and Ionic Alterations During Myocardial Ischaemia and Reperfusion. Drugs 42 (Suppl 1), 7–13 (1991). https://doi.org/10.2165/00003495-199100421-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199100421-00004

Keywords

Navigation