Skip to main content
Log in

Pharmacotherapeutic Aspects of Unfractionated and Low Molecular Weight Heparins

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

Standard unfractionated heparin is a mixture of mucopolysaccharide chains of various length that may vary from 5000 to 30000 daltons. Heparin is only effective as an anticoagulant in the presence of a plasma protein termed antithrombin III, with which it forms a complex. High- and low-affinity heparin are 2 types that readily bind or do not bind, respectively, to antithrombin III. The pharmacokinetics of unfractionated heparin are compatible with a model based on the combination of a saturable and a linear mechanism. The primary indication for intravenous infusion of conventional heparin is to prevent extension of an established arterial, venous or intracardiac thrombus. The average requirement is 400 U/kg/24h. Subcutaneous administration of 5000U of concentrated unfractionated heparin, administered every 8 or 12 hours, is effective and safe in the prevention of postoperative venous thrombosis and pulmonary embolism in patients at medium thrombotic risk. Adequate prophylaxis is also obtained in patients at high thrombotic risk if 5000U of heparin combined with 0.5mg dihydroergotamine is given subcutaneously 3 times daily, or by monitoring the 3 subcutaneous doses of heparin in order to maintain an adjusted activated partial thromboplastin time (APTT) of around 50 to 70 seconds.

Low molecular weight heparins have been produced by a variety of techniques and their molecular weights range from 3000 to 9000 daltons. These preparations have a ratio of anti-factor Xa activity to anti-factor IIa activity of about 4, while the ratio for unfractionated heparin is 1. After intravenous administration of low molecular weight heparin, the half-life of the anti-factor Xa activity is considerably longer than for unfractionated heparin, while the anti-factor IIa half-lives are similar. In contrast to unfractionated heparin, low molecular weight heparin is completely absorbed after subcutaneous administration and its biological half-life is almost twice as long. In spite of certain differences with regard to the ratio between factor Xa and IIa inhibition, the various low molecular weight preparations show a rather similar absorption pattern. The bioavailability of all low molecular weight heparin fractions is substantially higher than that of unfractionated heparin, which renders their use more simple. Low molecular weight heparins less readily enhance platelet aggregation although there is no evidence that low molecular weight heparins are less antigenic or that they do not interact with platelet IgGFc receptor. A lower bleeding incidence for equivalent antithrombotic efficacy of fractionated heparins when compared to unfractionated heparins has yet to be established in humans.

For prophylaxis of postoperative deep vein thrombosis, one daily subcutaneous injection of low molecular weight heparin results in satisfactory protection with almost no risk of bleeding. For the treatment of deep venous thrombosis, 2 daily injections of low molecular weight heparin are necessary. The presently recommended doses of each low molecular weight heparin differ and are less well established than for standard unfractionated heparin.

After intravenous injection of 100U unfractionated heparin full neutralisation is obtained with 1 mg protamine; the activities of low molecular weight heparins can be neutralised to a lesser extent.

Several of the adverse effects of unfractionated heparin, such as thrombocytopenia and osteoporosis, have also been observed with low molecular weight heparins, but activation of lipoprotein lipase seems to occur to a minor extent with the latter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abildgaard U. Highly purified antithrombin III with heparin cofactor activity prepared by disc gel electrophoresis. Scandinavian Journal of Clinical and Laboratory Investigation 21: 89–91, 1968

    PubMed  CAS  Google Scholar 

  • Adolf J, Knee H, Roder JD, van de Flierdt E, Siewert JR. Thromboembolie-prophylaxe mit niedermolekularem Heparin in der Abdominalchirurgie. Deutsche Medizinische Wochenschrift 114: 48–53, 1989

    PubMed  CAS  Google Scholar 

  • Aiach M, Michaud A, Balian JL, Lefebvre M, Woler M, et al. A new low molecular weight heparin derivative: in vitro and in vivo studies. Thrombosis Research 31: 611–621, 1983

    CAS  Google Scholar 

  • Andersson LO, Barrowcliffe TW, Holmer E, Johnson EA, Söderström G. Molecular weight dependency of the heparin potentiated inhibition of thrombin and activated factor X effect of heparin neutralization in plasma. Thrombosis Research 15: 531–541, 1979

    PubMed  CAS  Google Scholar 

  • Andrew M, Ofosu F, Fernandez F, Jefferies A, Hirsh J, et al. A low molecular weight heparin alters the fetal coagulation system in pregnant sheep. Thrombosis and Haemostasis 55: 342–346, 1986

    PubMed  CAS  Google Scholar 

  • Andriuoli G, Mastacchi R, Barbanti M, Sarret M. Comparison of the antithrombotic and haemorrhagic effects of heparin and a new low molecular weight heparin in rat. Haemostasis 15: 324–330, 1985

    PubMed  CAS  Google Scholar 

  • Aranda A, Páramo JA, Alfaro MJ, Rocha E. The influence of standard and low molecular weight heparin on fibrinolysis in patients undergoing major abdominal surgery. Biologia et Clinica Hematológica 9: 169–174, 1987

    Google Scholar 

  • Ball A, L’Huillier AM, Dreyfuss L, Porte JL, Barthel JC. Thrombopénie à la Fraxiparine: une observation. Presse Médicale 18: 1254, 1989

    CAS  Google Scholar 

  • Banssillon V, Dejour H, Besson L, Davidas JL, Rondelet B, et al. Prévention des thromboses veineuses profondes en chirurgie orthopédique pour mise en place d’une prothèse totale de la hanche: essai randomisé de détermination de la posologie optimale. Annales de Chirurgie 41: 377–385, 1987

    PubMed  CAS  Google Scholar 

  • Bara L, Billaud E, Gramond G, Kher A, Samama M. Comparative pharmacokinetics of a low molecular weight heparin (PK 10169) and unfractionated heparin after intravenous and subcutaneous administration. Thrombosis Research 39: 631–636, 1985

    PubMed  CAS  Google Scholar 

  • Barre J, Phister G, Potron G, Droville C, Baudrillard JC, et al. Efficacité et tolérance comparée du Kabi 2165et de l’héparine standard dans la prévention des thromboses veineuses profondes au cours des prothèses totales de hanche. Journal des Maladies Vasculaires 12: 90–95, 1987

    PubMed  Google Scholar 

  • Barrowcliffe TW, Curtis AD, Johnson EA, Thomas DP. An international standard for low molecular weight heparin. Thrombosis and Haemostastis 60: 1–7, 1988

    CAS  Google Scholar 

  • Barrowcliffe TW, Curtis AD, Tomlinson TP, Hubbard AR, Johnson EA, et al. Standardization of low molecular weight heparins: a collaborative study. Thrombosis and Haemostasis 54: 675–679, 1985

    PubMed  CAS  Google Scholar 

  • Barrowcliffe TW, Merton RE, Havercroft SJ, Thunberg U, Thomas DP. Low affinity heparin potentiates the action of high affinity heparin oligosaccharides. Thrombosis Research 34: 124–133, 1984

    Google Scholar 

  • Barzu T, Molho P, Tobelem G, Petitou M, Caen J. Binding and endocytosis of heparin by human endothelial cells in culture. Biochimica et Biophysica Acta 845: 196–203, 1985

    PubMed  CAS  Google Scholar 

  • Barzu T, Van Rijn JLML, Petitou M, Molho P, Tobelem G, et al. Endothelial binding sites for heparin: specificity and role in heparin neutralisation. Biochemical Journal 238: 847–854, 1986

    PubMed  CAS  Google Scholar 

  • Barzu T, Van Rijn JLML, Petitou M, Tobelem G, Caen JP. Heparin degradation in the endothelial cells. Thrombosis Research 47: 601–609, 1987

    PubMed  CAS  Google Scholar 

  • Basu D, Gallus A, Hirsh J, Cade J. A prospective study of the value of monitoring heparin treatment with the activated partial thromboplastin time. New England Journal of Medicine 287: 324–327, 1972

    PubMed  CAS  Google Scholar 

  • Bayle J, Chichimanian RM, Caramella A, Mignot G, Spreux A, et al. Les thrombopénies allergiques induites par les héparines ou le polysulfate de pentosane. Thérapie 41: 339–343, 1986

    PubMed  CAS  Google Scholar 

  • Beard JM, Rincon F, Nakache JP, Chastang C. Tolérance locale de l’héparine sous-cutanée: comparaison en double insu de deux sels de calcium et de sodium. Semaine des Hôpitaux de Paris 55: 45–49, 1979

    Google Scholar 

  • Bell W, Tomasulo PA, Alving BM, Duffy TP. Thrombocytopenia occurring during the administration of heparin: a prospective study in 52 patients. Annals of Internal Medicine 85: 155–160, 1976

    PubMed  CAS  Google Scholar 

  • Bell WR. Heparin-associated thrombocytopenia and thrombosis. Journal of Laboratory and Clinical Medicine 111: 600–605, 1988

    PubMed  CAS  Google Scholar 

  • Bengtsson-Olivecrona G, Olivecrona T. Binding of active and inactive forms of lipoprotein lipase to heparin: effects of pH. Biochemical Journal 226: 409–413, 1985

    PubMed  CAS  Google Scholar 

  • Bentley PG, Kakkar VV, Scully MF, Macgreggor IR, Webb P, et al. An objective study of alternative methods of heparin administration. Thrombosis Research 18: 177–187, 1980

    PubMed  CAS  Google Scholar 

  • Bergqvist D. Postoperative thromboembolism: frequency, etiology, prophylaxis, Springer-Verlag, Berlin, 1983

  • Bergqvist D, Burmark US, Frisell J, Hallböök T, Lindblad B, et al. Prospective double-blind comparison between fragmin and conventional low-dose heparin: thromboprophylactic effect and bleeding complications. Haemostasis 17 (Suppl. 2): 11–18, 1986a

    Google Scholar 

  • Bergqvist D, Burmark US, Frisell J, Hallböök T, Lindblad B, et al. Low molecular weight heparin once daily compared with conventional low dose heparin twice daily: a prospective double-blind multicentre trial on prevention of postoperative thrombosis. British Journal of Surgery 73: 204–208, 1986b

    PubMed  CAS  Google Scholar 

  • Bergqvist D, Hedner U, Sjörin E, Holmer E. Anticoagulant effect of two types of low molecular weight heparin administered subcutaneously. Thrombosis Research 32: 381–391, 1983

    PubMed  CAS  Google Scholar 

  • Bergqvist D, Mätzsch T, Burmark US, Frisell J, Guilbaud O, et al. Low molecular weight heparin given the evening before surgery compared with conventional low-dose heparin in prevention of thrombosis. British Journal of Surgery 75: 888–891, 1988

    PubMed  CAS  Google Scholar 

  • Bergqvist D, Nilsson B, Hedner U, Pedersen PC, Ostergaard PB. The effects of heparin fragments of different molecular weights in experimental thrombosis and haemostasis. Thrombosis Research 38: 589–601, 1985

    PubMed  CAS  Google Scholar 

  • Blackburn MN, Smith RL, Carson J, Sibley CC. The heparin binding site of antithrombin III: identification of a critical tryptophan in the amino acid sequence. Journal of Biological Chemistry 259: 939–941, 1984

    PubMed  CAS  Google Scholar 

  • Boneu B, Buchanan MR, Caranobe C, Gabaig AM, Dupouy D, et al. The disappearance of a low molecular weight heparin fraction (CY 216) differs from standard heparin in rabbits. Thrombosis Research 46: 845–853, 1987b

    PubMed  CAS  Google Scholar 

  • Boneu B, Caranobe C, Gabaig AM, Dupouy D, Sié P, et al. Evidence for a saturable mechanism of disappearance of standard heparin in rabbits. Thrombosis Research 46: 835–844, 1987a

    PubMed  CAS  Google Scholar 

  • Borg JY, Owen MC, Soria C, Soria J, Caen J, et al. Proposed heparin binding site in antithrombin based on Arginine 47: a new variant Rouen-II Arg to Ser. Journal of Clinical Investigation 81: 1282–1290, 1988

    Google Scholar 

  • Borm JJJ, Benninga M, Krediet R, ten Cate JW. Low molecular weight heparin (LMWH) (K 2165) versus regional heparinization (RH) in acute hemodialysis of patients at high risk for bleeding. Abstract 1538. Thrombosis and Haemostasis 62: 490, 1989

    Google Scholar 

  • Borm JJJ, Krediet R, Sturk A, ten Cate JW. Heparain versus low molecular weight heparin Kabi 2165 on chronic hemodialysis patients: a randomised cross-over study. Haemostasis 16 (Suppl. 2): 59–68, 1986

    PubMed  Google Scholar 

  • Bounameaux H, Marbet GA, Lämmle B, Eichlisberger R, Duckert F. Monitoring of heparin treatment: comparison of thrombin time, activated partial thromboplastin time, and plasma heparin concentration, and analysis of the behavior of antithrombin III. American Journal of Clinical Pathology 74: 68–73, 1980

    PubMed  CAS  Google Scholar 

  • Bounameaux H, Verhaeghe R, Verstraete M. Thromboembolism and antithrombotic therapy in peripheral arterial disease. Journal of the American College of Cardiology 8: 98B-103B, 1986

    Google Scholar 

  • Brace LD, Fareed J. Heparin-induced platelet aggregation: dose/ response relationships for a low molecular weight heparin derivative (PK 10169) and its subfraction. Thrombosis Research 42: 762–782, 1986

    Google Scholar 

  • Bratt G, Törnebohm E, Lockner D, Bergström KL. A human pharmacological study comparing conventional heparin and a low molecular weight heparin fragment. Thrombosis and Haemostasis 53: 208–211, 1985

    PubMed  CAS  Google Scholar 

  • Bratt G, Törnebohm E, Widlund L, Lockner D. Low molecular weight heparin (Kabi 2165, Fragmin); pharmacokinetics after intravenous and subcutaneous administration in human volunteers. Thrombosis Research 42: 613–620, 1986

    PubMed  CAS  Google Scholar 

  • Bratt GA, Törnebohm E, Johanson M, Äberg W, Granqvist S, et al. Clinical experiences in the administration of a low molecular weight heparin (Fragmin, Kabi Vitrum) to healthy volunteers and in the treatment of established deep venous thrombosis. Acta Chirurgica Scandinavica 154 (Suppl. 543): 96–100, 1988

    Google Scholar 

  • Breddin HK, Weichen W, Krupinski K. A new model of experimental thrombosis (Laser) to approach the antithrombotic activity of CY 216. In Breddin K et al. (Eds) Fraxiparine: analytical and structural data, pharmacology, clinical trials, pp. 69–78, Schattauer Verlag, Stuttgart, 1989

    Google Scholar 

  • Breyer H-G, Hahn F, Koppenhagen K, Bacher P, Werner B. Prevention of deep vein thrombosis in orthopedic surgery: Fragmin versus heparin-DHE. Abstract. Thrombosis Research (Suppl. VIII): 23, 1987

  • Briel RC, Doller G, Hermann P. Thromboembolic-Prophylaxe bei Hysterektomien mit dem niedermolecularen Heparin Fragmin. Geburtshilfe und Frauenheilkunde 48: 160–164, 1988

    PubMed  CAS  Google Scholar 

  • Brinkhous KM, Smith HP, Warner ED, Seegers WH. The inhibition of blood clotting: an unidentified substance which acts in conjunction with heparin to prevent the conversion of prothrombin to thrombin. American Journal of Physiology 125: 683–687, 1939

    CAS  Google Scholar 

  • Bützow R, Kaaja R, Seppälä M. Low molecular weight heparin (LMWH) injections increase the plasma concentrations of placental protein 5 (PP5), an inhibitor of serine proteases. Abstract no. 1604. Thrombosis and Haemostasis 62: 511, 1989

    Google Scholar 

  • Cade JF, Buchanan MR, Boneu B, Ockelford P, Carter CJ, et al. A comparison of the antithrombotic and hemorrhagic effects of low molecular weight heparin fractions: the influence of the method of preparation. Thrombosis Research 35: 613–625, 1984

    PubMed  CAS  Google Scholar 

  • Caen JP. A randomized, double blind study of a low molecular weight heparin KABI 2165 and standard heparin in the prevention of deep vein thrombosis in general surgery: a French multicenter trial. Thrombosis and Haemostasis: 59: 216–220, 1988

    PubMed  CAS  Google Scholar 

  • Carreras LO. Thrombosis and thrombocytopenia induced by heparin. In Verstraete M & Machin S (Eds) Clinical usage of heparin: present and future trends. Scandinavian Journal of Haematology 25 (Suppl. 36): 64–80, 1980

    Google Scholar 

  • Carter CJ, Kelton JG, Hirsh J, Cerskus A, Santos AV, et al. The relationship between the hemorrhagic and the antithrombotic properties of low molecular weight heparin and heparin. Blood 59: 1239–1245, 1982

    PubMed  CAS  Google Scholar 

  • Cerebral Embolism Study Group. Immediate anticoagulation of embolic stroke: a randomised trial. Stroke 14: 668–676, 1983

    Google Scholar 

  • Cerebral Embolism Study Group. Immediate anticoagulation of embolic stroke: brain haemorrhage and management options. Stroke 15: 779–789, 1984

    Google Scholar 

  • Chang JA, Tran TH. Antithrombin III Basel: identification of a Pro-Leu substitution in a hereditary abnormal antithrombin with impaired heparin cofactor activity. Journal of Biological Chemistry 261: 1174–1176, 1986

    PubMed  CAS  Google Scholar 

  • Chen WWC, Chan CS, Lee PK, Wang RYC, Wong VCW. Pregnancy in patients with prosthetic heart valves: an experience with 45 pregnancies. Quarterly Journal of Medicine 51: 358–365, 1982

    PubMed  CAS  Google Scholar 

  • Chiapuzzo E, Orengo GB, Ottria G, Chiapuzzo A, Palazzini E, et al. The use of low molecular weight heparins for post-surgical deep vein thrombosis prevention in orthopaedic patients. Journal of International Medical Research 16: 359–366, 1988

    PubMed  CAS  Google Scholar 

  • Chiu HM, Hirsh J, Yung WL, Regoeczi E, Gent M. Relationship between the anticoagulant and antithrombotic effects of heparin in experimental venous thrombosis. Blood 49: 171–184, 1977

    PubMed  CAS  Google Scholar 

  • Choay J, Lormeau JC, Petitou M, Sinay P, Fareed J. Structural studies on a biologically active hexasaccharide obtained from heparin. Annals of the New York Academy of Sciences 370: 644–649, 1981

    PubMed  CAS  Google Scholar 

  • Choay J, Petitou M, Lormeau JC, Sinay P, Casu B, et al. Structure activity relationships in heparin: a synthetic pentasaccharide with high affinity for antithrombin III and eliciting high anti factor Xa activity. Biochemical and Biophysical Research Communications 116: 492–499, 1983

    PubMed  CAS  Google Scholar 

  • Chong BH, Castaldi PA. Heparin-induced thrombocytopenia: further studies of the effects of heparin-dependent antibodies on platelets. British Journal of Haematology 64: 347–354, 1986

    PubMed  CAS  Google Scholar 

  • Cifonelli JA. The relationship of molecular weight and sulfate content and distribution to anticoagulant activity of heparin preparations. Carbohydrate Research 37: 145–154, 1974

    PubMed  CAS  Google Scholar 

  • Cines DB, Tomaski A, Tannenbaum S. Immune endothelial-cell injury in heparin-associated thrombocytopenia. New England Journal of Medicine 316: 581–596, 1987

    PubMed  CAS  Google Scholar 

  • Clifton GD, Smith MD. Thrombolytic therapy in heparin-associated thrombocytopenia with thrombosis. Clinical Pharmacy 5: 597–601, 1986

    PubMed  CAS  Google Scholar 

  • Col J, Col-Debeys C, Lavenne-Pardonge E, Meert Ph, Hericks L, et al. Propylene glycol-induced heparin resistance during nitro-glycerin infusion. American Heart Journal 110: 171–173, 1985

    PubMed  CAS  Google Scholar 

  • Collins R, Yusuf S, Scrimgeour A, Peto R. Substantial reduction in fatal pulmonary embolism and venous thrombosis by perioperative administration of subcutaneous heparin: overview of results of randomized trials in general, orthopedic, and urologie surgery. New England Journal of Medicine 318: 1162–1173, 1988

    PubMed  CAS  Google Scholar 

  • Corcos T, David PR, Val PG. Failure of diltiazem to prevent restenosis after percutaneous transluminal coronary angioplasty. American Heart Journal 109: 926–931, 1985

    PubMed  CAS  Google Scholar 

  • Cummings JM, Mason TJ, Chomak EV, Pouget JM. Fibrinolytic therapy of acute myocardial infarction in the heparin thrombosis syndrome. American Heart Journal 112: 407–409, 1986

    PubMed  CAS  Google Scholar 

  • Dahan D, Houlbert D, Caulin C, Cuzin E, Viltart C, et al. Prevention of deep vein thrombosis in elderly patients by a low molecular weight heparin: a randomized double-blind trial. Haemostasis 16: 159–164, 1986

    PubMed  CAS  Google Scholar 

  • Dahan D, Levasseur P, Bogaty J, Boneu B, Samama M. Prevention of postoperative deep vein thrombosis (DVT) in malignant patients by fraxiparine (a low molecular weight heparin): a cooperative trial. Abstract 1636. Thrombosis and Haemostasis 62: 519, 1989

    Google Scholar 

  • Dalen JE, Hirsh J. American College of Chest Physicians and the National Heart, Lung, and Blood Institute National Conference on Antithrombotic Therapy. Archives of Internal Medicine 146: 463–472, 1986

    Google Scholar 

  • Danishefsky I. Synthesis and properties of heparin derivatives. Advances in Experimental Medicine and Biology 52: 105–109, 1975

    PubMed  CAS  Google Scholar 

  • Davis MJE, Ireland MA. Effect of early anticoagulation on the frequency of left ventricular thrombi after anterior wall acute myocardial infarction. American Journal of Cardiology 57: 1244–1247, 1986

    PubMed  CAS  Google Scholar 

  • Dawes J, Pepper DS. Catabolism of low-dose heparin in man. Thrombosis Research 14: 845–860, 1979

    PubMed  CAS  Google Scholar 

  • Dehmer GJ, Popma JJ, Van Den Berg EK, et al. Reduction in the rate of early restenosis after coronary angioplasty by a diet supplemented with m-3 fatty acids. New England Journal of Medicine 319: 733–740, 1988

    PubMed  CAS  Google Scholar 

  • De Swart CAM, Nymeyer B, Roelofs JMN, Sixma JJ. Kinetics of intravenously administered heparin in normal humans. Blood 60: 1251–1258, 1982

    PubMed  Google Scholar 

  • De Swiet M. Anticoagulants. British Medical Journal 294: 428–430, 1987

    PubMed  Google Scholar 

  • Dettori AG, Tagliaferri A, Dall’Aglio E, Pini M. Clinical pharmacology of a new low molecular weight heparin (Alfa LMWH-Fluxum). International Angiology 7 (Suppl. 3): 7–18, 1988

    PubMed  CAS  Google Scholar 

  • Dieval J, Morinière P, Bayrou B, Roussel B, Fournier A, et al. Dose-finding study of the low molecular weight heparin CY 216 in chronic haemodialysis. In Breddin K et al. (Eds) Fraxiparine: analytical and structural data, pharmacology, clinical trials, pp. 169–175, Schattauer Verlag, Stuttgart, 1989

    Google Scholar 

  • Dinerman J, Lopez L, Mehta J. Myocardial infarction: short- and long-term use of anticoagulants. Current Opinion in Cardiology 4: 540–546, 1989

    Google Scholar 

  • Diness V, Nielsen JI, Pedersen PC, Wolffbrandt KH, Østergaard PB. A comparison of the antithrombotic and haemorrhagic effects of a low molecular weight heparin (LHN-1) and conventional heparin. Thrombosis and Haemostasis 55: 410–414, 1986

    PubMed  CAS  Google Scholar 

  • Diness V, Østergaard PB. Neutralization of a low molecular weight heparin (LHN-1) and conventional heparin by protamine sulfate in rats. Thrombosis and Haemostasis 56: 318–322, 1986

    PubMed  CAS  Google Scholar 

  • Dosne AM, Bendetowcz AV, Kher A, Samama M. Marked potentiation of the plasminogenolytic activity of pro-urokinase by unfractionated heparin and a low molecular-weight heparin. Thrombosis Research 51: 627–630, 1988

    PubMed  CAS  Google Scholar 

  • Doutremepuich C, Bonini F, Masse A, Bousquet F, Bayrou B, et al. Etude de la neutralisation in vitro et in vivo d’une fraction de bas poids moléculaire d’héparine CY216 par la protamine. Annales Pharmaceutiques Françaises 44: 65–72, 1986b

    PubMed  CAS  Google Scholar 

  • Doutremepuich C, Bonini F, Toulemonde F, Bertrand H, Bertrand B. In vivo neutralization of low molecular weight heparin fraction CY 216 by protamine. Seminars in Thrombosis and Hemostasis 11: 318–322, 1985

    PubMed  CAS  Google Scholar 

  • Doutremepuich C, Bousquet F, Toulemonde F. Are molecular weight and anti-Xa activity sufficient to predict the antithrombotic effect of heparin fractions? Thrombosis Research 44: 709–712, 1986a

    PubMed  CAS  Google Scholar 

  • Doutremepuich C, de Haro E, de Sèze O, Guyot M, Bonini F, et al. In-vivo and in-vitro neutralization of a low molecular weight fraction of heparin (CY 216) by protamine. In Breddin K et al. (Eds) Fraxiparine: analytical and structural data, pharmacology, clinical trials, pp. 97–107, Schattauer Verlag, Stuttgart, 1989a

    Google Scholar 

  • Doutremepuich C, de Haro E, Doutremepuich F, Laianne MC, Toulemonde F. Kinetic study of t-PA release induced by heparin and heparin fragment. Thrombosis Research 53: 615–621, 1989b

    PubMed  CAS  Google Scholar 

  • Doutremepuich C, Toulemonde F, Doutremepuich F, de Sèze O, Bayrou B, et al. The t-PA like activity induced by heparin and a heparin fragment binds on experimental thrombin. Thrombosis Research 50: 335–338, 1988

    PubMed  CAS  Google Scholar 

  • Doyle DJ, Turpie AGG, Hirsh J, Best C, Kinch D, et al. Adjusted subcutaneous heparin or continuous intravenous heparin in patients with acute deep vein thrombosis. Annals of Internal Medicine 107: 441–445, 1987

    PubMed  CAS  Google Scholar 

  • Duke RJ, Bloch RF, Turpie AGG, Trebilcock R, Bayer N. Intravenous heparin for the prevention of stroke progression in acute partial stable stroke: a randomized controlled trial. Annals of Internal Medicine 105: 825–828, 1986

    PubMed  CAS  Google Scholar 

  • Durand D, Ader JL, Rey JP, Tran-Van T, Lloveras JJ, et al. Inducing hyperkalemia by converting enzyme inhibitors and heparin. Kidney International 34 (Suppl. 25): 196–197, 1988

    Google Scholar 

  • Duroux P (Co-ordinator). Curative treatment of deep venous thrombosis (DVT): fraxiparine versus non-fractionated heparin (NFH). A European multicentre trial. In Breddin K et al. (Eds) Fraxiparine: analytical and structural data, pharmacology, clinical trials, pp. 189–191, Schattauer Verlag, Stuttgart, 1989

    Google Scholar 

  • Ellis SG, Roubin GS, Wilentz J, Douglas JS, King SB. Effect of 18- to 24-hour heparin administration for prevention of restenosis after uncomplicated coronary angioplasty. American Heart Journal 117: 777–783, 1989

    PubMed  CAS  Google Scholar 

  • Emanuele RM, Fareed J. The effect of molecular weight on the bioavailability of heparin. Thrombosis Research 48: 591–596, 1987

    PubMed  CAS  Google Scholar 

  • Eriksson BI, Zachrisson BE, Teger-Nilsson A-C, Risberg B. Thrombosis prophylaxis with low molecular weight heparin in total hip replacement. British Journal of Surgery 75: 1053–1057, 1988

    PubMed  CAS  Google Scholar 

  • Esquivel CO, Bergqvist D, Björk CG, Nilsson B. Comparison between the commercial heparin, low-molecular weight heparin and pentosan polysulphate on hemostasis and platelets in vivo. Thrombosis Research 28: 389–399, 1982

    PubMed  CAS  Google Scholar 

  • Etienne J, Millot F, Pieron R, Lamelle P. Release of LPL activity after intravenous injection of a low molecular weight heparin. British Journal of Clinical Pharmacology 16: 712–714, 1983

    PubMed  CAS  Google Scholar 

  • European Fraxiparin Study (EFS) Group. Comparison of a low molecular weight heparin and unfractionated heparin for the prevention of deep vein thrombosis in patients undergoing abdominal surgery. British Journal of Surgery 75: 1058–1063, 1988

    Google Scholar 

  • Faivre R, Newhart E, Mirshahi M, Mirshahi M, Soria C. Fibrinolytic and thrombolytic parameters in patients with deep vein thrombosis treated by low molecular weight and standard heparin. Seminars in Thrombosis and Hemostasis 15: 435–439, 1989

    PubMed  CAS  Google Scholar 

  • Fareed J, Walenga PM, Rancanelli A, Hoppensteadt D, Coyne E, et al. Biochemical and pharmacological studies on unfractionated and low molecular weight heparins. In Breddin K et al. (Eds) Fraxiparine: analytical and structural data, pharmacology, clinical trials, pp. 41–68, Schattauer Verlag, Stuttgart, 1989

    Google Scholar 

  • Fennerty A, Campbell IA, Routledge PA. Anticoagulants in venous thromboembolism. British Medical Journal 297: 1285–1288, 1988

    PubMed  CAS  Google Scholar 

  • Fennerty A, Dolben J, Thomas P, Backhouse G, Bently DP, et al. A comparison of 3 and 6 weeks anticoagulation in the treatment of venous thromboembolism. Clinical and Laboratory Haematology 9: 17–21, 1987

    PubMed  CAS  Google Scholar 

  • Fernandez FA, Buchanan MR, Hirsh J, Fenton J, Ofosu FA. Catalysis of thrombin inhibition provides an index for estimating antithrombotic potential of glycosaminoglycans in rabbits. Thrombosis and Haemostasis 57: 286–293, 1987

    PubMed  CAS  Google Scholar 

  • Forestier F, Daffos F, Capella-Pavlovsky M. Low molecular weight heparin (PK 10169) does not cross the placenta during the second trimester of pregnancy: study by direct fetal blood sampling under ultrasound. Thrombosis Research 34: 557–560, 1984

    PubMed  CAS  Google Scholar 

  • Franco A, Aquilanui F, Pouzot P, Carpentier P, Pernod G, et al. Traitement curatif des thromboses veineuses profondes des membres inférieurs par l’héparine à faible poids moléculaire: étude préliminaire de l’Enoxaparine (PK10169). Abstract. Groupe d’Etudes sur l’Hémostase et la Thrombose, 1986

  • Frydman AM, Bara L, Leroux Y, Woler M, Chauliac F, et al. The antithrombotic activity and pharmacokinetics of enoxaparine, a low-molecular-weight heparin, in humans given single subcutaneous doses of 20 to 80mg. Journal of Clinical Pharmacology 28: 609–618, 1988

    PubMed  CAS  Google Scholar 

  • Gallus AS, Hirsh J. Prevention of venous thromboembolism. Seminars in Thrombosis and Hemostasis 2: 232–290, 1976

    PubMed  CAS  Google Scholar 

  • Gallus AS, Hirsh J, Cade JF, Turpie AGG, Walker IR, et al. Thrombolysis with a combination of small doses of streptokinase and full doses of heparin. Seminars in Thrombosis and Hemostasis 2: 14–32, 1975

    PubMed  CAS  Google Scholar 

  • Gent M, Roberts RS. A meta-analysis of the studies of dihydroergotamine plus heparin in the prophylaxis of deep vein thrombosis. Chest 89: 396S-400S, 1986

    Google Scholar 

  • Ginsberg JS, Hirsh J. Optimum use of anticoagulants in pregnancy. Drugs 36: 505–512, 1988

    PubMed  CAS  Google Scholar 

  • Glimelius B, Busch C, Hook M. Binding of heparin on the surface of cultured human endothelial cells. Thrombosis Research 12: 773–782, 1978

    PubMed  CAS  Google Scholar 

  • Gompers ED, Zucker ML. Heparin, brain thromboplastin and the insensitivity of the prothrombin time to heparin activity. Thrombosis Research 12: 105–117, 1977

    Google Scholar 

  • Gouault-Heilmann M, Huet Y, Contant G, Payen D, Bloch C, et al. Cardiopulmonary bypass with a low-molecular-weight heparin fraction. Lancet 2: 1374, 1983

    PubMed  CAS  Google Scholar 

  • Griffith GC, Nichols G, Asher JD, Flandagan B. Heparin osteoporosis. Journal of the American Medical Association 193: 85–88, 1965

    Google Scholar 

  • Griffith MJ. Heparin-catalyzed inhibitor/protease reactions: kinetic evidence for a common mechanism of action of heparin. Proceedings of the National Academy of Sciences of the United States of America 80: 5460–5464, 1983

    PubMed  CAS  Google Scholar 

  • Grigg LE, Kay TWH, Valentine PA, et al. Determinants of restenosis and lack of effect of dietary supplementation with eicosapentaenoic acid on the incidence of coronary artery stenosis after angioplasty. Journal of the American College of Cardiology 13: 665–672, 1989

    PubMed  CAS  Google Scholar 

  • Gueret P, Dubourg O, Ferrier A, Farcot JC, Rigaud M, et al. Effects of full-dose heparin anticoagulation on the development of left ventricular thrombosis in acute transmural myocardial infarction. Journal of the American College of Cardiology 8: 419–426, 1986

    PubMed  CAS  Google Scholar 

  • Haas S, Stemberger A, Fritsche HM, Welzel D, Wolf H, et al. Prophylaxis of deep vein thrombosis in high-risk patients undergoing total hip replacement with low molecular weight heparin plus dihydroergotamine. Arzneimittel-Forschung/Drug Research 37: 839–843,1987

    CAS  Google Scholar 

  • Harenberg J, Giese Ch, Knödler A, Zimmermann R, Schettler G. Antagonisierung von niedermolekularem Heparin-Sandoz durch Protaminchlorid. Herz/Kreislauf 18: 578–581, 1986b

    CAS  Google Scholar 

  • Harenberg J, Huck K, Stehle G, Mall K, Schwarz A, et al. Prospective, randomized, controlled study on the treatment of deep venous thrombosis using low molecular weight heparin compared with unfractionated heparin. Abstract 1106. Thrombosis and Haemostasis 62: 356, 1989a

    Google Scholar 

  • Harenberg J, Kallenbach B, Martin U, Dempflé CE, Zimmermann R, et al. Randomized controlled study of heparin and low molecular weight heparin for prevention of deep-vein thrombosis in medical patients. Thrombosis Research, in press, 1990

  • Harenberg J, Stehle G, Dempfle CE, von Hodenberg E, Heene DL; Beeinflussung der blutgerinnung und der lipasen durch das niedermolekulare heparin CY 216. Ärztliche Laboratorium35: 73–79, 1989b

    Google Scholar 

  • Harenberg J, Weister B, Pfitzer M, Oster P, Schlierf G. The value of anti-coagulation for the prophylaxis of embolism in patients with atrial fibrillation: the possible use of the LMW heparin CY 216. In Breddin K et al. (Eds) Fraxiparine: analytical and structural data, pharmacology, clinical trials, pp. 153–156, Schattauer Verlag, Stuttgart, 1989c

    Google Scholar 

  • Harenberg J, Wurzner B, Zimmermann R, Schettler G. Bioavailability and antagonization of the low molecular weight heparin CY 216 in man. Thrombosis Research 44: 549–554, 1986a

    PubMed  CAS  Google Scholar 

  • Hartl P, Brücke P, Dienst E, Vinazzer H. Prophylaxis of thromboembolism in general surgery: comparison between standard heparin and fragmin. Thrombosis Research 57: 577–584, 1990

    PubMed  CAS  Google Scholar 

  • Hauch O, Jørgensen LN, Kølle TR, Nerstrøm H, Schebye O, et al. Low molecular weight heparin (Logiparin™) as thromboprophylaxis in elective abdominal surgery. Acta Chirurgica Scandinavica 154 (Suppl. 543): 90–95, 1988

    Google Scholar 

  • Heeger PS, Backstrom JT. Heparin flushes and thrombocytopenia. Annals of Internal Medicine 105: 143, 1986

    PubMed  CAS  Google Scholar 

  • Hellstern P, Kiehl R, Von Blohn G, Köhler M, Meierhenrich U, et al. Dose response relationship of anticoagulant activities after subcutaneous administration of two low molecular weight heparins in healthy individuals. Thrombosis and Haemostasis 56: 225–228, 1986

    PubMed  CAS  Google Scholar 

  • Hemker HC. The mode of action of heparin in plasma. In Verstraete M et al. (Eds) Thrombosis and haemostasis 1987, pp. 17–36, Leuven University Press, Leuven, 1987

    Google Scholar 

  • Henann NE. Heparin-induced hyperlipidemia in a patient with pre-existing dysbetalipoproteinemia. Clinical Pharmacy 5: 761–764, 1986

    PubMed  CAS  Google Scholar 

  • Hiebert LM, Jaques LB. The observation of heparin on endo-thelium after injection. Thrombosis Research 8: 195–204, 1976

    PubMed  CAS  Google Scholar 

  • Holm HA, Kalvenes S, Abildgaard U. Changes in plasma anti-thrombin (heparin cofactor activity) during intravenous heparin therapy: observations in 198 patients with deep venous thrombosis. Scandinavian Journal of Haematology 35: 564–569, 1985

    PubMed  CAS  Google Scholar 

  • Holm HA, Ly B, Handeland GF, Abildgaard U, Arnesen KE, et al. Subcutaneous heparin treatment of deep venous thrombosis: a comparison of unfractionated and low molecular weight heparin. Haemostasis 16 (Suppl. 2): 30–37, 1986

    PubMed  Google Scholar 

  • Holmer E, Kurachi K, Söderström G. The molecular weight dependence of the rate enhancing effect of heparin on the inhibition of thrombin, factor Xa, IXa, XIa, Xlla and kallikrein by antithrombin. Biochemical Journal 193: 395–400, 1981

    PubMed  CAS  Google Scholar 

  • Holmer E, Mattson C, Nilsson S. Anticoagulant and antithrombotic effects of heparin and low molecular weight heparin fragments in rabbits. Thrombosis Research 25: 475–485, 1982

    PubMed  CAS  Google Scholar 

  • Holmer E, Söderberg K. Inhibition of heparin oligosaccharides by protamine chloride. Seminars in Thrombosis and Hemostasis 11: 241–242, 1985

    Google Scholar 

  • Holmgren K, Andersson G, Fagrell B, Johnsson H, Ljungberg B, et al. One month versus six months therapy with oral anticoagulants after symptomatic deep vein thrombosis. Acta Medica Scandinavica 219: 279–284, 1985

    Google Scholar 

  • Hoppensteadt D, Breddin K, Walenga JM, Bender N, Fareed J. Relevance of Anti Xa, Anti IIa and other laboratory parameters to the clinical efficacy of Fraxiparin®: preliminary results of European Fraxiparin® study. In Breddin K et al. (Eds) Fraxiparine: analytical and structural data, pharmacology, clinical trials, pp. 111–120, Schattauer Verlag, Stuttgart, 1989

    Google Scholar 

  • Howell W, Holt E. Two new factors on blood coagulation: heparin and proantithrombin. American Journal of Physiology 48: 328–334, 1918

    Google Scholar 

  • Hoylaerts M, Owen WG, Collen D. Involvement of heparin chain length in the heparin-catalyzed inhibition of thrombin by antithrombin III. Journal of Biological Chemistry 259: 5670–5677, 1984

    PubMed  CAS  Google Scholar 

  • Hubbard AR, Jennings CA. Neutralization of heparin sulfate and low molecular weight heparin by protamine. Thrombosis and Haemostasis 53: 86–89, 1985

    PubMed  CAS  Google Scholar 

  • Hull R, Delmore T, Carter C, Hirsh J, Genton E, et al. Adjusted subcutaneous heparin versus warfarin sodium in the long-term treatment of venous thrombosis. New England Journal of Medicine 306: 189–194, 1982a

    PubMed  CAS  Google Scholar 

  • Hull R, Delmore T, Genton E, Carter C, Hirsh J, et al. Warfarin sodium versus low-dose heparin in the long-term treatment of venous thrombosis. New England Journal of Medicine 301: 855–858, 1980

    Google Scholar 

  • Hull R, Hirsh J, Jay R, Carter C, England C, et al. Different intensities of anticoagulant therapy in the treatment of proximal-vein thrombosis. New England Journal of Medicine 307: 1676–1681, 1982b

    PubMed  CAS  Google Scholar 

  • Hull RD, Raskob GE, Hirsh J, Jay RM, Leclerc JR, et al. Continuous intravenous heparin compared with intermittent subcutaneous heparin in the initial treatment of proximal vein thrombosis. New England Journal of Medicine 315: 1109–1114, 1986

    PubMed  CAS  Google Scholar 

  • Jacobsson I, Bäckström G, Höök M, Lindahl U, Feingold DS, et al. Biosynthesis of heparin: assay and properties of the micro-somal uronosyl C-5 epimerase. Journal of Biological Chemistry 254: 2975–2982, 1979

    PubMed  CAS  Google Scholar 

  • Jaques LB, Kavanagh LW. Protamine neutralization for heparin. Canadian Journal of Pharmacological Sciences 12: 44–47, 1977

    CAS  Google Scholar 

  • Johansson M, Aberg W, Bratt G, Widlund L, Holmer E, et al. Pharmacokinetic study of two intravenous (i.v.) doses of fragmin (Kabi) in healthy volunteers. Abstract 1609. Thrombosis and Haemostasis 62: 512, 1989

    Google Scholar 

  • Johnson EA, Kirkwood TBL, Stirling Y, Perez-Requejo JL, Ingram GIC, et al. Four heparin preparations: anti-Xa potentiating effects of heparin after subcutaneous injection. Thrombosis and Haemostasis 35: 586–597, 1976

    PubMed  CAS  Google Scholar 

  • Jordan RE, Beeler D, Rosenberg RD. Fractionation of low molecular weight heparin species and their interaction with antithrombin. Journal of Biological Chemistry 254: 2902–2913, 1979

    PubMed  CAS  Google Scholar 

  • Jordan RE, Oosta GM, Gardner WT, Rosenberg RD. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. Journal of Biological Chemistry 255: 10081–10090, 1980

    PubMed  CAS  Google Scholar 

  • Jorgensen AM, Borders CL, Fish WW. Arginine residues are critical for the heparin cofactor activity of antithrombin III. Biochemical Journal 231: 59–63, 1985

    PubMed  CAS  Google Scholar 

  • Jorpes JE. Boström H, Mutt V. The linkage of the aminogroup in heparin. Journal of Biological Chemistry 183: 607–612, 1950

    CAS  Google Scholar 

  • Kakkar VV, Bentley PG, Scully MF, MacGregor IR, Jones NAG, et al. Antithrombin III and heparin. Lancet 1: 104, 1980

    Google Scholar 

  • Kakkar VV, Djazaseri B, Fok J, Fletscher M, Scully MF, et al. Low molecular weight heparin and prevention of postoperative deep vein thrombosis. British Medical Journal 284: 375–379, 1982

    PubMed  CAS  Google Scholar 

  • Kakkar VV, Fox PJ, Murray WJG, Paes T, Merenstein D, et al. Heparin and dihydroergotamine prophylaxis against thromboembolism after hip arthroplasty. Journal of Bone and Joint Surgery 67B (Suppl. 4): 838–842, 1985

    Google Scholar 

  • Kakkar VV, Kakkar S, Sanderson RM, Peers CE. Efficacy and safety of two regimens of low molecular weight heparin fragment (Fragmin) in preventing postoperative deep vein thromboembolism. Haemostasis (Suppl. 2): 19–24, 1986

  • Kakkar VV, Murray WJG. Efficacy and safety of low molecular weight heparin (CY 216) in preventing postoperative venous thrombo-embolism: a cooperative study. British Journal of Surgery 72: 786–791, 1985

    PubMed  CAS  Google Scholar 

  • Kakkar VV, Stamatakis JD, Bentley PD, Lawrence D, de Haas HA, et al. Prophylaxis for post-operative deep venous thrombosis: synergistic effect of heparin and dihydroergotamine. Journal of the American Medical Association 241: 39–42, 1979

    PubMed  CAS  Google Scholar 

  • Kelton JG. Heparin-induced thrombocytopenia. Haemostasis 16: 173–186, 1986

    PubMed  CAS  Google Scholar 

  • Kim YS, Linhardt RJ. Structural features of heparin and their effect on heparin cofactor II mediated inhibition of thrombin. Thrombosis Research 53: 55–71, 1989

    PubMed  CAS  Google Scholar 

  • Knudsen JB, Torholm C, Jergensen PK, Hagen K, Broeng L, et al. Effect on coagulation parameters of low molecular weight heparin (fragmin) in elective and acute hip surgery. Abstract 1652. Thrombosis and Haemostasis 62: 523, 1989

    Google Scholar 

  • Koller M, Schoch U, Buchmann P, Largiader F, von Feiten A, et al. Low molecular weight heparin (Kabi 2165) as thromboprophylaxis in elective visceral surgery: a randomized, double-blind study versus unfractionated heparin. Thrombosis and Haemostasis 56: 243–246, 1986

    PubMed  CAS  Google Scholar 

  • Kopecky SL, Gersh BJ, McGoon MD, Whisnant JP, Holmes DR, et al. The natural history of lone atrial fibrillation: a population-based study over three decades. New England Journal of Medicine 317: 669–674, 1987

    PubMed  CAS  Google Scholar 

  • Korninger C, Schlag G, Poigenfürst J, Wilfing C, Redl H, et al. Randomized trial of low molecular weight heparin (LMWH) versus low dose heparin/acenocoumarin (H/AC) in patients with hip fracture: thromboprophylactic effect and bleeding complications. Abstract 563. Thrombosis and Haemostasis 62: 187, 1989

    Google Scholar 

  • Kruck M, Heilmann L. Low molecular weight heparin versus heparin after major gynecologic operations: clinical results. Abstract 1536. Thrombosis and Haemostasis 62: 489, 1989

    Google Scholar 

  • Laforest MD, Colas-Linhart N, Guiraud-Vitaux F, Bok B, Bara L, et al. Pharmacokinetics and biodistribution of Technetium 99m labelled standard heparin and a low molecular weight heparin (enoxaparin) after I.V. injection in normal volunteers. British Journal of Haematology, in press, 1990

  • Lagerstedt CI, Olsson CG, Fagher BO, Öqvist BW, Albrechtsson U. Need for long-term anticoagulant treatment in symptomatic calf-vein thrombosis. Lancet 2: 515–518, 1985

    PubMed  CAS  Google Scholar 

  • Lambert M, Laterre PF, Leroy Ch, Lavenne E, Coche E, et al. Modifications of liver enzymes during heparin therapy. Acta Clinica Belgica 41: 307–310, 1986

    PubMed  CAS  Google Scholar 

  • Lane DA, Ireland H, Flynn A, Anastasiades E, Curtis JR. Haemodialysis with low molecular weight heparin: dosage requirements for the elimination of extracorporeal fibrin formation. Nephrology, Dialysis, Transplantation 1: 179–187, 1986

    PubMed  CAS  Google Scholar 

  • Lane DA, Ireland H, Tew CJ, Flynn A, Curtis JR. Equivalent effective doses of heparin and low molecular weight heparin(oid)s in haemodialysis for chronic renal failure. Acta Chirurgica Scandinavica 154 (Suppl. 543): 101–104, 1988

    Google Scholar 

  • Le Balc’h T, Landais A, Butel J, Weill D, Pascariello JC, et al. Enoxaparine (LovenoxR) versus standard heparin in prophylaxis of deep vein thrombosis (DVT) after total hip replacement (THR). Abstract 892. Thrombosis and Haemostasis 58: 241, 1987

    Google Scholar 

  • Leizorovicz A, for the Post-surgery Logiparin Study Group. Comparison of two doses of low molecular weight heparin and standard low dose heparin in the prevention of post-operative vein thrombosis (DVT). Abstract 1641. Thrombosis and Haemostasis 62: 521, 1989

    Google Scholar 

  • Leroy J, Leclerc MH, Delahousse B. Treatment of heparin associated thrombocytopenia and thrombosis with low molecular weight heparin (CY 216). Seminars in Thrombosis and Hemostasis 11: 326–329, 1985

    PubMed  CAS  Google Scholar 

  • Levine MN, Hirsh J. An overview of clinical trials with low molecular weight heparin fractions. Acta Chirurgica Scandinavica 154 (Suppl. 543): 73–79, 1988

    Google Scholar 

  • Levine MN, Planes A, Hirsh J, Goodyear M, Vochelle N, et al. The relationship between anti-factor Xa level and clinical outcome in patients receiving enoxaparine low molecular weight heparin to prevent deep vein thrombosis after hip replacement. Abstract 1640. Thrombosis and Haemostasis 62: 940–944, 1989

    CAS  Google Scholar 

  • Leyvraz PF, Richard J, Bachmann F, van Meile G, Treyvaud JM, et al. Adjusted versus fixed subcutaneous heparin in the prevention of deep vein thrombosis after total hip replacement. New England Journal of Medicine 309: 954–958, 1983

    PubMed  CAS  Google Scholar 

  • Lindahl U, Backström G, Thunberg L. The antithrombin-binding sequence in heparin. Journal of Biological Chemistry 258: 9826–9830, 1983

    PubMed  CAS  Google Scholar 

  • Lindahl U, Höök M, Backström G, Jacobbsson I, Riesenfeld J, et al. Structure and biosynthesis of heparin-like polysaccharides. Federation Proceedings 36: 19–24, 1977

    PubMed  CAS  Google Scholar 

  • Lindblad B. Prophylaxis of postoperative thromboembolism with low dose heparin alone or in combination with dihydroergotamine: a review. Acta Chirurgica Scandinavica 154 (Suppl. 543): 31–42, 1988

    Google Scholar 

  • Linhardt RJ, Grant A, Cooney CL, Langer R. Differential anticoagulant activity of heparin fragment prepared using microbial heparinase. Journal of Biological Chemistry 257: 7310–7313, 1982

    PubMed  CAS  Google Scholar 

  • Lindhout Th, Pieters J, Béguin S, Hemker HC. The mode of action of CY 216 on thrombin generation in plasma. In Breddin K et al. (Eds) Fraxiparine: analytical and structural data, pharmacology, clinical trials, pp. 23–34, Schattauer Verlag, Stuttgart, 1989

    Google Scholar 

  • Ljungberg B, Blombäck M, Johnsson H, Lins LE. A single dose of a low molecular weight heparin fragment for anticoagulation during haemodialysis. Clinical Nephrology 27: 31–35, 1987

    PubMed  CAS  Google Scholar 

  • Ljungberg B, Beving H, Egberg N, Johnsson H, Versterqvist O. Immediate effects of heparin and LMW heparin on some platelets and endothelial derived factors. Thrombosis Research 51: 209–217, 1988

    PubMed  CAS  Google Scholar 

  • Lockner D, Bratt G, Törnebohm E, Åberg W, Granqvist S. Intravenous and subcutaneous administration of fragmin in deep venous thrombosis. Haemostasis 16 (Suppl. 2): 25–29, 1986

    PubMed  Google Scholar 

  • Lodder J, Dennis MS, Van Raak L, Jones LN, Warlow CP. Cooperative study on the value of long term anticoagulation in patients with stroke and non-rheumatic atrial fibrillation. British Medical Journal 296: 1435–1438, 1988

    PubMed  CAS  Google Scholar 

  • Longas MO, Ferguson WS, Finlay TH. A disulfide bond in antithrombin is required for heparin accelerated thrombin inactivation. Journal of Biological Chemistry 255: 3436–3441, 1980

    PubMed  CAS  Google Scholar 

  • Loscalzo J. Thrombolysis in the management of acute myocardial infarction and unstable angina pectoris. Drugs 37: 191–204, 1989

    PubMed  CAS  Google Scholar 

  • Lourenco DM, Dosne AM, Kher A, Samama M. Minimal effect of standard heparin and a low molecular weight heparin on the thrombolytic and fibrinogenolytic activity of scu-PA in vitro. Thrombosis and Haemostasis 62: 923–926, 1989

    PubMed  CAS  Google Scholar 

  • Low J, Biggs JC. Comparative plasma heparin levels after subcutaneous sodium and calcium heparin. Thrombosis and Haemostasis 40: 397–406, 1978

    PubMed  CAS  Google Scholar 

  • Macintosh FC. The biological standardization of heparin. Bulletin of the Health Organization, League of Nations 10: 144–54, 1943–1944

    Google Scholar 

  • Maggi A, Barrowcliffe TW, Gray E, Donati MB, Merton RE, et al. Relationship between haemorrhagic and lipase-releasing properties of heparin and LMW heparin. Abstract. Thrombosis and Haemostasis 58: 35, 1987

    Google Scholar 

  • Mahadoo J, Heibert L, Jaques LB. Vascular sequestration of heparin. Thrombosis Research 12: 79–80, 1978

    PubMed  CAS  Google Scholar 

  • Marciniak E. Factor Xa inactivation by antithrombin III: evidence for biological stabilization of factor Xa by factor V-phospholipid complex. British Journal of Haematology 24: 391–400, 1973

    PubMed  CAS  Google Scholar 

  • Marciniak E, Gockerman JP. Heparin-induced decrease in circulating antithrombin III. Lancet 1: 581–584, 1977

    Google Scholar 

  • Mascellani P, Bianchini P (Opocrin S.p.A.). Depolymerized hexosaminoglucan sulfates endowed with an antithrombotic, fibrinolytic, antiinflammatory activity: their process of preparation and related pharmaceutical compositions. WO Patent 86/ 06729, 15 May, 1986

    Google Scholar 

  • Mätzsch T, Bergqvist D, Fredin H, Hedner U. Safety and efficacy of low molecular weight heparin (Logiparin) versus dextran as prophylaxis against thrombosis after total hip replacement. Acta Chirurgica Scandinavica (Suppl. 543): 80–84, 1988

  • Mätzsch T, Bergqvist D, Fredin H, Hedner U, Lindhagen A, et al. Thrombo-prophylactic effect of a low molecular weight heparin as compared to dextran in elective hip surgery. Abstract 1638. Thrombosis and Haemostasis 62: 520, 1989

    Google Scholar 

  • Mätzsch T, Bergqvist D, Hedner U, Nilsson B, Østergaard P. Effects of low molecular weight heparin on induction of osteoporosis in rats.Thrombosis and Haemostasis 63: 505–509, 1990

    PubMed  Google Scholar 

  • Mätzsch T, Bergqvist D, Hedner U, Østergaard P. Effects of an enzymatically depolymerized heparin as compared with conventional heparin in healthy volunteers. Thrombosis and Haemostasis 57: 97–101, 1987

    PubMed  Google Scholar 

  • Mätzsch T, Bergqvist D, Hedner U, Østergaard P. Heparin-induced osteoporosis in rats. Thrombosis and Haemostasis 56: 293–294, 1986

    PubMed  Google Scholar 

  • McLean J. The thromboplastic action of cephalin. American Journal of Physiology 41: 250–257, 1916

    Google Scholar 

  • Meissner K, Schulz KH. Kutane Allergie auf Heparin. Allergologie 9: 295–298, 1986

    Google Scholar 

  • Meyer P, Couzi G, Bavle J, Blanc Ph, Gibelin P, et al. Thromboses coronaires disséminées et thrombopénies induites par le polysulfate de pentosane. Archives des Maladies du Coeur 81: 913–919, 1988

    CAS  Google Scholar 

  • Mikhailidis DP, Barradas MA. Low molecular weight heparin(oid)s: are they the answer to heparin-associated thrombocytopenia (and thrombosis)? Journal of Drug Development 1: 265–273, 1989

    Google Scholar 

  • Miletich JP, Jackson CM, Majerus PW. Properties of the factor Xa binding site on human platelets. Journal of Biological Chemistry 253: 6908–6916, 1978

    PubMed  CAS  Google Scholar 

  • Monkhouse FC, France ES, Seegers WH. Studies on the antithrombin and heparin cofactor activities of a fraction absorbed from plasma by aluminium hydroxide. Circulation Research 3: 397–402, 1955

    PubMed  CAS  Google Scholar 

  • Morin Y, Limon S. Etude de la tolérance en chirurgie qphtalmologique du CY 216 employé pour la prévention des thromboses veineuses des membres inférieurs. Journal Français d’Ophtalmologie 18: 135–146, 1989

    Google Scholar 

  • Nelson DM, Stempel LE, Fabri PJ, Talbert M. Hickman catheter use in a pregnant patient requiring therapeutic heparin anticoagulation. American Journal of Obstetrics and Gynecology 149: 461–462, 1984

    PubMed  CAS  Google Scholar 

  • Neri Serneri GGN, Gensini GF, Poggesi L, Trotta F, Modesti PA, et al. Effect of heparin, aspirin, or alteplase in reduction of myocardial ischaemia in refractory unstable angina. Lancet 335: 615–618, 1990

    PubMed  CAS  Google Scholar 

  • Neri Serneri GG, Rovelli F, Gensini GF, Pirelli S, Carnovali M, et al. Effectiveness of low-dose heparin in prevention of reinfarction. Lancet 1: 937–942, 1987

    PubMed  CAS  Google Scholar 

  • Nilsson-Ehle P, Garfinkel AA, Schötz MC. Lipolytic enzymes and plasma lipoprotein metabolism. Annual Review of Biochemistry 49: 667–693, 1980

    PubMed  CAS  Google Scholar 

  • Ockelford P. Heparin 1986: indications and effective use. Drugs 31: 81–88, 1986

    PubMed  CAS  Google Scholar 

  • Ockelford P, Carter CJ, Cerskus A, Smith CA, Hirsh J. Comparison of the in vivo haemorrhagic and antithrombotic effects of a low antithrombin III affinity heparin fraction. Thrombosis Research 27: 679–690, 1982a

    PubMed  CAS  Google Scholar 

  • Ockelford PA, Carter CJ, Mitchell L, Hirsh J. Discordance between the anti-Xa activity and the antithrombotic activity of an ultra-low molecular weight heparin fraction. Thrombosis Research 28: 401–409, 1982b

    PubMed  CAS  Google Scholar 

  • Ofosu FA, Blajchman MA, Hirsh J. The inhibition by heparin of the intrinsic pathway activation of factor X in the absence of antithrombin III. Thrombosis Research 20: 391–403, 1980

    PubMed  CAS  Google Scholar 

  • Ofosu FA, Blajchman MA, Modi GJ, Smith IM, Buchanan MR, et al. The importance of thrombin inhibition for the expression of the anticoagulant activities of heparin, dermatan sulfate, low molecular weight heparin and pentosan sulfate. British Journal of Haematology 60: 695–704, 1985

    PubMed  CAS  Google Scholar 

  • Ofosu FA, Cerskus AL, Hirsh J, Smith LM, Modi GJ, et al. The inhibition of the anticoagulant activity of heparin by platelets, brain phospholipids, and tissue factor. British Journal of Haematology 57: 229–238, 1984

    PubMed  CAS  Google Scholar 

  • Olivecrona T, Bengtsson G, Marklund SE, Lindahl U, Höök M. Heparin-lipoprotein interactions. Federation Proceedings 36: 60–65, 1977

    PubMed  CAS  Google Scholar 

  • Olsson P, Lagergren H, Ek S. The elimination from plasma of intravenous heparin: an experimental study on dogs and humans. Acta Medica Scandinavica 173: 619–630, 1963

    PubMed  CAS  Google Scholar 

  • Omri A. Effects of unfractionated heparin and low molecular weight heparin preparations on fibrinolysis ‘in vitro study’. Abstract 1601. Thrombosis and Haemostasis 62: 510, 1989

    Google Scholar 

  • Omri A, Delaloye JF, Andersen H, Bachmann F. Low molecular weight heparin Novo (LHN-1) does not cross the placenta during the second trimester of pregnancy. Thrombosis and Haemostasis 61: 55–56, 1989

    PubMed  CAS  Google Scholar 

  • Oosta GM, Gardner WT, Beeler DL, Rosenberg RD. Multiple functional domains of the heparin molecule. Proceedings of the National Academy of the Sciences of the United States of America 78: 829–833, 1981

    CAS  Google Scholar 

  • Østergaard P, Mätzsch T, Bergqvist D, Bergqvist A, Hodson S, et al. Transplacental passage of a low molecular weight heparin as compared to standard heparin. Abstract 1619. Thrombosis and Haemostasis 62: 515, 1989

    Google Scholar 

  • O’Sullivan EF. Duration of anticoagulant therapy in venous thromboembolism. Medical Journal of Australia 2: 1104–1107, 1972

    PubMed  Google Scholar 

  • Owen MC, Borg JY, Soria C, Soria J, Caen J, et al. Heparin binding defect in a new antithrombotic III variant: Rouen, 47 to His. Blood 69: 1275–1279, 1987

    PubMed  CAS  Google Scholar 

  • Paille F, Boccaccini A, de Korwin JD, Schmidt Cl, Laprevote MC, et al. Thrombopénie sous héparine de bas poids moléculaire après traitement par pentosane polysulfate. Thérapie 43: 322–323, 1988

    PubMed  CAS  Google Scholar 

  • Paoletti C, Maubec E, Raggueneau JL, George B, Robine D, et al. Etude de la tolérance clinique du CY 216 (Fraxiparine) dans la prévention des accidents thrombo-emboliques au décours de la neuro-chirurgie. Agressologie 30(6): 363–366, 1989

    PubMed  CAS  Google Scholar 

  • Persson E, Nördenström J, Nilsson-Ehle P, Hagenfeldt L. Lipolytic and anticoagulant activities of a low molecular weight fragment of heparin. European Journal of Clinical Investigation 15: 215–220, 1985

    PubMed  CAS  Google Scholar 

  • Petitou M, Duchaussoy P, Lederman I, Choay J, Jacquinet JC, et al. Synthesis of heparin fragments: a methyl α-pentoside with high affinity for antithrombin III. Carbohydrate Research 67: 67–75, 1987

    Google Scholar 

  • Petitou M, Lormeau JC, Choay J. Interaction of heparin and antithrombin III: the role of O-sulfate groups. European Journal of Biochemistry, in press, 1990

  • Pezzuoli G, Neri Serneri GG, Settembrini P, Coggi G, Olivari N, et al. Prophylaxis of fatal pulmonary embolism in general surgery using low-molecular weight heparin Cy 216: a multi-centre, double-blind, randomised, controlled, clinical trial versus placebo (STEP). International Surgery 74: 205–210, 1989

    PubMed  CAS  Google Scholar 

  • Pini M, Poli T, Tagleaferri A, Poti B, Quintavalla R, et al. Subcutaneous versus intravenous heparin in the treatment of deep venous thrombosis. Thrombosis and Haemostasis 54: 28, 1985

    Google Scholar 

  • Planes A, Vochelle A, Mazas F, Mansat C, Zucman J, et al. Prevention of postoperative venous thrombosis: a randomized trial comparing unfractionated heparin with low molecular weight heparin in patients undergoing total hip replacement. Thrombosis and Haemostasis 60: 407–410, 1988

    PubMed  CAS  Google Scholar 

  • Platell CFE, Tan EGC. Hypersensitivity reactions to heparin: delayed onset thrombocytopenia and necrotizing skin lesions. Australian and New Zealand Journal of Surgery 56: 621–623, 1986

    PubMed  CAS  Google Scholar 

  • Pletcher CH, Cunningham M, Nelsestuen GL. Kinetic analysis of various fractions and heparin substitutes in the thrombin inhibition reaction. Biochimica et Biophysica Acta 838: 106–113, 1985

    PubMed  CAS  Google Scholar 

  • Pletcher CH, Nelsestuen GL. Two-substrate reaction model for the heparin-catalyzed bovine antithrombin/protease reaction. Journal of Biological Chemistry 258: 1086–1091, 1983

    PubMed  CAS  Google Scholar 

  • Poller L, Taberner DA, Sandilands DG, Galasko CSB: An evaluation of APTT monitoring of low-dose-heparin dosage in hip surgery. Thrombosis and and Haemostasis 47: 50–53, 1982

    CAS  Google Scholar 

  • Poniewierski M, Bartheis M, Kuhn M, Poliwoda H. Ueber die Wirksamheit niedermolekularen Heparins (Fragmin) in der Thromboembolic Prophylaxe bei internistischen Patienten: ein Randomisierte Doppelblindstudie. Medizinische Klinik 83: 241–245, 1988

    PubMed  CAS  Google Scholar 

  • Porta R, Pescador R, Niada R, Diamantini G, Fideli GF, et al. Profibrinolytic activities of chemically modified heparins with very low anticoagulant properties. Thrombosis Research 53: 435–445, 1989

    PubMed  CAS  Google Scholar 

  • Potron G, Barre G, Droulle C, Baudrillard JC, Barbier P, et al. Thrombosis prophylaxis with low molecular weight heparin (Kab 2165) and calcium heparin in patients with total hip replacement. Abstract 421. Thrombosis and Haemostasis 58, 1987

  • Prandoni P, Lensing AWA, De Toni R, Cogo A, Canova G, et al. Standard heparin and a low molecular weight heparin (CY 216) do not affect fibrinolysis in healthy volunteers. Abstract 1594. Thrombosis and Haemostasis 62: 508, 1989

    Google Scholar 

  • Racanelli A, Silber I, Fareed J. Comparative time course of pharmacodynamic activity of low molecular weight heparin and heparin after protamine neutralization. Seminars in Thrombosis and Hemostasis 15: 386–389, 1989

    PubMed  CAS  Google Scholar 

  • Rao AK, White GC, Sherman L, Colman R, Lan G, et al. Low incidence of thrombocytopenia with porcine mucosal heparin. Archives of Internal Medicine 149: 1285–1288, 1989

    PubMed  CAS  Google Scholar 

  • Reis GJ, Boucher TM, Sipperly ME, Silverman DI, McCabe CH, et al. Randomised trial of fish oil for prevention of restenosis after coronary angioplasty. Lancet 2: 177–181, 1989

    PubMed  CAS  Google Scholar 

  • Robinson HC, Honer AA, Höök M, Ogren S, Lindahl U. A proteoglycan form of heparin and its degradation to single chain molecules. Journal of Biological Chemistry 253: 6687–6693, 1978

    PubMed  CAS  Google Scholar 

  • Rosenberg RD, Damus PS. The purification and mechanism of action of human antithrombin-heparin cofactor. Journal of Biological Chemistry 248: 6490–6505, 1973

    PubMed  CAS  Google Scholar 

  • Rosenberg RD, Reilly C, Fritze L. Atherogenic regulation by heparin-like molecules. Annals of the New York Academy of Sciences 454: 270–279, 1985

    PubMed  CAS  Google Scholar 

  • Roussel B, Dieval J, Moriniere P, Bayrou B, Delobel J. Clinical and biological study of 3 dosages, of a low molecular weight heparin. Abstract 863. Thrombosis and Haemostasis 62: 269, 1989

    Google Scholar 

  • Saba HI, Saba SR, Morelli GA. Antiheparin activity in human cells. Thrombosis Research 42: 355–362, 1986

    PubMed  CAS  Google Scholar 

  • Sache E, Maillard M, Malazzi P, Bertrand H. Partially N-desulfated heparin as a non-anticoagulant heparin: some physico-chemical and biological properties. Thrombosis Research 55: 247–258, 1989

    PubMed  CAS  Google Scholar 

  • Salzman E. Low-molecular-weight heparin: is small beautiful? New England Journal of Medicine 315: 857–859, 1986

    Google Scholar 

  • Salzman EW, Deykin D, Shapiro RM, Rosenberg RD. Management of heparin therapy: controlled prospective trial. New England Journal of Medicine 191: 1046–1050, 1975

    Google Scholar 

  • Salzman EW, Deykin D, Shapiro RM, Rosenberg RD. Management of heparin therapy: controlled prospective trial. New England Journal of Medicine 191: 1046–1050, 1975

    Google Scholar 

  • Salzman EW, Hirsh J. Prevention of venous thromboembolism. In Colman RW et al. (Eds) Haemostasis and thrombosis, 2nd ed., pp. 1252–1265, J.J. Lippincott, Philadelphia, 1987

    Google Scholar 

  • Salzman EW, Rosenberg RD, Smith MH, Lindon JN, Favreau L. Effect of heparin and heparin fractions on platelet aggregation. Journal of Clinical Investigation 65: 64–73, 1980

    PubMed  CAS  Google Scholar 

  • Samama M, Bernard P, Bonnardot JP, Combe-Tamzalis S, Lanson Y, et al. Low molecular weight heparin compared with unfractionated heparin in prevention of postoperative thrombosis. British Journal of Surgery 75: 128–131, 1988 Clinical Investigation 77: 887–893, 1986

    PubMed  CAS  Google Scholar 

  • Sasahara AA, Koppenhagen K, Häring R, Welzel D, Wolf H. Low molecular weight heparin plus dihydroergotamine for prophylaxis of postoperative deep vein thrombosis. British Journal of Surgery 73: 697–700, 1986

    PubMed  CAS  Google Scholar 

  • Scati (Studio Sulla Calciparina nell’ Angina e nella Trombosi Ventricolare nell’ Infarto) Group. Randomised controlled trial of subcutaneous calcium-heparin in acute myocardial infarction. Lancet 2: 182–186, 1989

    Google Scholar 

  • Schlegel N, Macher MA, Maisin A, Hurtaud MF, Loirat C. The influence of erythropoietin therapy on low molecular weight heparin (CY216): requirement for pediatric hemodialysis. Abstract no. 1645. Thrombosis and Haemostasis 62: 522, 1989

    Google Scholar 

  • Schmitz-Huebner U, Bunte H, Freise G, Reers B. Clinical efficacy of low molecular weight heparin in postoperative thrombosis prophylaxis. Klinische Wochenschrift 62: 349–353, 1984

    PubMed  CAS  Google Scholar 

  • Schrader J, Kandt M, Armstrong VW, Stibbe W, Köstering H, et al. Low molecular weight vs standard heparin in haemodialysis patients: results of long-term studies. Kidney International, in press, 1990

  • Schrader J, Kandt M, Zürcher C, Köstering H, Scheler F. Comparison of unfractionated heparin and low molecular weight heparin during long-term use in chronic haemodialysis and haemofiltration patients. Haemostasis (Suppl. 2): 48–58, 1986

  • Schrader J, Rieger J, Müschen H, Stibbe W, Köstering H, et al. Anwendung von niedermolekularem Heparin bei Hämodialy-sepatienten. Klinische Wochenschrift 63: 49–55, 1985

    PubMed  CAS  Google Scholar 

  • Schwartz L, Bourassa MG, Lesperance J, et al. Aspirin and dipyridamole in the prevention of restenosis after percutaneous transluminal coronary angioplasty. New England Journal of Medicine 318: 1714–1719, 1988

    PubMed  CAS  Google Scholar 

  • Schwartz L, Lesperanze J, Bourassa MG, Eastwood C, Kazim F, et al. The role of antiplatelet agents in modifying the extent of restenosis following percutaneous transluminal coronary angioplasia. American Heart Journal 119: 232–236, 1990

    PubMed  CAS  Google Scholar 

  • Seglias J, Gruber UF. Dosage in low-dose heparin prophylaxis. Haemostasis 8: 361–372, 1979

    PubMed  CAS  Google Scholar 

  • Sherman RA, Ruddy MC. Suppression of aldosterone production by low-dose heparin. American Journal of Nephrology 6: 165–168, 1986

    PubMed  CAS  Google Scholar 

  • Simon P, Kindermans A, Kemp JP, Postel M. Efficacité et tolerance de la fraxiparine dans la prévention des thromboses veineuses profondes lors des arthroplasties totales de hanche reglées: essai prospectif, multicentrique. Journal de Chirurgie 127: 252–257, 1990

    PubMed  CAS  Google Scholar 

  • Simon TL, Hyers TIM, Gaston JP, Harker LA. Heparin pharmacokinetics: increased requirements in pulmonary embolism. British Journal of Haematology 39: 111–120, 1978

    PubMed  CAS  Google Scholar 

  • Sobel M, Adelman B. Characterization of platelet binding of heparins and other glycosaminoglycans. Thrombosis Research 50: 815–826, 1988

    PubMed  CAS  Google Scholar 

  • Stehle G, Giese C, Dempfle CE, Heene DL, Harenberg J. Subcutaneous administration of two high dose regimens of a low molecular weight heparin for 8 days twice daily. Abstract 1617. Thrombosis and Haemostasis 62: 514, 1989

    Google Scholar 

  • Szekely P. Systemic embolism and anticoagulant prophylaxis in rheumatic heart disease. British Medical Journal 1: 1209–1212, 1964

    PubMed  CAS  Google Scholar 

  • Tansey MJB, Opie LH. Relation between plasma free fatty acids and arrhythmias within the first twelve hours of acute myocardial infarction. Lancet 1: 419–422, 1983

    Google Scholar 

  • Teien AN. Heparin elimination in patients with liver cirrhosis. Thrombosis and Haemostasis 38: 701–708, 1977

    PubMed  CAS  Google Scholar 

  • Teitel JM, Rosenberg RD. Protection of factor Xa from neutralization by the heparin-antithrombin complex. Journal of Clinical Investigation 71: 1383–1391, 1983

    PubMed  CAS  Google Scholar 

  • Thomas DP. Treatment of pulmonary embolíc disease. New England Journal of Medicine 273: 885–889, 1965

    PubMed  CAS  Google Scholar 

  • Thomas DP. Biologicals, standards and heparin. Thrombosis and Haemostasis 62: 648–650, 1989

    PubMed  CAS  Google Scholar 

  • Thomas DP, Curtis AD, Barrowcliffe TW. A collaborative study designed to establish the 4th International Standard for heparin. Thrombosis and Haemostasis 52: 148–153, 1984

    PubMed  CAS  Google Scholar 

  • Thomas DP, Merton RE. A low molecular weight heparin compared with unfractionated heparin. Thrombosis Research 28: 343–345, 1982

    PubMed  CAS  Google Scholar 

  • Thomas DP, Merton RE, Barrowcliffe TW, Thunberg L, Lindahl U. Effects of heparin oligosaccharides with high affinity for antithrombin II in experimental venous thrombosis. Thrombosis and Haemostasis 47: 244–248, 1982

    PubMed  CAS  Google Scholar 

  • Thomas DP, Merton RE, Gray E, Barrowcliffe TW. The relative antithrombotic effectiveness of heparin, a low molecular weight heparin, and a penta-saccharide fragment in an animal model. Thrombosis and Haemostasis 61: 204–207, 1989

    PubMed  CAS  Google Scholar 

  • Thomas DP, Merton RE, Lewis WE, Barrowcliffe TW. Studies in man and experimental animals of a low molecular weight heparin fraction. Thrombosis and Haemostasis 45: 214–218, 1981

    PubMed  CAS  Google Scholar 

  • Thomas DP, Sagar S, Stamatakis JD, Maffei FHA, Erdi A, et al. Plasma levels after administration of calcium and sodium salts of heparin. Thrombosis Research 9: 241–248, 1976

    PubMed  CAS  Google Scholar 

  • Thornton MA, Gruentzig AR, Hollman J, King III SB, Douglas JS. Coumadin and aspirin in prevention of recurrence after transluminal coronary angioplasty: a randomized study. Circulation 69: 721–727, 1984

    PubMed  CAS  Google Scholar 

  • Thurnberg L, Backström G, Lindahl U. Further characterization of the antithrombin-binding sequence of heparin. Carbohydrate Research 100: 393–410, 1982

    Google Scholar 

  • Tiefenbrunn AJ, Sobel BE. The impact of coronary thrombolysis on myocardial infarction. Fibrinolysis 3: 1–15, 1989

    Google Scholar 

  • Tiula E, Kaaja R. Low molecular weight heparin (LMWH) in hemofiltration (HF): in vitro study. Abstract no. 1629. Thrombosis and Haemostasis 62: 517, 1989

    Google Scholar 

  • Tollefsen DM, Blank MK. Detection of a new heparin-dependent inhibitor of thrombin in human plasma. Journal of Clinical Investigation 68: 589–596, 1981

    PubMed  CAS  Google Scholar 

  • Törngren S. Prophylaxis of postoperative deep venous thrombosis: studies on low-dose heparin, blood coagulation, infection as risk factor and the half-life of fibrinogen in patients after gastrointestinal surgery. Acta Chirurgica Scandinavica 154: (Suppl. 495), 1979

    Google Scholar 

  • Toulon P, Vitoux JF, Capron L, Roncato M, Fiessinger JN, et al. Heparin cofactor II in patients with deep vein thrombosis under heparin and oral anticoagulant therapy. Thrombosis Research 49: 497–500,. 1988

    PubMed  CAS  Google Scholar 

  • Turpie AGG, Levine MN, Hirsh J, Carter CJ, Jay RM, et al. A randomized controlled trial of a low-molecular-weight heparin (Enoxaparine) to prevent deep vein thrombosis in patients undergoing elective hip surgery. New England Journal of Medicine 315: 925–929, 1986

    PubMed  CAS  Google Scholar 

  • Turpie AGG, Robinson JG, Doyle DJ, Mulji AS, Mishkel GJ, et al. Comparison of high-dose with low-dose subcutaneous heparin to prevent left ventricular mural thrombosis in patients with acute transmural anterior myocardial infarction. New England Journal of Medicine 320: 352–357, 1989

    PubMed  CAS  Google Scholar 

  • Vender JS, Matthew EB, Silverman IM, Konowitz H, Dau PC. Heparin-associated thrombocytopenia: alternative managements. Anesthesia and Analgesia 65: 520–522, 1986

    PubMed  CAS  Google Scholar 

  • Visser CA, Kan G, Meltzer RS, Dunning AJ, Roelandt J. Embolie potential of left ventricular thrombus after myocardial infarction: a two-dimensional echocardiographic study of 119 patients. Journal of the American College of Cardiology 5: 1276–1280, 1985

    PubMed  CAS  Google Scholar 

  • Walenga JM, Bara L, Petitou M, Samama M, Fareed J, et al. The inhibition of the generation of thrombin and the antithrombotic effect of a pentasaccharide with sole anti-factor Xa activity. Thrombosis Research 51: 23–33, 1988a

    PubMed  CAS  Google Scholar 

  • Walenga JM, Petitou M, Lormeau JC, Samama M, Fareed J, et al. Antithrombotic activity of a synthetic heparin pentasaccharide in a rabbit stasis thrombosis model using different thrombogenic challengers. Thrombosis Research 46: 187–198, 1987

    PubMed  CAS  Google Scholar 

  • Walenga JM, Petitou M, Samama M, Fareed J, Choay J. Importance of a 3-O-sulfate group in a heparin pentasaccharide for antithrombotic activity. Thrombosis Research 52: 553–563, 1988b

    PubMed  CAS  Google Scholar 

  • Walker FJ, Esmon CT. Interactions between heparin and factor Xa, inhibition of prothrombin activation. Biochimica et Bio-physica Acta 585: 405–415, 1979

    CAS  Google Scholar 

  • Walker MG, Shaw JW, Thomson GLL, Cumming JGR, Thomas ML. Subcutaneous calcium heparin versus intravenous sodium heparin in treatment of established acute deep vein thrombosis of the legs: a multicentre prospective randomised trial. British Medical Journal 294: 1189–1192, 1987

    PubMed  CAS  Google Scholar 

  • Wang RYC, Lee PK, Chow JSF, Chen WWC. Efficacy of low-dose, subcutaneously administered heparin in treatment of pregnant women with artificial heart valves. Medical Journal of Australia 2: 126–128, 1983

    PubMed  CAS  Google Scholar 

  • Waugh DF, Fitzgerald MA. Quantitative aspects of antithrombin and heparin in plasma. American Journal of Physiology 184: 627–639, 1956

    PubMed  CAS  Google Scholar 

  • Weichert W, Breddin HK. Effect of low-molecular-weight heparins on laser-induced thrombus formation in rat mesenteric vessels. Haemostasis 18 (Suppl. 3): 55–63, 1988

    PubMed  CAS  Google Scholar 

  • Weinreich DJ, Burke JF, Pauletto FJ. Left ventricular mural thrombi complicating acute myocardial infarction: long-term follow-up with serial echocardiography. Annals of Internal Medicine 100: 789–794, 1984

    PubMed  CAS  Google Scholar 

  • Welzel D, Stringer MD, Hedges AR, Parker CJ, Kakkar VV, et al. Fixed combinations of low molecular weight or unfractionated heparin plus dihydroergotamine in the prevention of postoperative deep vein thrombosis. Abstract 1650. Thrombosis and Haemostasis 62: 523, 1989

    Google Scholar 

  • Wessler S. Small doses of heparin and a new concept of hypercoagulability. Thrombosis et Diathesis Haemorrhagia 33: 81–86, 1974

    Google Scholar 

  • Westwick J, Scully MF, Poll C, Kakkar VV. Comparison of the effects of low molecular weight heparin and unfractionated heparin on activation of human platelets in vitro. Thrombosis Research 42: 435–447, 1986

    PubMed  CAS  Google Scholar 

  • White CW, Knudson M, Schmidt D, et al. Neither ticlopidine or aspirin-dipyridamole prevents restenosis post PTCA: results from a randomized placebo-controlled multicenter trial. Abstract. Circulation 76 (Suppl. IV): 213, 1987

    Google Scholar 

  • Whitworth HB, Roubin GS, Hollman J, et al. Effect of nifedipine on recurrent stenosis after percutaneous transluminal coronary angioplasty. Journal of the American College of Cardiology 8: 1271–1276, 1986

    PubMed  CAS  Google Scholar 

  • Wolf H, Welzel D, Kaiser H, Majer M, Schäfer D, et al. Bewertung der perioperativen Thromboembolic-Prophylaxe mit niedermolekularem Heparin und Dihydroergotamin. Arzneimittel-Forschung/Drug Research 38: 1516–1519, 1988

    CAS  Google Scholar 

  • Yin ET, Wessler S, Stoll PJ. Biological properties of the naturally occurring antithrombotic and anticoagulant effect of low molecular weight heparin. Thrombosis Research 21: 169–174, 1981

    Google Scholar 

  • Zucker MG. Heparin and platelet function. Federation Proceedings 36: 47–49, 1977

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verstraete, M. Pharmacotherapeutic Aspects of Unfractionated and Low Molecular Weight Heparins. Drugs 40, 498–530 (1990). https://doi.org/10.2165/00003495-199040040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199040040-00003

Keywords

Navigation