Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of Vildagliptin in Patients with Type 2 Diabetes Mellitus

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Vildagliptin is a dipeptidyl peptidase IV (DPP-4) inhibitor currently under development for the treatment of type 2 diabetes mellitus.

Objectives

To assess the pharmacokinetic and pharmacodynamic characteristics and tolerability of vildagliptin at doses of 10mg, 25mg and l00mg twice daily following oral administration in patients with type 2 diabetes.

Methods

Thirteen patients with type 2 diabetes were enrolled in this randomised, double-blind, double-dummy, placebo-controlled, four-period, crossover study. Patients received vildagliptin 10mg, 25mg and l00mg as well as placebo twice daily for 28 days.

Results

Vildagliptin was absorbed rapidly (median time to reach maximum concentration 1 hour) and had a mean terminal elimination half-life ranging from 1.32 to 2.43 hours. The peak concentration and total exposure increased in an approximately dose-proportional manner. Vildagliptin inhibited DPP-4 (>90%) at all doses and demonstrated a dose-dependent effect on the duration of inhibition. The areas under the plasma concentration-time curves of glucagon-like peptide-1 (GLP-1) [p < 0.001] and glucose-dependent insulinotropic peptide (GIP) [p < 0.001] were increased whereas postprandial glucagon was significantly reduced at the 25mg (p = 0.006) and l00mg (p = 0.005) doses compared with placebo. As compared with placebo treatment, mean plasma glucose concentrations were decreased by 1.4 mmol/L with the vildagliptin 25mg dosing regimen and by 2.5 mmol/L with the lOOmg dosing regimen, corresponding to a 10% and 19% reduction, respectively. Vildagliptin was generally well tolerated.

Conclusion

Vildagliptin is likely to be a useful therapy for patients with type 2 diabetes based on the inhibition of DPP-4 and the subsequent increase in incretin hormones, GLP-1 and GIP, and the decrease in glucose and glucagon levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Fig. 4

Similar content being viewed by others

References

  1. Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1 (7–36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man: acute postprandial and 24-h secretion patterns. J Endocrinol 1993; 138: 159–66

    Article  PubMed  CAS  Google Scholar 

  2. Nauck MA, Bartels E, Orskov C, et al. Additive insulinotropic effects of exogenous synthetic human gastric inhibitory polypeptide and glucagon-like peptide-l-(7–36) amide infused at near-physiological insulinotropic hormone and glucose concentrations. J Clin Endocrinol Metab 1993; 76(4): 912–7

    Article  PubMed  CAS  Google Scholar 

  3. Nauck MA, Bartels E, Orskov C, et al. Influence of glucagon-like peptide 1 on fasting glycemia in type 2 diabetic patients treated with insulin after sulfonylurea secondary failure. Diabetes Care 1998; 21(11): 1925–31

    Article  PubMed  CAS  Google Scholar 

  4. Nauck MA, Kleine N, Orskov C, et al. Normalization of fasting hyperglycaemia by exogenous glucagon-like peptide 1 (7–36 amide) in type 2 (non-insulin-dependent) diabetic patients. Diabetologia 1993; 36(8): 741–4

    Article  PubMed  CAS  Google Scholar 

  5. Kreymann B, Williams G, Ghatei M, et al. Glucagon-like peptide-1 7–36: a physiological incretin in man. Lancet 1987; 2(8571): 1300–4

    Article  PubMed  CAS  Google Scholar 

  6. Naslund E, Bogefors J, Skogar S, et al. GLP-1 slows solid gastric emptying and inhibits insulin, glucagon, and PYY release in humans. Am J Physiol 1999; 277(3 Pt 2): R910–6

    PubMed  CAS  Google Scholar 

  7. Delgado-Aros S, Kim DY, Burton DD, et al. Effect of GLP-1 on gastric volume, emptying, maximum volume ingested, and postprandial symptoms in humans. Am J Physiol Gastrointest Liver Physiol 2002; 282(3): G424–31

    PubMed  CAS  Google Scholar 

  8. Zander M, Madsbad S, Madsen JL, et al. Effect of 6-week course of glucagon-like peptide 1 on glycaemic control, insulin sensitivity, and beta-cell function in type 2 diabetes: a parallel-group study. Lancet 2002; 359(9309): 824–30

    Article  PubMed  CAS  Google Scholar 

  9. Holst JJ. Therapy of type 2 diabetes mellitus based on the actions of glucagon-like peptide-1. Diabetes Metab Res Rev 2002; 18(6): 430–41

    Article  PubMed  CAS  Google Scholar 

  10. Mentlein R, Gallwitz B, Schmidt WE. Dipeptidyl-peptidase IV hydrolyses gastric inhibitory polypeptide, glucagon-like peptide-l(7–36) amide, peptide histidine methionine and is responsible for their degradation in human serum. Eur J Biochem 1993; 214(3): 829–35

    Article  PubMed  CAS  Google Scholar 

  11. Deacon CF, Johnsen AH, Holst JJ. Degradation of glucagon-like peptide-1 by human plasma in vitro yields an N-terminally truncated peptide that is a major endogenous metabolite in vivo. J Clin Endocrinol Metab 1995; 80(3): 952–7

    Article  PubMed  CAS  Google Scholar 

  12. Lankas GR, Leiting GR, Roy RS, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes: potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes 2005; 54(10): 2988–94

    Article  PubMed  CAS  Google Scholar 

  13. Deacon CF. Therapeutic strategies based on glucagon-like peptide 1. Diabetes 2004; 53(9): 2181–9

    Article  PubMed  CAS  Google Scholar 

  14. Herman GA, Stevens C, Van Dyck K, et al. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther 2005; 78(6): 675–88

    Article  PubMed  CAS  Google Scholar 

  15. He YL, Wang Y, Bullock JM, et al. Pharmacodynamics of vildagliptin in patients with type 2 diabetes during OGTT. J Clin Pharmacol 2007; 47: 633–41

    Article  PubMed  CAS  Google Scholar 

  16. Ahren B, Landin-Olsson M, Jansson PA, et al. Inhibition of dipeptidyl peptidase-4 reduces glycemia, sustains insulin levels, and reduces glucagon levels in type 2 diabetes. J Clin Endocrinol Metab 2004; 89(5): 2078–84

    Article  PubMed  CAS  Google Scholar 

  17. Pratley RE, Jauffret-Kamel S, Galbreath E, et al. Twelve-week monotherapy with the DPP-4 inhibitor vildagliptin improves glycemic control in subjects with type 2 diabetes. Horm Metab Res 2006; 38(6): 423–8

    Article  PubMed  CAS  Google Scholar 

  18. Ahren B, Gomis R, Standl E, et al. Twelve- and 52-week efficacy of the dipeptidyl peptidase IV inhibitor LAF237 in metformin-treated patients with type 2 diabetes. Diabetes Care 2004; 27(12): 2874–80

    Article  PubMed  CAS  Google Scholar 

  19. Ristic S, Byiers S, Foley J, et al. Improved glycaemic control with dipeptidyl peptidase-4 inhibition in patients with type 2 diabetes: vildagliptin (LAF237) dose response. Diabetes Obes Metab 2005; 7(6): 692–8

    Article  PubMed  CAS  Google Scholar 

  20. He YL, Barilla D, Ligureos-Saylan M, et al. The pharmacokinetics and DPP-4 inhibition of LAF237 in healthy volunteers. J Clin Pharmacol 2004; 44: 1212

    Google Scholar 

  21. Kim D, Wang L, Beconi M, et al. (2R)-4-oxo-4-[3-(trifluo-romethyl)-5,6-dihydro[l,2,4] triazolo[4,3-a]pyrazin-7(8H)-yl]-l-(2,4,5-trifluorophenyl) butan-2-amine: a potent, orally active dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. J Med Chem 2005; 48(1): 141–51

    Article  PubMed  CAS  Google Scholar 

  22. Liljenquist JE, Mueller GL, Cherrington AD, et al. Evidence for an important role of glucagon in the regulation of hepatic glucose production in normal man. J Clin Invest 1977; 59(2): 369–74

    Article  PubMed  CAS  Google Scholar 

  23. Dunning BE, Foley JE, Ahren B. Alpha cell function in health and disease: influence of glucagon-like peptide-1. Diabetologia 2005; 48(9): 1700–13

    Article  PubMed  CAS  Google Scholar 

  24. Muller WA, Faloona GR, Aguilar-Parada E, et al. Abnormal alpha-cell function in diabetes: response to carbohydrate and protein ingestion. N Engl J Med 1970; 283(3): 109–15

    Article  PubMed  CAS  Google Scholar 

  25. Aronoff SL, Bennett PH, Unger RH. Immunoreactive glucagon (IRG) responses to intravenous glucose in prediabetes and diabetes among Pima Indians and normal Caucasians. J Clin Endocrinol Metab 1977; 44(5): 968–72

    Article  PubMed  CAS  Google Scholar 

  26. Ohneda A, Watanabe K, Horigome K, et al. Abnormal response of pancreatic glucagon to glycemie changes in diabetes mellitus. J Clin Endocrinol Metab 1978; 46(3): 504–10

    Article  PubMed  CAS  Google Scholar 

  27. Herman GA, Stevens C, Van Dyck K, et al. Pharmacokinetics and pharmacodynamics of sitagliptin, an inhibitor of dipeptidyl peptidase IV, in healthy subjects: results from two randomized, double-blind, placebo-controlled studies with single oral doses. Clin Pharmacol Ther 2005; 78(6): 675–88

    Article  PubMed  CAS  Google Scholar 

  28. Rosenstock J, Baron MA, Camisasca RP, et al. Efficacy and tolerability of initial combination therapy with vildagliptin and pioglitazone compared with component monotherapy in patients with type 2 diabetes. Diabetes Obes Metab 2007; 9(2): 175–85

    Article  PubMed  CAS  Google Scholar 

  29. Mari A, Sallas WM, He YL, et al. Vildagliptin, a dipeptidyl peptidase-IV inhibitor, improves model-assessed beta-cell function in patients with type 2 diabetes. J Clin Endocrinol Metab 2005; 90(8): 4888–94

    Article  PubMed  CAS  Google Scholar 

  30. Bonadonna RC, Stumvoll M, Fritsche A, et al. Altered homeo-static adaptation of first- and second-phase β-cell secretion in the offspring of patients with type 2 diabetes: studies with a minimal model to assess β-cell function. Diabetes 2003; 52: 470–80

    Article  PubMed  CAS  Google Scholar 

  31. Mari A, Schmitz O, Gastaldelli A, et al. Meal and oral glucose tests for assessment of β-cell function: modeling analysis in normal subjects. Am J Physiol Endocrinol Metab 2002; 283: E1159–66

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Grateful thanks to Caroline Dunstall for editorial support.

Yan-Ling He, Yibin Wang, Denise Serra, Joelle Campestrini, Gilles-Jacques Riviere and Monica Ligueros-Saylan are employees of Novartis. Carolyn F. Deacon and Jens J. Holst have served on advisory panels for Novartis, and Jens J. Holst has received research funding from Novartis. Financial support for the pharmacokinetic and pharmacodynamic analyses and manuscript preparation was provided by Novartis. The other authors have no potential conflicts of interest that are directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-Ling He PhD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, YL., Serra, D., Wang, Y. et al. Pharmacokinetics and Pharmacodynamics of Vildagliptin in Patients with Type 2 Diabetes Mellitus. Clin Pharmacokinet 46, 577–588 (2007). https://doi.org/10.2165/00003088-200746070-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746070-00003

Keywords

Navigation