Skip to main content
Log in

Fluoroquinolone Antibiotics

Microbiology, Pharmacokinetics and Clinical Use

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

The newer fluoroquinolones are a major advance in antimicrobial chemotherapy. They inhibit the supercoiling activity of the DNA gyrase enzyme, thus exerting their antibacterial action on DNA and RNA synthesis, resulting in a biphasic response and killing of susceptible organisms. The newer fluoroquinolones have an extended antimicrobial spectrum compared to their older congeners, and are highly active against most Gram-negative pathogens including the Enterobacteriaceae and Pseudomonas aeruginosa. While Staphylococcus aureus and coagulase-negative staphylococci are usually susceptible to the fluoroquinolones, streptococci are generally more resistant and enterococci are resistant.

All of the newer fluoroquinolones may be administered orally and most of them have been administered parenterally. They are widely distributed in the body, attaining therapeutic concentrations in most tissues. All of the fluoroquinolones have long half-lives and may be administered once or twice daily.

The fluoroquinolones have proved effective in many infections, including uncomplicated or complicated urinary tract infections, respiratory tract infections, gonorrhoea, bacterial gastroenteritis, and soft tissue infections due to Gram-negative organisms. In general, success has been notable in the management of Gram-negative infections but less so with Gram-positive infections. Resistance has occurred and is proving a problem with P. aeruginosa in some cystic fibrosis patients, but as yet no plasmid-mediated resistance has developed. Cross-resistance occurs between the quinolones but only rarely with other classes of antibacterial drugs.

The fluoroquinolones have an excellent safety record and their adverse effects, which include hypersensitivity reactions, dizziness, headache, gastrointestinal disturbance and minor haematological abnormalities are usually mild and transient. However, the fluoroquinolones have been found to damage juvenile weight-bearing joints in animals and are therefore only to be used with caution in children; transient arthralgia has been reported in a cystic fibrotic teenager on long term ciprofloxacin therapy. All of the fluoroquinolones except ofloxacin are associated with a variable increase in the serum concentration of theophylline, warfarin and caffeine.

Thus, the fluoroquinolones are an attractive option in the management of many infections. Cost and possible resistance, however, should counsel caution in their use, and may limit them to situations where a cheaper antimicrobial of equivalent efficacy is not available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abiko T, Ishihama A, Ogawa N, Uchida H, Murayama S, et al. Phase I study on AM-715. Chemotherapy 29: 136–145, 1981

    CAS  Google Scholar 

  • Adhami ZN, Wise R, Weston D, Crump B. The pharmacokinetics and tissue penetration of norfloxacin. Journal of Antimicrobial Chemotherapy 13: 87–92, 1984

    PubMed  CAS  Google Scholar 

  • Alfaham M, Holt ME, Goodchild MC. Arthropathy in a patient with cystic fibrosis taking ciprofloxacin. British Medical Journal 295: 699, 1987

    PubMed  CAS  Google Scholar 

  • Arcieri G, August R, Becker N, Doyle C, Griffith E, et al. Clinical experience with ciprofloxacin in the USA. European Journal of Clinical Microbiology 5: 220–225, 1986

    PubMed  CAS  Google Scholar 

  • Auckenthaler R, Michea-Hamzehpour M, Péchère JC. In-vitro activity of newer quinolones against aerobic bacteria. Journal of Antimicrobial Chemotherapy 17 (Suppl. B): 29–39, 1986

    PubMed  CAS  Google Scholar 

  • Aznar J, Caballero MC, Lozano MC, et al. Activities of new quinolone derivatives against genital pathogens. Antimicrobial Agents and Chemotherapy 27: 76–78, 1985

    PubMed  CAS  Google Scholar 

  • Aznar J, Prados R, Herrera A, Rodriguez-Pichardo A, Perea EJ. Single doses of ofloxacin in uncomplicated gonorrhoea. Drugs 34 (Suppl. 1) 107–110, 1987

    PubMed  Google Scholar 

  • Baba S. Clinical evaluation of enoxacin in the treatment of infections in the field of otorhinolaryngology. 4th Mediterranean Congress of Chemotherapy. Abstract no. 763, 1984

  • Ball P. Ciprofloxacin: an overview of adverse experiences. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 187–193, 1986a

    PubMed  Google Scholar 

  • Ball AP. Overview of clinical experience with ciprofloxacin. European Journal of Clinical Microbiology 5: 214–219, 1986b

    PubMed  CAS  Google Scholar 

  • Banerjee DK. Ciprofloxacin (4-quinolone) and Mycobacterium leprae. Leprosy Review 57: 159–162, 1986

    PubMed  CAS  Google Scholar 

  • Bariety J, Cunci R, Danan L, et al. Pharmacokinetics of the antibacterial pefloxacin in renal and hepatic disease. 4th Mediterranean Congress of Chemotherapy, Abstract no. 758, 1984

  • Barry AL, Jones RN. Cross-resistance among cinoxacin, ciprofloxacin, DJ-6783, enoxacin, nalidixic acid, norfloxacin and oxolinic acid after in vitro selection of resistant populations. Antimicrobial Agents and Chemotherapy 25: 775–777, 1984

    PubMed  CAS  Google Scholar 

  • Barry AL, Jones RN. In vitro activity of ciprofloxacin against Gram-positive cocci. American Journal of Medicine 82 (Suppl. 4A): 27–32, 1987

    PubMed  CAS  Google Scholar 

  • Bauernfeind A, Petermuller C. In vitro activity of ciprofloxacin, norfloxacin and nalidixic acid. European Journal of Clinical Microbiology 2: 111–115, 1983

    PubMed  CAS  Google Scholar 

  • Bauernfeind A, Ulmann U. In-vitro activity of enoxacin, ofloxacin, norfloxacin and nalidixic acid. Journal of Antimicrobial Chemotherapy 14 (Suppl. C): 33–37, 1984

    PubMed  Google Scholar 

  • Bayerdörffer E, Simon Th, Bästlein Ch, Ottenjann R, Kasper G. Bismuth/ofloxacin combination for duodenal ulcer. Lancet 2: 1407–1408, 1987

    Google Scholar 

  • Beermann D, Scholl H, Wingender W, Forster D, Beubler E, et al. Metabolism of ciprofloxacin in man. In Neu HC & Weuta H (Eds) Proceedings of the 1st International Ciprofloxacin Workshop, Amersterdam, Excerpta Medica, pp. 153–156, 1986

    Google Scholar 

  • Belli L, Castro JM, Casco R. Ciprofloxacin in the treatment of non complicated gonococcal urethritis. 14th International Congress of Chemotherapy, Kyoto, Abstract pp. 38–98, 1985

  • Bendali MJ. A review of urinary tract infection in the elderly. Journal of Antimicrobial Chemotherapy 13 (Suppl. B): 69–78, 1984

    Google Scholar 

  • Bergan T. Dose regimen of quinolone in reduced renal function. Quinolones Bulletin 2: 7–10, 1986

    Google Scholar 

  • Bergeron MG, Thabet M, uRoy R, et al. Norfloxacin penetration in human renal and prostatic tissue. Antimicrobial Agents and Chemotherapy 28: 349–350, 1985

    PubMed  CAS  Google Scholar 

  • Bischoff W. Vergleichende Untersuchung von enoxacin mit Amoxicillin bei der akuten unkomplizierten Zystitis der Frau. Infection 14 (Suppl. 3): S209–S210, 1986

    PubMed  Google Scholar 

  • Block JM, Walstad RA, Bjertnaes A, et al. Ofloxacin versus trimethoprim sulphamethoxazole in acute cystitis. Drugs 34 (Suppl. 1): 100–106, 1987

    PubMed  Google Scholar 

  • Boelaert J, Valcke Y, Schurgers M, Daneeis R, Rosseneu M, et al. The pharmacokinetics of ciprofloxacin in patients with impaired renal function. Journal of Antimicrobial Chemotherapy 16: 87–93, 1985

    PubMed  CAS  Google Scholar 

  • Boerema JBJ, Pauwels R, Scheepers J, Crombach W. Efficacy and safety of pefloxacin in the treatment of patients with complicated urinary tract infections. Journal of Antimicrobial Chemotherapy 17 (Suppl. B): 103–109, 1986

    PubMed  Google Scholar 

  • Bologna M, Vaggi L, Flammini D, et al. Norfloxacin in prostatitis: correlation between HPLC tissue concentrations and clinical results. Drugs under Experimental and Clinical Research 11: 95–100, 1985

    PubMed  CAS  Google Scholar 

  • Bologna M, Vaggi L, Forchetti CM, Martini E. Bactericidal intraprostatic concentrations of norfloxacin. Lancet 2: 280, 1983

    PubMed  CAS  Google Scholar 

  • Borner K, Lode H. Biotransformation von ausgewählten Gyrasehemmern. Infection 14 (Suppl. 1): 54–59, 1986

    Google Scholar 

  • Bosso JA, Black PG, Matsen JM. Ciprofloxacin versus tobramycin plus azlocillin in pulmonary exacerbations in adult patients with cystic fibrosis. American Journal of Medicine 82 (Suppl. 4A): 180–184, 1987

    PubMed  CAS  Google Scholar 

  • Brion N, Lessana A, Mosset F, et al. Penetration of pefloxacin in human heart valves. Journal of Antimicrobial Chemotherapy 17 (Suppl. B): 89–92, 1986

    PubMed  Google Scholar 

  • Brown EM, Morris R, Stephenson TP. The efficacy and safety of ciprofloxacin in the treatment of chronic Pseudomonas aeruginosa urinary tract infection. Journal of Antimicrobial Chemotherapy 18 (Suppl D): 123–127, 1986

    PubMed  Google Scholar 

  • Brumfitt W, Franklin I, Grady D, Hamilton-Miller JMT, Iliffe A. Changes in the pharmacokinetics of ciprofloxacin and fecal flora during administration of a 7-day course to human volunteers. Antimicrobial Agents and Chemotherapy 26: 757–761, 1984

    PubMed  CAS  Google Scholar 

  • Campoli-Richards DM, Monk JP, Price A, Benfield P, Todd PA, et al. Ciprofloxacin: A review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 35: 373–447, 1988

    PubMed  CAS  Google Scholar 

  • Carlier MB, Scorneaux B, Zeuebergh A, Tulkens PM. Uptake and subcellular distribution of 4-quinolones in phagocytes. 27th Interscience Conference on Antimicrobial Agents and Chemotherapy, New York, abstract no. 622, 1987

  • Chantot JF, Bryskier A. Antibacterial activity of ofloxacin and other 4-quinolone derivatives: in vitro and in-vivo comparison. Journal of Antimicrobial Chemotherapy 16: 475–484, 1985

    PubMed  CAS  Google Scholar 

  • Chapman ST, Speller DCE, Reeves DS. Resistance to ciprofloxacin. Lancet 2: 39, 1985

    PubMed  CAS  Google Scholar 

  • Chartrand SA, Scribner RK, Weber AH, Welch DF, Marks MI. In vitro activity of C1-919 (AT2266), an oral antipseudomonal compound. Antimicrobial Agents and Chemotherapy 23: 658–663, 1983

    PubMed  CAS  Google Scholar 

  • Cheng AF, Li MKW, Ling TKW, French GL. Emergence of ofloxacin resistant Citrobacter freundii and Pseudomonas maltophilia after ofloxacin therapy. Journal of Antimicrobial Chemotherapy 20: 283–285, 1987

    PubMed  CAS  Google Scholar 

  • Chin N-X, Neu HC. In vitro activity of enoxacin, a quinolone carboxylic acid, compared with those of norfloxacin, new β-lactams, aminoglycosides and trimethoprim. Antimicrobial Agents and Chemotherapy 24: 754–763, 1983

    PubMed  CAS  Google Scholar 

  • Chin N-X, Neu HC. Ciprofloxacin, a quinolone carboxylic acid compound active against aerobic and anaerobic bacteria. Antimicrobial Agents and Chemotherapy 25: 319–326, 1984

    PubMed  CAS  Google Scholar 

  • Clarke AM, Zemcov SJV, Campbell ME. In vitro activity of pefloxacin compared to enoxacin, norfloxacin, gentamicin and new beta-lactams. Journal of Antimicrobial Chemotherapy 15: 39–44, 1985

    PubMed  CAS  Google Scholar 

  • Cofsky RD, Dubouchet L, Landesman SH. Recovery of norfloxacin in feces after administration of a single oral dose to human volunteers. Antimicrobial Agents and Chemotherapy 26: 110–111, 1984

    PubMed  CAS  Google Scholar 

  • Collins CH, Uttley AHC. In-vitro susceptibility of mycobacteria to ciprofloxacin. Journal of Antimicrobial Chemotherapy 16: 575–580, 1985

    PubMed  CAS  Google Scholar 

  • Couraud L, Fourtillan JB, Saux MC, Bryskier A, Du Laurier MV. Diffusion of ofloxacin into human lung tissue. Drugs 34 (Suppl. 1): 37–38, 1987

    PubMed  CAS  Google Scholar 

  • Crider SR, Colby SD, Miller LK, Harrison WO, Kerbs SBT, et al. Treatment of penicillin-resistant gonorrhoea with oral norfloxacin. New England Journal of Medicine 311: 137–139, 1984

    PubMed  CAS  Google Scholar 

  • Crump B, Wise R, Dent J. The pharmacokinetics and tissue penetration of ciprofloxacin. Antimicrobial Agents and Chemotherapy 24: 784–786, 1983

    PubMed  CAS  Google Scholar 

  • Crumplin GC, Odell M. Development of resistance to ofloxacin. Drugs 34 (Suppl. 1): 1–8, 1987

    PubMed  CAS  Google Scholar 

  • Crumplin GC, Smith JT. Nalidixic acid: an antibacterial paradox. Antimicrobial Agents and Chemotherapy 8: 251–261, 1975

    PubMed  CAS  Google Scholar 

  • Crumplin GC, Smith JT. Nalidixic acid and bacterial chromosome replication. Nature 260: 643–654, 1976

    PubMed  CAS  Google Scholar 

  • Crumplin GC, Smith JT. The effect of R-factor plasmids on host-cell respones to nalidixic acid. 1. Increased susceptibility of nalidixic acid-sensitive hosts. Journal of Antimicrobial Chemotherapy 7: 379–388, 1981

    PubMed  CAS  Google Scholar 

  • Dagrosa EE, Malerczyk V, Hajdu P, et al. Pharmacokinetics of ofloxacin in healthy subjects. 4th Mediterranean Congress of Chemotherapy, Abstract no. 580, 1984

  • Davey PG, Barza M. The inoculum effect with Gram-negative bacteria in vitro and in vivo. Journal of Antimicrobial Chemotherapy 20: 639–644, 1987

    PubMed  CAS  Google Scholar 

  • Davies BI, Maesen FPV, Bauer C. Ciprofloxacin in the treatment of acute exacerbations of chronic bronchitis. European Journal of Clinical Microbiology 5: 226–231, 1986

    PubMed  CAS  Google Scholar 

  • Davies BI, Maesen FPV, Geraedts WH, Bauer C. Penetration of ofloxacin from blood to sputum. Drugs 34 (Suppl. 1): 26–32, 1987

    PubMed  CAS  Google Scholar 

  • Davies BI, Maesen FPV, Teengs JP. Serum and sputum concentrations of enoxacin after single oral dosing in a clinical and bacteriological study. Journal of Antimicrobial Chemotherapy 14 (Suppl. C): 83–89, 1984

    PubMed  Google Scholar 

  • Dekker AW, Rozenberg-Arska M, Verhoef J. Infection prophylaxis in acute leukemia: a comparison of ciprofloxacin with trimethoprim-sulphamethoxazole and colistin. Annals of Internal Medicine 106: 7–12, 1987

    PubMed  CAS  Google Scholar 

  • Dellamonica P, Bernard E, Etesse H, Garraffo R. The diffusion of pefloxacin into bone and the treatment of osteomyelitis. Journal of Antimicrobial Chemotherapy 17 (Suppl. B): 93–102, 1986

    PubMed  Google Scholar 

  • Desplaces N, Gutmann L, Carlet J, Guibert J, Acar JF. The new quinolones and their combinations with other agents for therapy of severe infections. Journal of Antimicrobial Chemotherapy 17 (Suppl. A): 25–39, 1986

    PubMed  CAS  Google Scholar 

  • Dibble JB, Acomb C, Campbell L, White LO, Brownjohn AM. Dosage of intravenous ciprofloxacin. Journal of Antimicrobial Chemotherapy 20: 454–456, 1987

    PubMed  CAS  Google Scholar 

  • Diridl G, Pichler H, Wolf D. Treatment of chronic salmonella carriers with ciprofloxacin. European Journal of Clinical Microbiology 5: 260–261, 1986

    PubMed  CAS  Google Scholar 

  • Diver JM, Wise R. Morphological and biochemical changes in Escherichia coli after exposure to ciprofloxacin. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 31–41, 1986

    PubMed  CAS  Google Scholar 

  • Dörfler A, Schulz W, Burkhardt F, Zichner M. Pharmacokinetics of ofloxacin in patients on haemodialysis treatment. Drugs 34 (Suppl. 1): 62–70, 1987

    PubMed  Google Scholar 

  • Dow J, Chazal J, Frydman AM, et al. Transfer kinetics of pefloxacin into cerebro-spinal fluid after one hour iv infusion of 400mg in man. Journal of Antimicrobial Chemotherapy 17 (Suppl. B): 81–87, 1986

    PubMed  Google Scholar 

  • Drusano GL, Plaisance KI, Forrest A, Standiford HC. Dose ranging study and constant infusion evaluation of ciprofloxacin. Antimicrobial Agents and Chemotherapy 30: 440–443, 1986

    PubMed  CAS  Google Scholar 

  • Drusano GL, Weir M, Forrest A, et al. Pharmacokinetics of intravenously administered ciprofloxacin in patients with various degrees of renal function. Antimicrobial Agents and Chemotherapy 31: 860–864, 1987

    PubMed  CAS  Google Scholar 

  • Duncan IBR, Skulnick M, Marshall PW. In vitro activity of enoxacin against aminoglycoside-resistant Gram-negative bacilli and other clinical isolates. Journal of Antimicrobial Chemotherapy 14 (Suppl. C): 1–6, 1984

    PubMed  Google Scholar 

  • Dupont HL, Corrado ML, Subbaj J. Use of norfloxacin in the treatment of acute diarrheal disease. American Journal of Medicine 82 (Suppl. 6B): 79–83, 1987

    PubMed  CAS  Google Scholar 

  • Easmon CSF, Crane JP, Blowers A. Effect of ciprofloxacin on intracellular organisms: in-vitro and in-vivo studies. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 43–48, 1986

    PubMed  CAS  Google Scholar 

  • Eliopoulos GM, Gardella A, Moellering RC. In vitro activity of ciprofloxacin, a new carboxyquinoline antimicrobial agent. Antimicrobial Agents and Chemotherapy 25: 331–335, 1984

    PubMed  CAS  Google Scholar 

  • Eykyn SJ, Williams H. Treatment of multiresistant Salmonella typhi with oral ciprofloxacin. Lancet 2: 1407–1408, 1987

    PubMed  CAS  Google Scholar 

  • Fallow RJ, Brown WM. In vitro sensitivity of legionellas, meningococci and mycoplasmas to ciprofloxacin and enoxacin. Journal of Antimicrobial Chemotherapy 15: 787–789, 1985

    Google Scholar 

  • Fass RJ. In vitro activity of ciprofloxacin (Bay 09867). Antimicrobial Agents and Chemotherapy 24: 568–574, 1983

    PubMed  CAS  Google Scholar 

  • Fass RJ. Treatment of skin and soft tissue infections with oral ciprofloxacin. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 153–157, 1986

    PubMed  Google Scholar 

  • Fass RJ. Adverse reactions associated with quinolones. Quinolones Bulletin 3: 5–6, 1987

    Google Scholar 

  • Felmingham D, O’Hare MD, Robbins MJ, et. al. Comparative in vitro studies with 4-quinolone antimicrobials. Drugs Under Experimental Clinical Research 11: 317–329, 1985

    CAS  Google Scholar 

  • Fenlon CH, Cynamon MH. Comparative in vitro activities of ciprofloxacin and other 4-quinolones against Mycobacterium tuberculosis and Mycobacterium intracellulare. Antimicrobial Agents and Chemotherapy 29: 386–388, 1986

    PubMed  CAS  Google Scholar 

  • Fillastre JP, Hannedouche TH, LeRoy A, Humbert G. Pharmacokinetics of norfloxacin in renal failure. Journal of Antimicrobial Chemotherapy 14: 439, 1984

    PubMed  CAS  Google Scholar 

  • Fong IW, Ledbetter WH, Vandenbroucke AC, Simbul M, Rahm V. Ciprofloxacin concentrations in bone and muscle after oral dosing. Antimicrobial Agents and Chemotherapy 29: 405–408, 1986

    PubMed  CAS  Google Scholar 

  • Fong IW, Vandenbroucke A, Simbul M. Penetration of enoxacin into bronchial secretions. Antimicrobial Agents and Chemotherapy 31: 748–751, 1987

    PubMed  CAS  Google Scholar 

  • Frydman AM, Le Roux Y, Lefebvre MA, Djebbar F, Fourtillan JB, et al. Pharmacokinetics of pefloxacin after repeated intravenous and oral administration (400mg bid) in young healthy volunteers. Journal of Antimicrobial Chemotherapy 17 (Suppl. B): 65–69, 1986

    PubMed  CAS  Google Scholar 

  • Gaillot J, Frydman A, Le Roux Y, Fourtillan JR, Lefebvre MA, et al. Pharmacokinetics of pefloxacin in man during a repeated treatment with IV infusion. Abstracts from 13th International Congress on Chemotherapy PS 4. 6/4-5, 1983

  • Gasser TC, Ebert SC, Graversen PH, Madsen PO. Ciprofloxacin pharmacokinetics in patients with normal and impaired renal function. Antimicrobial Agents and Chemotherapy 31: 709–712, 1987b

    PubMed  CAS  Google Scholar 

  • Gasser TC, Graversen PH, Madsen PO. Treatment of complicated urinary tract infections with ciprofloxacin. American Journal of Medicine 82 (Suppl. 4A): 278–279, 1987b

    Google Scholar 

  • Gay JD, Deyoung DR, Roberts GD. In vitro activities of norfloxacin and ciprofloxacin against Mycobacterium tuberculosis, M. avium complex, M. chelonei, M. fortuitum, and M. kansasii. Antimicrobial Agents and Chemotherapy 26: 94–96, 1984

    PubMed  CAS  Google Scholar 

  • Gellert M, Mizuuchi K, O’Dea HM, Itoh T, Tomizawa J-I. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proceedings of the National Academy of Sciences USA 74: 4772–4776, 1977

    CAS  Google Scholar 

  • Geliert M, Mizuuchi K, O’Dea MH, Nash HA. DNA gyrase: an enzyme that introduces superhelical turns into DNA. Proceedings of the National Academy of Sciences USA 73: 3872–3876, 1976

    Google Scholar 

  • Giamarellou H, Daphnis E, Galanakis N, Dendrinos C, Pretrikkos GT, et al. Ciprofloxacin in the treatment of one hundred Gram-negative infections, including Pseudomonas aeruginosa. Proceedings of the 14th International Congress on Chemotherapy, Kyoto, WS-6-8, 1985

  • Giamarellou H, Tsagarakis J. Efficacy and tolerance of oral ofloxacin in treating various infections. Drugs 34 (Suppl. 1): 119–123, 1987

    PubMed  Google Scholar 

  • Gilbert DN, Tice AD, Marsh PK, Craven PC, Preheim LC. Oral ciprofloxacin therapy for chronic contiguous osteomyelitis caused by aerobic Gram-negative bacilli. American Journal of Medicine 82 (Suppl. 4A): 254–258, 1987

    PubMed  CAS  Google Scholar 

  • Gillespie SH, McEniry DW, Felmingham D. In-vitro susceptibility of Pseudomonas pseudomallei to DNA gyrase inhibitors. Journal of Antimicrobial Chemotherapy 20: 612–614, 1987

    PubMed  CAS  Google Scholar 

  • Gleadhill IC, Ferguson WP, Lowry RC. Efficacy and safety of ciprofloxacin in patients with respiratory infections in comparison with amoxycillin. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 133–138, 1986

    PubMed  Google Scholar 

  • Gobernado M, Cantón E, Santos M. In vitro activity of ciprofloxacin against Brucella melitensis. European Journal of Clinical Microbiology 3: 371, 1984

    PubMed  CAS  Google Scholar 

  • Goldstein EJ, Citron DM. Comparative activity of the quinolones against anaerobic bacteria isolated at community hospitals. Antimicrobial Agents and Chemotherapy 17: 657–659, 1985

    Google Scholar 

  • Goldstein EJ, Citron DM, Vagvolgyi AE, Gombert ME. Susceptibility of Eikenella corrodens to newer and older quinolones. Antimicrobial Agents and Chemotherapy 30: 172–173, 1986

    PubMed  CAS  Google Scholar 

  • Gonzalez MA, Uribe F, Moisen SD, Fuster AP, Selen A, et al. Multiple dose pharmacokinetics and safety of ciprofloxacin in normal volunteers. Antimicrobial Agents and Chemotherapy 26: 741–744, 1984

    PubMed  CAS  Google Scholar 

  • Gonzalez MA, Moranchel AH, Duran J, et al. Multiple-dose pharmacokinetics of ciprofloxacin administered intravenously to normal volunteers. Antimicrobial Agents and Chemotherapy 28: 235–239, 1985

    PubMed  CAS  Google Scholar 

  • Goodman LJ, Fliegelman RM, Trenholme GM, Kaplan RL. Comparative in vitro activity of ciprofloxacin against Campylobacter spp. and other bacterial enteric pathogens. Antimicrobial Agents and Chemotherapy 25: 504–506, 1984

    PubMed  CAS  Google Scholar 

  • Goossens H, De Mol P, Coignau H, et al. Comparative in vitro activities of aztreonam, ciprofloxacin, norfloxacin, ofloxacin, HR 810 (a new cephalosporin), RU 28965 (a new macrolide) and other agents against enteropathogens. Antimicrobial Agents and Chemotherapy 27: 388–392, 1985

    PubMed  CAS  Google Scholar 

  • Grassi C, Grassi GG, Mangiarotti P. Clinical efficacy of ofloxacin in lower respiratory tract infections: a multicentre study. Drugs 34 (Suppl. 1): 80–82, 1987

    PubMed  Google Scholar 

  • Greenwood D, Laverick A. Activities of newer quinolones against Legionella group organisms. Lancet 2: 279–280, 1983

    PubMed  CAS  Google Scholar 

  • Guimaraes MA, Noone P. The comparative in-vitro activity of norfloxacin, ciprofloxacin, enoxacin and nalidixic acid against 423 strains of Gram-negative rods and staphylococci isolated from infected hospitalised patients. Journal of Antimicrobial Chemotherapy 17: 63–67, 1986

    PubMed  CAS  Google Scholar 

  • Haase DA, Harding GKM, Thomson MJ, et al. Comparative trial of norfloxacin and trimethoprim-sulphamethoxazole in the treatment of women with localised acute, symptomatic urinary tract infections and antimicrobial effect on periurethral and fecal microflora. Antimicrobial Agents and Chemotherapy 26: 481–484, 1984

    PubMed  CAS  Google Scholar 

  • Harazim H, Wimmer J, Mittermayer HP. An open randomised comparison of ofloxacin and doxycycline in lower respiratory tract infections. Drugs 34 (Suppl. 1): 71–73, 1987

    PubMed  Google Scholar 

  • Havlichek D, Pohlod D, Saravolatz L. Comparison of ciprofloxacin and rifampicin in experimental Legionella pneumophila pneumonia. Journal of Antimicrobial Chemotherapy 20: 875–881, 1987

    PubMed  CAS  Google Scholar 

  • Hawkey PM, Hawkey CA. Comparative in-vitro activity of quinolone carboxylic acids against Proteeae. Journal of Antimicrobial Chemotherapy 14: 485–489, 1984

    PubMed  CAS  Google Scholar 

  • Henry NK, Schultz HJ, Grubbs NC, Muller SM, Ilstrup DM, et al. Comparison of ciprofloxacin and co-trimoxazole in the treatment of uncomplicated urinary tract infection in women. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 103–106, 1986

    PubMed  Google Scholar 

  • Henwood JM, Monk JP. Enoxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 36, in press, 1988

  • Hessen FWA, Muytjens L. In vitro activities of ciprofloxacin, norfloxacin, pipemidic acid, enoxacin, and nalidixic acid against Chlamydia trachomatis. Antimicrobial Agents and Chemotherapy 25: 123–124, 1984

    Google Scholar 

  • Hessen MT, Ingerman MJ, Kaufman DH, et al. Clinical efficacy of ciprofloxacin therapy for Gram-negative bacillary osteomyelitis. American Journal of Medicine 82 (Suppl. 4A): 262–265, 1987

    PubMed  CAS  Google Scholar 

  • Higgins NP, Peebles CL, Sugino A, Cozzarelli NR. Purification of subunits of Escherichia coli DNA gyrase and reconstitution of enzymatic activity. Proceedings of the National Academy of Sciences USA 75: 1773–1777, 1978

    CAS  Google Scholar 

  • Hodson ME, Roberts CM, Butland RJA, Smith MJ, Balten JC. Oral ciprofloxacin compared with conventional intravenous treatment for Pseudomonas aeruginosa infection in adults with cystic fibrosis. Lancet 1: 235, 1987

    PubMed  CAS  Google Scholar 

  • Höffken J, Borner K, Glatzer PD, Kreppe P, Lode H. Reduced enterai absorption of ciprofloxacin in the presence of antacids. European Journal of Clinical Microbiology 4: 345, 1985

    PubMed  Google Scholar 

  • Höffler D, Koeppe P. Pharmacokinetics of ofloxacin in healthy subjects and patients with impaired renal function. Drugs 34 (Suppl. 1): 51–55, 1987

    PubMed  Google Scholar 

  • Holmes B, Brogden RN, Richards DM. Norfloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 30: 482–513, 1985

    PubMed  CAS  Google Scholar 

  • Hook EW, Roddy RE, Handsfield HH. Comparative trial of ciprofloxacin versus ampicillin and probenecid for the treatment of uncomplicated gonorrhoea in men. Abstract no. 265, 25th ICAAC, Minneapolis, 1985

  • Hughes PJ, Webb DB, Asscner AW. Pharmacokinetics of norfloxacin (MK 366) in patients with impaired kidney function —some preliminary results. Journal of Antimicrobial Chemotherapy 13: (Suppl. B): 55–57, 1984

    PubMed  Google Scholar 

  • Humphreys H, Mulvihill E. Ciprofloxacin-resistant Staphylococcus aureus, Lancet 2: 383, 1985

    PubMed  CAS  Google Scholar 

  • Husson MO, Izard D, Bouillet L, Leclerc H. Comparative in vitro activity of ciprofloxacin against non-fermenters. Journal of Antimicrobial Chemotherapy 15: 457–462, 1985

    PubMed  CAS  Google Scholar 

  • Ito A, Hirai K, Inoue M, et al. In vitro antibacterial activity of AM-715, a new nalidixic acid analog. Antimicrobial Agents and Chemotherapy 17: 103, 1980

    PubMed  CAS  Google Scholar 

  • Jensen T, Pedersen SS, Høiby N, Koch C. Efficacy of oral fluoroquinolones versus conventional intravenous antipseudomonal chemotherapy in treatment of cystic fibrosis. European Journal of Clinical Microbiology 6: 618–622, 1987a

    PubMed  CAS  Google Scholar 

  • Jensen T, Pedersen SS,. Nielsen CH, Høiby N, Koch C. The efficacy and safety of ciprofloxacin and ofloxacin in the treatment of chronic Pseudomonas aeruginosa infection in cystic fibrosis. Journal of Antimicrobial Chemotherapy 20: 585–594, 1987b

    PubMed  CAS  Google Scholar 

  • Johnson PC, Ericsson CD, Morgan DR, DuPont HL, Cabada FJ. Lack of emergence of resistant fecal flora during successful prophylaxis of travelers’ diarrhoea with norfloxacin. Antimicrobial Agents and Chemotherapy 30: 671–674, 1986

    PubMed  CAS  Google Scholar 

  • Jones BM, Geary I, Lee ME, Duerden BI. Activity of pefloxacin and thirteen other antimicrobial agents in vitro against isolates from hospital and genitourinary infections. Journal of Antimicrobial Chemotherapy 17: 739–746, 1986

    PubMed  CAS  Google Scholar 

  • Jungst G, Mohr R. Side effects of ofloxacin in clinical trials and in postmarketing surveillence. Drugs 34 (Suppl. 1): 144–149, 1987

    PubMed  Google Scholar 

  • Kayser FH, Novak J. In vitro activity of ciprofloxacin against Gram-positive bacteria: an overview. American Journal of Medicine 82 (Suppl. 4A): 33–39, 1987

    PubMed  CAS  Google Scholar 

  • Kazmierczak A, Pechinot A, Duez JM, Haas O, Favre JP. Biliary tract excretion of ofloxacin in man. Drugs 34 (Suppl. 1): 39–43, 1987

    PubMed  CAS  Google Scholar 

  • Kemmerich B, Small GJ, Pennington JE. Comparative evaluation of ciprofloxacin, enoxacin and ofloxacin in experimental Pseudomonas aeruginosa pneumonia. Antimicrobial Agents and Chemotherapy 29: 395–399, 1986

    PubMed  CAS  Google Scholar 

  • King A, Phillips I. The comparative in-vitro activity of eight newer quinolones and nalidixic acid. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 1–20, 1986

    PubMed  CAS  Google Scholar 

  • King A, Shannon K, Phillips I. The in vitro activity of ciprofloxacin compared with that of norfloxacin and nalidixic acid. Journal of Antimicrobial Chemotherapy 13: 325–331, 1984

    PubMed  CAS  Google Scholar 

  • King A, Shannon K. Phillips I. The in-vitro activities of enoxacin and ofloxacin compared with that of ciprofloxacin. Journal of Antimicrobial Chemotherapy 15: 551–558, 1985

    PubMed  CAS  Google Scholar 

  • Knöthe H. In-vitro activity of ‘gyrase inhibitors’. Quinolones Bulletin October 1984

  • Kucers A, Bennet NMcK. The use of antibiotics, 4th, ed., William Heinemann Medical Books, London, 1987

    Google Scholar 

  • Lebel M. Bergeron MG, Vallee F, Fiset C, Chasse G, et al. Pharmacokinetics and pharmacodynamics of ciprofloxacin in cystic fibrosis patients. Antimicrobial Agents and Chemotherapy 30: 260–266, 1986

    PubMed  CAS  Google Scholar 

  • Ledergerber B, Bettex JD, Joos B, et al. Effect of standard breakfast on drug absorption and multiple-dose pharmacokinetics of ciprofloxacin. Antimicrobial Agents and Chemotherapy 27: 350–352, 1985

    PubMed  CAS  Google Scholar 

  • Leigh DA, Emmanuel FXS. The treatment of Pseudomonas aeruginosa urinary tract infections with norfloxacin. Journal of Antimicrobial Chemotherapy 13 (Suppl. B): 85–88, 1984

    PubMed  Google Scholar 

  • Leigh DA, Smith EC, Marriner J. Comparative study using norfloxacin and amoxycillin in the treatment of complicated urinary tract infections in geriatric patients. Journal of Antimicrobial Chemotherapy 13 (Suppl. B) 79–84, 1984

    PubMed  Google Scholar 

  • Leroy A, Borsa F, Humbert G, Bernadet P, Fillastre JP. The pharmacokinetics of ofloxacin in healthy adult male volunteers. European Journal of Clinical Pharmacology 31: 629–630, 1987

    PubMed  CAS  Google Scholar 

  • Lesse AJ, Freer C, Salata RA, Francis JB, Scheid WM. Oral ciprofloxacin therapy for Gram-negative bacillary osteomyelitis. American Journal of Medicine 82 (Suppl. 4A): 247–253, 1987

    PubMed  CAS  Google Scholar 

  • Ligtvoet EEJ, Wickerhoff-Minoggio T. In-vitro activity of pefloxacin compared with six other quinolones. Journal of Antimicrobial Chemotherapy 16: 485–490, 1985

    PubMed  CAS  Google Scholar 

  • Little JW, Mount DW. The SOS regulatory system of E. coli. Cell 29: 11–22, 1982

    PubMed  CAS  Google Scholar 

  • Liu LF, Rowe TC, Yang L, Tewey KM, Chen GL. Cleavage of DNA by mammalian DNA topoisomerase II. Journal of Biological Chemistry 258: 15365–15370, 1983

    PubMed  CAS  Google Scholar 

  • Lockley MR, Wise R, Dent J. The pharmacokinetics and tissue penetration of ofloxacin. Journal of Antimicrobial Chemotherapy 14: 647–652, 1984

    PubMed  CAS  Google Scholar 

  • Lode H, Höffken G, Olschewski P, et al. Pharmacokinetics of ofloxacin after parenteral and oral administration. Antimicrobial Agents and Chemotherapy 31: 1338–1342, 1987

    PubMed  CAS  Google Scholar 

  • Loos PS, Ridgway GL, Oriel JD. Single dose ciprofloxacin for the treatment of gonococcal infection in men. Genitourinary Medicine 61: 302–305, 1985

    Google Scholar 

  • Ludwig G. Pauthner H. Clinical experience with ofloxacin in upper and lower urinary tract infections: a comparison with cotrimoxazole and nitrofurantoin. Drugs 31 (Suppl. 1): 95–99, 1987

    Google Scholar 

  • Lüthy R, Joos B, Gassmann F. Penetration of ciprofloxacin into the human eye. In Neu HC & Weuta J (Eds) Proceedings of the 1st International Ciprofloxacin Workshop, Amsterdam, pp. 204–205, Excerpta Medica, 1986

  • Maesen FPV, Davies BI, Geraedts WH, Baur C. The use of quinolones in respiratory tract infections. Drugs 34 (Suppl. 1): 74–79, 1987

    PubMed  Google Scholar 

  • Maesen FPV, Davies BI, Teengs JP. Pefloxacin in acute exacerbation of chronic bronchitis. Journal of Antimicrobial Chemotherapy 16: 379–388, 1985

    PubMed  CAS  Google Scholar 

  • McNulty CAM, Dent J, Wise R. Susceptibility of clinical isolates of Campylobacter pyloridis to 11 antimicrobial agents. Antimicrobial Agents and Chemotherapy 28: 837–838, 1985

    PubMed  CAS  Google Scholar 

  • Mertz N, Chang T, Latts JR, Goulet JR, Yakatan GJ. Tolerance and bioavailability of C1-919 (AT2266), a new anti-infective, in normal volunteers following single rising oral doses. 23rd ICAAC, Abstract no. 858, 1983

  • Miller KG, Liu LF, Englund PT. A homogeneous type II DNA topoisomerase from HeLa cell nuclei. Journal of Biological Chemistry 256: 9334–9339, 1981

    PubMed  CAS  Google Scholar 

  • Monk JP, Campoli-Richards DM. Ofloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use. Drugs 33: 346–391, 1987

    PubMed  CAS  Google Scholar 

  • Montay G, Goueffon Y, Roquet F. Absorption, distribution, metabolic fate, and elimination of pefloxacin mesylate in mice, rats, dogs, monkeys and humans. Antimicrobial Agents and Chemotherapy 25: 463–472, 1984

    PubMed  CAS  Google Scholar 

  • Moody JA, Peterson LR, Gerding DN. In vitro activity of ciprofloxacin combined with azlocillin. Antimicrobial Agents and Chemotherapy 28: 849–850, 1985

    PubMed  CAS  Google Scholar 

  • Morrison A, Cozzarelli NR. Site-specific cleavage of DNA by E. coli DNA gyrase. Cell 17: 175–184, 1979

    PubMed  CAS  Google Scholar 

  • Mulligan ME, Ruane PJ, Johnston L, Wong P, et al. Ciprofloxacin for eradication of methicillin-resistant Staphylococcus aureus colonization. American Journal of Medicine 82 (Suppl. 4A): 215–219, 1987

    PubMed  CAS  Google Scholar 

  • Munshi MH, Haider K, Rahaman MM, et al. Plasmid-mediated resistance to nalidixic acid in Shigella dysenteriae type 1. Lancet 2: 419–421, 1987

    PubMed  CAS  Google Scholar 

  • Murphy PG, Ferguson WP. Corynebacterium jeikeium (Group JK) resistance to ciprofloxacin emerging during therapy. Journal of Antimicrobial Chemotherapy 20: 922–923, 1987

    PubMed  CAS  Google Scholar 

  • Naamara W, Plummer FA, Greenblatt RM, D’Costa LJ, Ndinya-Achola JO, et al. Treatment of chancroid with ciprofloxacin: a prospective, randomized clinical trial. American Journal of Medicine 82 (Suppl. 4A): 317–320, 1987

    PubMed  CAS  Google Scholar 

  • Naber KG. A profile of human pharmacokinetics and clinical studies of the gyrase inhibitor enoxacin. Journal of International Biomedical Information and Data 6: 5–14, 1985

    CAS  Google Scholar 

  • Naber KG, Adam D, Wittenberger R, Bartosik-Wich B. In vitro-Aktivität, Serum-, Urin-und Prostataadenom-Gewebekonzentrationen von Ofloxacin bei urologischen Patienten mit komplizierten Harnwegsinfektionen. Infection 14 (Suppl. 1): S60–S64, 1986a

    PubMed  Google Scholar 

  • Naber KG, Sörgel F, Gutzier F, Bartosik-Wich B. In vitro activity, pharmacokinetics, clinical safety and therapeutic efficacy of enoxacin in the treatment of patients with complicated urinary tract infections. Infection 14 (Suppl. 3): S203–S208, 1986b

    PubMed  Google Scholar 

  • Nakamura S, Minami A, Katae H, Inoue S, Yamagishi J, et al. In vitro antibacterial properties of AT-2266, a new pyridone carboxylic acid. Antimicrobial Agents and Chemotherapy 23: 641–648, 1983

    PubMed  CAS  Google Scholar 

  • Nakamura S, Takase Y, Kashimoto S, Shimuzu M. Pharmacological properties of AT-2266. In Nelson JD & Grassi C (Eds) Current chemotherapy and infectious disease, Vol. 1, p. 456, American Society for Microbiology, Washington DC, 1980

    Google Scholar 

  • Neuman M. Clinical pharmacokinetics of the newer antibacterial 4-quinolones. Clinical Pharmacokinetics 14: 96–121, 1988

    PubMed  CAS  Google Scholar 

  • Newsom SWB. The antimicrobial spectrum of norfloxacin. Journal of Antimicrobial Chemotherapy 13 (Suppl. B): 25–31, 1984

    PubMed  CAS  Google Scholar 

  • Newsom, SWB. Murphy P, Matthews J. A comparative study of ciprofloxacin and trimethoprim in the treatment of urinary tract infections in geriatric patients. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 111–115, 1986

    PubMed  Google Scholar 

  • Notowicz A, Stolz E, Van Klingeren B. A double blind study comparing two dosages of enoxacin for the treatment of uncomplicated urogenital gonorrhoea. Journal of Antimicrobial Chemotherapy 14 (Suppl. C): 91–94, 1984

    PubMed  Google Scholar 

  • Oriel JD. Ciprofloxacin in the treatment of gonorrhoea and non-gonococcal urethritis. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 129–132, 1986

    PubMed  Google Scholar 

  • Osada Y, Ogawa H. Antimycoplasmal activity of ofloxacin (DL-8280). Antimicrobial Agents and Chemotherapy 23: 509–511, 1983

    PubMed  CAS  Google Scholar 

  • Paton JH, Williams EW. Interaction between ciprofloxacin and vancomycin against staphylococci. Journal of Antimicrobial Chemotherapy 20: 251–254, 1987

    PubMed  CAS  Google Scholar 

  • Patton WN, Smith GM, Leyland MJ, Geddes AM. Multiply resistant Salmonella typhimurium septicaemia in an immuno-compromised patient successfully treated with ciprofloxacin. Journal of Antimicrobial Chemotherapy 16: 667–669, 1985

    PubMed  CAS  Google Scholar 

  • Pattyn SR, Activity of ofloxacin and perfloxacin against mycobacterium leprae in mice. Antimicrobial Agents and Chemotherapy 31: 671–672, 1987

    PubMed  CAS  Google Scholar 

  • Peeters M, Van Dyck E, Piot P. In vitro activities of the spectinomycin analogue U-63366 and four quinolone derivatives against Neisseria gonorrhoeae. Antimicrobial Agents and Chemotherapy 26: 608–612, 1984

    PubMed  CAS  Google Scholar 

  • Penketh ARL, Hodson ME, Gayn H, Batton JC. Azlocillin compared with carbenicillin in the treatment of bronchopulmonary infection due to Pseudomonas aeruginosa in cystic fibrosis. Thorax 39: 299–304, 1984

    PubMed  CAS  Google Scholar 

  • Peterson LR, Animal models: the in-vitro evaluation of ciprofloxacin. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 55–64, 1986

    PubMed  CAS  Google Scholar 

  • Peterson LR, Gerding DN, Moody JA, Fasching CE. Azlocillin, ciprofloxacin and amikacin therapy of six pneumococci and six group D streptococci in a neutropenic site model. Proceedings of the 25th ICAAC, Abstract no. 1087, 1985

  • Phillips I. Bacterial mutagenicity and the 4-quinolones. Journal of Antimicrobial Chemotherapy 20: 771–773, 1987

    PubMed  CAS  Google Scholar 

  • Piddock LJV, Wijnands WJA, Wise R. Quinolone/ureidopenicillin cross-resistance. Lancet 2: 907, 1987

    PubMed  CAS  Google Scholar 

  • Plaisance KI, Drusano GL, Forrest A, Bustamante CI, Standiford HC. Effect of dose size on bioavailability of ciprofloxacin. Antimicrobial Agents and Chemotherapy 31: 956–958, 1987

    PubMed  CAS  Google Scholar 

  • Prabhala RH, Rao B, Marshall R, Bansal MB, Thadepalli H. In vitro susceptibility of anaerobic bacteria to ciprofloxacin (Bay o 9867). Antimicrobial Agents and Chemotherapy 26: 785–786, 1984

    PubMed  CAS  Google Scholar 

  • Ramirez CA, Bran JL, Mejia CR, Garcia JF. Open, prospective study of the clinical efficacy of ciprofloxacin. Antimicrobial Agents and Chemotherapy 28: 123–132, 1985

    Google Scholar 

  • Ranikko S, Malmborg AS. Enoxacin concentration in human prostatic tissue after oral administration. Journal of Antimicrobial Chemotherapy 17: 123, 1986

    Google Scholar 

  • Raoof S, Wollschlager CM, Khan FA, Ciprofloxacin increases serum theophylline levels. Chest 88: 32, 1985

    Google Scholar 

  • Raoof S, Wollschlager C, Khan F. Treatment of respiratory tract infections with ciprofloxacin. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 139–145, 1986

    PubMed  Google Scholar 

  • Ravizzola G, Pirali F, Paolucci A, et al. Reduced virulence in ciprofloxacin resistant variants of Pseudomonas aeruginosa strains. Journal of Antimicrobial Chemotherapy 20: 825–829, 1987

    PubMed  CAS  Google Scholar 

  • Reeves DS. The effect of quinolone antibacterials on the gastrointestinal flora compared with that of other antibacterials. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 89–102, 1986

    PubMed  CAS  Google Scholar 

  • Reeves DS, Bywater MJ, Holt HA. The activity of enoxacin against clinical bacterial isolates in comparison with that of five other agents, and factors affecting that activity. Journal of Antimicrobial Chemotherapy 14 (Suppl. C): 7–17, 1984a

    PubMed  Google Scholar 

  • Reeves DS, Bywater MJ, Holt HA, White LO. In vitro studies with ciprofloxacin, a new 4-quinolone compound. Journal of Antimicrobial Chemotherapy 13: 333–346, 1984b

    PubMed  CAS  Google Scholar 

  • Reeves DS, Lacey RW, Mummery RV, et al. Treatment of acute urinary infection by norfloxacin or nalidixic acid/citrate: a multi-centre comparative study. Journal of Antimicrobial Chemotherapy 13 (Suppl. B): 99–105, 1984c

    PubMed  Google Scholar 

  • Reinhardt JF, George WL. Comparative in vitro activities of selected antimicrobial agents against Aeromonas species and Plesiomonas shigelloides. Antimicrobial Agents and Chemotherapy 27: 643–645, 1985

    PubMed  CAS  Google Scholar 

  • Renkonen OV, Sivonen A, Visakorpi R. Effect of ciprofloxacin on carrier rate of Neisseria meningitidis in army recruits in Finland. Antimicrobial Agents and Chemotherapy 31: 962–963, 1987

    PubMed  CAS  Google Scholar 

  • Ridgway GL, Mumtaz G, Gabriel FG, Oriel JD. The activity of ciprofloxacin and other 4-quinolones against Chlamydia trachomatis and Mycoplasmas in vitro. European Journal of Clinical Microbiology 3: 344–346, 1984

    PubMed  CAS  Google Scholar 

  • Righter J, Ciprofloxacin treatment of Staphylococcus aureus infections. Journal of Antimicrobial Chemotherapy 20: 595–597, 1987

    PubMed  CAS  Google Scholar 

  • Roberts CM, Batten J, Hodson MG. Ciprofloxacin resistant pseudomonas. Lancet 1: 1442, 1985

    PubMed  CAS  Google Scholar 

  • Rubio TT. Ciprofloxacin: comparative data in cystic fibrosis. American Journal of Medicine 82 (Suppl. 4A): 185–188, 1987

    PubMed  CAS  Google Scholar 

  • Rubio TT, Shapiro C. Ciprofloxacin in the treatment of pseudomonas infection in cystic fibrosis patients. Journal of Antimicrobial Chemotherapy 18 (Suppl. D) 147–152, 1986

    PubMed  Google Scholar 

  • Rugendorff EW. Open randomised comparison of ofloxacin and norfloxacin in the treatment of complicated urinary tract infections. Drugs 34 (Suppl. 1): 91–94, 1987

    PubMed  Google Scholar 

  • Ryan JL, Berenson CS, Greco TP, Mangi RJ, Sims M, et al. Oral ciprofloxacin in resistant urinary tract infections. American Journal of Medicine 82 (Suppl. 4A): 303–306, 1987

    PubMed  CAS  Google Scholar 

  • Saito A, Katsu M, Saito A, Soejima R. Ofloxacin in respiratory tract infections: a review of the results of clinical trials in Japan. Drugs 34 (Suppl. 1): 83–89, 1987

    PubMed  Google Scholar 

  • Salvanet A, Fisch A, Lafaix C, Montay G, Dubayle P, et al. Pefloxacin concentrations in human aqueous humour and lens. Journal of Antimicrobial Chemotherapy 18: 199–201, 1986

    PubMed  CAS  Google Scholar 

  • Sanders CC, Sanders WE, Goering RV. Overview of preclinical studies with ciprofloxacin. American Journal of Medicine 82 (Suppl. 4A): 2–11, 1987

    PubMed  CAS  Google Scholar 

  • Sanders CC, Sanders WE, Goering RV, Werner V. Selection of multiple antibiotic resistance by quinolones, β-lactams and aminoglycosides with special reference to cross-resistance between unrelated drug classes. Antimicrobial Agents and Chemotherapy 26: 797–801, 1984

    PubMed  CAS  Google Scholar 

  • Sanders CC, Watanakunakorn C. Emergence of resistance to beta-lactams, aminoglycosides, and quinolones during combination therapy for infection due to Serratia marcescens. Journal of Infectious Diseases 153: 617–619, 1986

    PubMed  CAS  Google Scholar 

  • Sato K, Matsuura Y, Inoue M, et al. In vitro and in vivo activity of DL-8280, a new oxazine derivative. Antimicrobial Agents and Chemotherapy 22: 548–553, 1982

    PubMed  CAS  Google Scholar 

  • Sauerwein D, Bauernfeind A. Klinische Erfahrungen bei Behandlung von Harnwegsinfektionen bei Querschrullgelämten mit Norfloxacin. Fortschritte der Antimikrobiellen und Antineoplastischen Chemotherapie 3–5: 759–764, 1984

    Google Scholar 

  • Schacht P, Arcieri G, Branolte J, Brück H, Chysky V, et al. Worldwide clinical data on efficacy and safety of ciprofloxacin. Infection 16 (Suppl. 1): S29–S43, 1988

    PubMed  Google Scholar 

  • Schacht P, Hullmann R. Is development of resistance during ciprofloxacin therapy a clinical problem? Proceedings of 15th International Congress of Chemotherapy, July, 1987, Istanbul, Vol. 1, pp. 805–807, 1988

  • Schlüter G. Ciprofloxacin: review of potential toxicologic effects. American Journal of Medicine 82 (Suppl. 4A): 91–93, 1987

    Google Scholar 

  • Scully BE, Nakatomi M, Ores C, Davidson S, Neu HC. Ciprofloxacin therapy in cystic fibrosis. American Journal of Medicine 82 (Suppl. 4A): 196–201, 1987

    PubMed  CAS  Google Scholar 

  • Scully BE, Neu HC, Parry MF, Mandell W. Oral ciprofloxacin therapy of infections due to Pseudomonas aeruginosa. Lancet 1: 819–822, 1986

    PubMed  CAS  Google Scholar 

  • Shah PM. Effect of co-medication on absorption of ciprofloxacin and ofloxacin from gastrointestinal tract. Quinolones Bulletin 2: 12, 1986

    Google Scholar 

  • Shah PM, Frech K. Clinical experience with quinolones —overview. Quinolones Bulletin 1: 19–22, 1985

    Google Scholar 

  • Shalit I, Greenwood RB, Marks MI, et al. Pharmacokinetics of single-dose oral ciprofloxacin in patients undergoing chronic ambulatory peritoneal dialysis. Antimicrobial Agents and Chemotherapy 30: 152–156, 1986

    PubMed  CAS  Google Scholar 

  • Shannon KP, Phillips I. The antimicrobial spectrum of the quinolones. Research and Clinical Forums 7: 29–36, 1985

    CAS  Google Scholar 

  • Shen LL, Pernet AG. Mechanism of inhibition of DNA gyrase by analogues of nalidixic acid: the target of the drugs is DNA. Proceedings of the National Academy of Sciences USA 82: 307–311, 1985

    CAS  Google Scholar 

  • Shimada J, Yamaji T, Ueda Y, Uchida H, Kusajima H, et al. Mechanism of renal excretion of AM-715, a new quinolone-carboxylic acid derivative in rabbits, dogs and humans. Antimicrobial Agents and Chemotherapy 23: 1–7, 1983

    PubMed  CAS  Google Scholar 

  • Shungu DL, Nalin DR, Gilman RH, et al. Comparative susceptibilities of Campylobacter pylori to norfloxacin and other agents. Antimicrobial Agents and Chemotherapy 31: 949–950, 1987

    PubMed  CAS  Google Scholar 

  • Slama TG, Misinski J, Sklar S. Oral ciprofloxacin therapy for osteomyelitis caused by aerobic Gram-negative bacilli. American Journal of Medicine 82 (Suppl. 4A): 259–261, 1987

    Google Scholar 

  • Smith GM, Cashmore C, Leyland MJ. Ciprofloxacin-resistant staphylococci. Lancet 2: 949, 1985

    PubMed  CAS  Google Scholar 

  • Smith GM, Leyland MJ, Farrell ID, Geddes AM. Preliminary evaluation of ciprofloxacin, a new 4-quinolone antibiotic, in the treatment of febrile neutropenic patients. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 165–174, 1986a

    PubMed  Google Scholar 

  • Smith JT. Awakening the slumbering potential of the 4-quinolone antibacterials. Pharmaceutical Journal 233: 299–305, 1984

    CAS  Google Scholar 

  • Smith JT, Ratcliffe NT. Effect of pH and magnesium on the in vitro activity of ciprofloxacin. In Neu HC & Weuta H (Eds) Proceedings of the 1st International Ciprofloxacin Workshop, Amsterdam, pp. 12–16, Excerpta Medica, 1986

  • Smith MJ, Hodson ME, Batten JC. Ciprofloxacin in cystic fibrosis. Lancet 1: 1103, 1986b

    PubMed  CAS  Google Scholar 

  • Smith SM, Eng RHK, Berman E. The effect of ciprofloxacin on methicillin resistant Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 17: 287–295, 1986c

    PubMed  CAS  Google Scholar 

  • Somogyi AA, Bochner F, Keal JA, Rolan PE, Smith M. Effect of food on enoxacin absorption. Antimicrobial Agents and Chemotherapy 31: 638–639, 1987

    PubMed  CAS  Google Scholar 

  • Staib AH, Stille W, Dietlein G, et al. Interaction between quinolones and caffeine. Drugs 34 (Suppl. 1): 170–174, 1987

    PubMed  CAS  Google Scholar 

  • Stolz E, Tegelberg-Stassen MJAM, Van der Willigen AH, Van der Hoek JCS, Van Joost TH. et al. Quinolones in the treatment of gonorrhoea and Chlamydia trachomatis infections. Pharmaceutisch Weekblad —Scientific Edition 8: 60–62, 1986

    PubMed  CAS  Google Scholar 

  • Strachan CJL, Thorn BT. Excretion of intravenous and orally administered ciprofloxacin in biliary disease. 4th Mediterranean Congress of Chemotherapy, Abstract no. 622, 1984

  • Sugino A. Peebles CL, Kreuzer KN, Cozzarelli NR. Mechanism of action of nalidixic acid: purification of Escherichia coli Nal A gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proceedings of the National Academy of Sciences USA 74: 4767–4771, 1977

    CAS  Google Scholar 

  • Swanson BN, Boppana VK, Vlasses PH, Rotmensch HH, Ferguson RK. Norfloxacin disposition after sequentially increasing oral doses. Antimicrobial Agents and Chemotherapy 23: 284–288, 1983

    PubMed  CAS  Google Scholar 

  • Symonds J, Bone M. Turner A, Javaid A. Penetration of ofloxacin into bronchial secretions. Drugs 34 (Suppl. 1): 33–36, 1987

    PubMed  CAS  Google Scholar 

  • Tho TV, Armengaub A, Davet B. Diffusion of enoxacin into the cerebrospinal fluid in dogs with healthy meninges and with experimental meningitis. Journal of Antimicrobial Chemotherapy 14 (Suppl. C): 57–62, 1984

    Google Scholar 

  • Tolkoff-Rubin NE, Rubin RH. New approaches to the treatment of urinary tract infections. American Journal of Medicine 82 (Suppl. 4A): 270–277, 1987

    PubMed  CAS  Google Scholar 

  • Toon S, Hopkins K, Aarons L, Sedman A, Rowland M. Enoxacin-warfarin interaction: pharmacokinetic and stereochemical aspects. Abstract. Clinical Pharmacology and Therapeutics Congress, Stockholm, 1986

  • Tsuei SE, Darragh AS, Brick I. Pharmacokinetics and tolerance of enoxacin in healthy volunteers administered at a dosage of 400mg twice daily for 14 days. Journal of Antimicrobial Chemotherapy 14 (Suppl. C): 71–74, 1984

    PubMed  Google Scholar 

  • Tsukamura M, Nakamura E, Yoshi S, Amano H. Therapeutic effect of a new antibacterial substance ofloxacin (DL 8280) on pulmonary tuberculosis. American Review of Respiratory Diseases 131: 352–356, 1985

    CAS  Google Scholar 

  • Valainis G, Thomas D, Pankey G. Penetration of ciprofloxacin into cerebrospinal fluid. European Journal of Clinical Microbiology 5: 206–207, 1986

    PubMed  CAS  Google Scholar 

  • Van Caekenberghe DL, Pattyn SR. In vitro activity of ciprofloxacin compared with those of other new fluorinated piperazinyl-substituted quinolone derivatives. Antimicrobial Agents and Chemotherapy 25: 518–521, 1984

    PubMed  Google Scholar 

  • Van der Willigen AM, Van der Hoek JCS, Wagenvoort JHT, et al. Comparative double-blind study of 200 and 400mg enoxacin given orally in the treatment of acute uncomplicated urethral gonorrhoea in males. Antimicrobial Agents and Chemotherapy 31: 535–538, 1987

    PubMed  Google Scholar 

  • Wagenvoort JHT, Van der Willigen AH, Van Vliet HJA, et al. Resistance of Neisseria gonorrhoea to enoxacin. Journal of Antimicrobial Chemotherapy 18: 429, 1986

    PubMed  CAS  Google Scholar 

  • Wall RA, Mabey DCW, Bello CSS, et al. The comparative in vitro activity of twelve 4-quinolone antimicrobials against Haemophilus ducreyi. Journal of Antimicrobial Chemotherapy 16: 165–188, 1985

    PubMed  CAS  Google Scholar 

  • Wang JC. Interactions between twisted DNAs and enzymes: the effects of superhelical turns. Journal of Molecular Biology 87: 797–816, 1974

    PubMed  CAS  Google Scholar 

  • Webb DB, Roberts DE, Williams JD, Asscher AW. Pharmacokinetics of ciprofloxacin in healthy volunteers and patients with impaired kidney function. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 83–87, 1986

    PubMed  Google Scholar 

  • Weidner W, Schiefer HG, Dalhoff A. Treatment of chronic bacterial prostatitis with ciprofloxacin: results of a one-year follow-up study. American Journal of Medicine 82 (Suppl. 4A): 280–283, 1987

    PubMed  CAS  Google Scholar 

  • Weisser J, Wiedemann B. Inhibition of R-plasmid transfer in Escherichia coli by 4-quinolones. Antimicrobial Agents and Chemotherapy 31: 531–534, 1987

    PubMed  CAS  Google Scholar 

  • White LO. Metabolism of 4-quinolones. Quinolones Bulletin 3: 1–4, 1987

    Google Scholar 

  • White LO, MacGowan AP, Lovering AM, Reeves DS, Mackay IG. A preliminary report on the pharmacokinetics of ofloxacin, desmethyl ofloxacin and ofloxacin N-oxide in patients with chronic renal failure. Drugs 34 (Suppl. 1): 56–61, 1987

    PubMed  Google Scholar 

  • White LO, MacGowan AP, Mackay IG, Reeves DS. The pharmacokinetics of ofloxacin, desmethyl ofloxacin and ofloxacin N-oxide in haemodialysis patients with end-stage renal failure. Journal of Antimicrobial Chemotherapy, in press, 1988

  • Wijnands WJA, Vree TB, Van Herwaarden CLA, Enoxacin decreases the clearance of theophylline in man. British Journal of Clinical Pharmacology 20: 583–588, 1985

    PubMed  CAS  Google Scholar 

  • Wijnands WJA, Vree TB, Van Herwaarden CLA. The influence of quinolone derivatives on theophylline clearance. British Journal of Clinical Pharmacology 22: 677–683, 1986

    PubMed  CAS  Google Scholar 

  • Williams AH, Grüneberg RN. Ciprofloxacin and co-trimoxazole in urinary tract infection. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 107–110, 1986

    PubMed  Google Scholar 

  • Wingender W, Graefe KH, Gau W, Forster D, Beermann D, et al. Pharmacokinetics of ciprofloxacin after oral and intravenous administration in healthy volunteers. European Journal of Clinical Microbiology 3: 335–359, 1984

    Google Scholar 

  • Winston DJ, Ho WG, Champlin RE, et al. Norfloxacin for prevention of bacterial infections in granulocytopenic patients. American Journal of Medicine 82 (Suppl. 6B): 40–46, 1987

    PubMed  CAS  Google Scholar 

  • Wise R. Norfloxacin —a review of pharmacology and tissue penetration. Journal of Antimicrobial Chemotherapy 13 (Suppl. B): 59–64, 1984

    PubMed  CAS  Google Scholar 

  • Wise R, Andrews JM, Danks G. In vitro activity of enoxacin (CI-919), a new quinolone derivative, compared with that of other antimicrobial agents. Journal of Antimicrobial Chemotherapy 13: 237–244, 1984

    PubMed  CAS  Google Scholar 

  • Wise R, Andrews JM, Edwards LJV. In vitro activity of Bay 09867, a new quinolone derivative, compared with those of other antimicrobial agents. Antimicrobial Agents and Chemotherapy 23: 559–564, 1983

    PubMed  CAS  Google Scholar 

  • Wise R, Donovan IA. Tissue penetration and metabolism of ciprofloxacin. American Journal of Medicine 82 (Suppl. 4A) 103–107, 1987

    PubMed  CAS  Google Scholar 

  • Wise R, Lister D, McNulty CAM, Griggs D, Andrews JM. The comparative pharmacokinetics of five quinolones. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 71–81, 1986

    PubMed  CAS  Google Scholar 

  • Wiström J. Norrby SR, Burman LG, Lundholm R, Jellheden B, et al. Norfloxacin versus placebo for prophylaxis against travellers’ diarrhoea. Journal of Antimicrobial Chemotherapy 20: 563–574, 1987

    PubMed  Google Scholar 

  • Wolf R, Eberl R, Dunky A, et al. The clinical pharmacokinetics and tolerance of enoxacin in healthy volunteers. Journal of Antimicrobial Chemotherapy 14 (Suppl. C): 63–69, 1984

    PubMed  Google Scholar 

  • Wolff M, Boutron L, Singlas E, et al. Penetration of ciprofloxacin into cerebrospinal fluid of patients with bacterial meningitis. Antimicrobial Agents and Chemotherapy 31: 899–902, 1987

    PubMed  CAS  Google Scholar 

  • Wolfson JS, Hooper DC. The fluoroquinolones: structures, mechanisms of action and resistance, and spectra of activity in vitro. Antimicrobial Agents and Chemotherapy 28: 581–586, 1985

    PubMed  CAS  Google Scholar 

  • Wood MJ, Logan MN. Ciprofloxacin for soft tissue infections. Journal of Antimicrobial Chemotherapy 18 (Suppl. D): 159–164, 1986

    PubMed  Google Scholar 

  • Young LS, Berlin OGW, Inderlied CB. Activity of ciprofloxacin and other fluorinated quinolones against mycobacteria. American Journal of Medicine (Suppl. 4A): 23–26, 1987

  • Zeiler HJ. Influence of pH and human urine on the antibacterial activity of ciprofloxacin, norfloxacin and ofloxacin. Drugs Under Experimental and Clinical Research 11: 335, 1985

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paton, J., Reeves, D. Fluoroquinolone Antibiotics. Drugs 36, 193–228 (1988). https://doi.org/10.2165/00003495-198836020-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-198836020-00004

Keywords

Navigation