Skip to main content
Log in

Pharmacokinetic Characteristics of Antimicrobials and Optimal Treatment of Urosepsis

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Urosepsis accounts for approximately 25% of all sepsis cases and may develop from a community-acquired or nosocomial urinary tract infection (UTI). Nevertheless, the underlying UTI is almost exclusively a complicated one with involvement of the parenchymatous urogenital organs (e.g. kidneys, prostate) and mostly associated with any kind of obstructive uropathy. If urosepsis originates from a nosocomial infection, a broad spectrum of Gram-negative and Gram-positive pathogens have to be expected, which are often multiresistant.

In urosepsis, as in other types of sepsis, the severity of sepsis depends mostly upon the host response. The treatment of urosepsis follows the generally accepted rules of the ‘Surviving Sepsis’ campaign guidelines. Early normalisation of blood pressure and early adequate empirical antibacterial therapy with optimised dosing are equally important to meet the requirements of early goal-directed therapy. In most cases of urosepsis, early control of the infectious focus is possible and as important. Optimal supportive measures need to follow the early phase of resuscitation. To lower mortality from urosepsis, an optimal interdisciplinary approach between intensive care, anti-infective therapy and urology is essential, assisted by easy access to the necessary laboratory and imaging diagnostic procedures.

Although most antibacterials achieve high urinary concentrations, there are several unique features of complicated UTI, and thus urosepsis, that influence the activity of antibacterial substances: (i) renal pharmacokinetics differ in unilateral and bilateral renal impairment and in unilateral and bilateral renal obstruction; (ii) variations in pH may influence the activity of certain antibacterials; and (iii) biofilm infection is frequently found under these conditions, which may increase the minimal inhibitory concentrations (MIC) of the antibacterials at the site of infection by several hundred folds. Assessment of antibacterial pharmacodynamic properties in such situations should take into account not only the MIC as determined in vitro and the plasma concentrations of the free (unbound) drug, which are the guiding principles for many infections, but also the actual renal excretion and urinary bactericidal activity of the antibacterial substance. In the treatment of urosepsis, it is important to achieve optimal exposure to antibacterials both in plasma and in the urinary tract. The role of drugs with low renal excretion rates is therefore limited.

Since urosepsis quite often originates from catheter-associated UTI and urological interventions, optimal catheter care and optimal strategies to prevent nosocomial UTI may be able to reduce the frequency of urosepsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

References

  1. Book M, Lehmann LE, Schewe JC, et al. Urosepsis: current therapy and diagnosis [in German]. Urologe A 2005; 44(4): 413–24

    Article  PubMed  CAS  Google Scholar 

  2. Brun-Buisson C. The epidemiology of the systemic inflammatory response. Intensive Care Med 2000; 26 Suppl. 1: S64–74

    Article  PubMed  Google Scholar 

  3. Martin GS, Mannino DM, Eaton S, et al. The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 2003; 348(16): 1546–54

    Article  PubMed  Google Scholar 

  4. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med 2003; 348(2): 138–50

    Article  PubMed  CAS  Google Scholar 

  5. Brun-Buisson C, Meshaka P, Pinton P, et al. EPISEPSIS: a reappraisal of the epidemiology and outcome of severe sepsis in French intensive care units. Intensive Care Med 2004; 30(4): 580–8

    Article  PubMed  CAS  Google Scholar 

  6. Knaus WA, Sun X, Nystrom O, et al. Evaluation of definitions for sepsis. Chest 1992; 101(6): 1656–62

    Article  PubMed  CAS  Google Scholar 

  7. Rosser CJ, Bare RL, Meredith JW. Urinary tract infections in the critically ill patient with a urinary catheter. Am J Surg 1999; 177(4): 287–90

    Article  PubMed  CAS  Google Scholar 

  8. Menninger M. Urosepsis, Klinik, Diagnostik und Therapie. In: Hofstetter A, editor. Urogenitale Infektionen. Berlin, Heidelberg, New York: Springer, 1998: 521–8

    Google Scholar 

  9. Wagenlehner FM, Weidner W, Naber KG. Emergence of antibiotic resistance amongst hospital-acquired urinary tract infections and pharmacokinetic/pharmacodynamic considerations. J Hosp Infect 2005; 60(3): 191–200

    Article  PubMed  CAS  Google Scholar 

  10. Wagenlehner F, Naber KG. Antibiotics and resistance of uropathogens. European Urology (Update Series) 2004; 2: 125–35

    Google Scholar 

  11. Bone RC, Balk RA, Cerra FB, et al. Definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis: the ACCP/SCCM Consensus Conference Committee. American College of Chest Physicians/Society of Critical Care Medicine. Chest 1992; 101(6): 1644–55

    Article  PubMed  CAS  Google Scholar 

  12. Levy MM, Fink MP, Marshall JC, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med 2003; 31(4): 1250–6

    Article  PubMed  Google Scholar 

  13. Bone RC, Sprung CL, Sibbald WJ. Definitions for sepsis and organ failure. Crit Care Med 1992; 20(6): 724–6

    Article  PubMed  CAS  Google Scholar 

  14. Astiz ME, Rackow EC. Septic shock. Lancet 1998; 351(9114): 1501–5

    Article  PubMed  CAS  Google Scholar 

  15. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282(5396): 2085–8

    Article  PubMed  CAS  Google Scholar 

  16. Opal SM, Huber CE. Bench-to-bedside review: Toll-like receptors and their role in septic shock. Crit Care 2002; 6(2): 125–36

    Article  PubMed  Google Scholar 

  17. Means TK, Golenbock DT, Fenton MJ. Structure and function of Toll-like receptor proteins. Life Sci 2000; 68(3): 241–58

    Article  PubMed  CAS  Google Scholar 

  18. Harbarth S, Holeckova K, Froidevaux C, et al. Diagnostic value of procalcitonin, interleukin-6, and interleukin-8 in critically ill patients admitted with suspected sepsis. Am J Respir Crit Care Med 2001; 164(3): 396–402

    PubMed  CAS  Google Scholar 

  19. Naber KG, Madsen PO. Renal function during acute total ureteral occlusion and the role of the lymphatics: an experimental study in dogs. J Urol 1973; 109(3): 330–8

    PubMed  CAS  Google Scholar 

  20. Naber KG, Madsen PO, Maroske D, et al. Antibiotics and chemotherapeutics in renal lymph: an experimental study in dogs. Invest Urol 1976; 14(1): 23–7

    PubMed  CAS  Google Scholar 

  21. Naber K, Madsen PO, Bichler KH, et al. Determination of renal tissue levels of antibiotics [in German]. Infection 1973; 1: 208–13

    Article  PubMed  CAS  Google Scholar 

  22. Jaenike JR. The renal response to ureteral obstruction: a model for the study of factors which influence glomerular filtration pressure. J Lab Clin Med 1970; 76(3): 373–82

    PubMed  CAS  Google Scholar 

  23. Gulmi FAFD, Vaughan Jr ED. Pathophysiology of urinary tract obstruction. In: Walsh PC, Retik AB, Vaughan ED, et al., editors. Campbell’s urology. 8th ed. Philadelphia: Saunders, 2002: 411–62

    Google Scholar 

  24. Naber KG, Kuni H. Renale Pharmakokinetik. Hahnenklee-Symposium ‘Pyelonephriti’; 1976 May 20–21; Roche, Basel, 271-85

  25. Bricker NS, Morrin PA, Kime Jr SW. The pathologic physiology of chronic Bright’s disease: an exposition of the ‘intact nephron hypothesi’. Am J Med 1960; 28: 77–98

    Article  PubMed  CAS  Google Scholar 

  26. Naber KG, Bishop MC, Bjerklund-Johansen TE, et al. Guidelines on the management of urinary and male genital tract infections. EAU Working Group on Urinary and Male Genital Tract Infections. Arnhem: European Association of Urology, 2006 [online]. Available from URL: http://www.uroweb.nl/files/uploaded_files/guidelines/l5%20Male%20UTI.pdf [Accessed 2007 Feb 26]

  27. Wheeler AP, Bernard GR. Treating patients with severe sepsis. N Engl J Med 1999; 340(3): 207–14

    Article  PubMed  CAS  Google Scholar 

  28. Rivers E, Nguyen B, Havstad S, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345(19): 1368–77

    Article  PubMed  CAS  Google Scholar 

  29. Gluck T, Opal SM. Advances in sepsis therapy. Drugs 2004; 64(8): 837–59

    Article  PubMed  Google Scholar 

  30. Annane D, Sebille V, Charpentier C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002; 288(7): 862–71

    Article  PubMed  CAS  Google Scholar 

  31. van den Berghe G, Wouters P, Weekers F, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med 2001; 345(19): 1359–67

    Article  PubMed  Google Scholar 

  32. Bernard GR, Ely EW, Wright TJ, et al. Safety and dose relationship of recombinant human activated protein C for coagulopathy in severe sepsis. Crit Care Med 2001; 29(11): 2051–9

    Article  PubMed  CAS  Google Scholar 

  33. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med 2004; 32(3): 858–73

    Article  PubMed  Google Scholar 

  34. Dellinger RP, Carlet JM, Masur H, et al. Surviving Sepsis campaign guidelines for management of severe sepsis and septic shock. Intensive Care Med 2004; 30(4): 536–55

    Article  PubMed  Google Scholar 

  35. Yoshimura K, Utsunomiya N, Ichioka K, et al. Emergency drainage for urosepsis associated with upper urinary tract calculi. J Urol 2005; 173(2): 458–62

    Article  PubMed  Google Scholar 

  36. Paterson DL. Restrictive antibiotic policies are appropriate in intensive care units. Crit Care Med 2003; 31(1 Suppl.): S25–8

    Article  PubMed  Google Scholar 

  37. Eggimann P, Pittet D. Infection control in the ICU. Chest 2001; 120(6): 2059–93

    Article  PubMed  CAS  Google Scholar 

  38. Wagenlehner FM, Krcmery S, Held C, et al. Epidemiological analysis of the spread of pathogens from a urological ward using genotypic, phenotypic and clinical parameters. Int J Antimicrob Agents 2002; 19(6): 583–91

    Article  PubMed  CAS  Google Scholar 

  39. Kreger BE, Craven DE, McCabe WR. Gram-negative bacteremia: IV. Re-evaluation of clinical features and treatment in 612 patients. Am J Med 1980; 68(3): 344–55

    Article  PubMed  CAS  Google Scholar 

  40. Kreger BE, Craven DE, Carling PC, et al. Gram-negative bacteremia: III. Reassessment of etiology, epidemiology and ecology in 612 patients. Am J Med 1980; 68(3): 332–43

    Article  PubMed  CAS  Google Scholar 

  41. Elhanan G, Sarhat M, Raz R. Empiric antibiotic treatment and the misuse of culture results and antibiotic sensitivities in patients with community-acquired bacteraemia due to urinary tract infection. J Infect 1997; 35(3): 283–8

    Article  PubMed  CAS  Google Scholar 

  42. Kollef MH, Ward S. The influence of mini-BAL cultures on patient outcomes: implications for the antibiotic management of ventilator-associated pneumonia. Chest 1998; 113(2): 412–20

    Article  PubMed  CAS  Google Scholar 

  43. Luna CM, Vujacich P, Niederman MS, et al. Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 1997; 111(3): 676–85

    Article  PubMed  CAS  Google Scholar 

  44. Singh N, Yu VL. Rational empiric antibiotic prescription in the ICU. Chest 2000; 117(5): 1496–9

    Article  PubMed  CAS  Google Scholar 

  45. Mutlu GM, Wunderink RG. Severe pseudomonal infections. Curr Opin Crit Care 2006; 12(5): 458–63

    Article  PubMed  Google Scholar 

  46. Frimodt-Møller N. How predictive is PK/PD for antibacterial agents? Int J Antimicrob Agents 2002; 19(4): 333–9

    Article  PubMed  Google Scholar 

  47. Frimodt-Møller N. Correlation between pharmacokinetic/pharmacodynamic parameters and efficacy for antibiotics in the treatment of urinary tract infection. Int J Antimicrob Agents 2002; 19(6): 546–53

    Article  PubMed  Google Scholar 

  48. Hvidberg H, Struve C, Krogfelt KA, et al. Development of a long-term ascending urinary tract infection mouse model for antibiotic treatment studies. Antimicrob Agents Chemother 2000; 44(1): 156–63

    Article  PubMed  CAS  Google Scholar 

  49. Naber KG. Which fluoroquinolones are suitable for the treatment of urinary tract infections? Int J Antimicrob Agents 2001; 17(4): 331–41

    Article  PubMed  CAS  Google Scholar 

  50. Mulvey MA, Schilling JD, Hultgren SJ. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 2001; 69(7): 4572–9

    Article  PubMed  CAS  Google Scholar 

  51. Ivanyi B, Rumpelt HJ, Thoenes W. Acute human pyelonephritis: leukocytic infiltration of tubules and localization of bacteria. Virchows Arch A Pathol Anat Histopathol 1988; 414(1): 29–37

    Article  PubMed  CAS  Google Scholar 

  52. Deguchi T, Kuriyama M, Maeda S, et al. Electron microscopic study of acute retrograde pyelonephritis in mice. Urology 1990; 35(5): 423–7

    Article  PubMed  CAS  Google Scholar 

  53. Chippendale GR, Warren JW, Trifillis AL, et al. Internalization of Proteus mirabilis by human renal epithelial cells. Infect Immun 1994; 62(8): 3115–21

    PubMed  CAS  Google Scholar 

  54. Anderson GG, Martin SM, Hultgren SJ. Host subversion by formation of intracellular bacterial communities in the urinary tract. Microbes Infect 2004; 6(12): 1094–101

    Article  PubMed  Google Scholar 

  55. Justice SS, Hung C, Theriot JA, et al. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci U S A 2004; 101(5): 1333–8

    Article  PubMed  CAS  Google Scholar 

  56. Kumon H. Management of biofilm infections in the urinary tract. World J Surg 2000; 24(10): 1193–6

    Article  PubMed  CAS  Google Scholar 

  57. Nickel JC, Olson ME, Costerton JW. Rat model of experimental bacterial prostatitis. Infection 1991; 19 Suppl. 3: S126–30

    Article  PubMed  Google Scholar 

  58. Zogaj X, Bokranz W, Nimtz M, et al. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 2003; 71(7): 4151–8

    Article  PubMed  CAS  Google Scholar 

  59. Sabbuba NA, Mahenthiralingam E, Stickler DJ. Molecular epidemiology of Proteus mirabilis infections of the catheterized urinary tract. J Clin Microbiol 2003; 41(11): 4961–5

    Article  PubMed  CAS  Google Scholar 

  60. Jansen AM, Lockatell V, Johnson DE, et al. Mannose-resistant Proteus-like fimbriae are produced by most Proteus mirabilis strains infecting the urinary tract, dictate the in vivo localization of bacteria, and contribute to biofilm formation. Infect Immun 2004; 72(12): 7294–305

    Article  PubMed  CAS  Google Scholar 

  61. Ando E, Monden K, Mitsuhata R, et al. Biofilm formation among methicillin-resistant Staphylococcus aureus isolates from patients with urinary tract infection. Acta Med Okayama 2004; 58(4): 207–14

    PubMed  CAS  Google Scholar 

  62. Debbia EA, Dolcino M, Marchese A, et al. Enhanced biofilm-production in pathogens isolated from patients with rare metabolic disorders. New Microbiol 2004; 27(4): 361–7

    PubMed  CAS  Google Scholar 

  63. Seno Y, Kariyama R, Mitsuhata R, et al. Clinical implications of biofilm formation by Enterococcus faecalis in the urinary tract. Acta Med Okayama 2005; 59(3): 79–87

    PubMed  Google Scholar 

  64. Bokranz W, Wang X, Tschape H, et al. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 2005; 54 (Pt12): 1171–82

    Article  CAS  Google Scholar 

  65. Goto T, Nakame Y, Nishida M, et al. In vitro bactericidal activities of beta-lactamases, amikacin, and fluoroquinolones against Pseudomonas aeruginosa biofilm in artificial urine. Urology 1999; 53(5): 1058–62

    Article  PubMed  CAS  Google Scholar 

  66. Goto T, Nakame Y, Nishida M, et al. Bacterial biofilms and catheters in experimental urinary tract infection. Int J Antimicrob Agents 1999; 11(3–4): 227–31, discussion 237-9

    Article  PubMed  CAS  Google Scholar 

  67. Scheid WM. Maintaining fluoroquinolone class efficacy: review of influencing factors. Emerg Infect Dis 2003; 9(1): 1–9

    Article  Google Scholar 

  68. Pea F, Pavan F, Di Quai E, et al. Urinary pharmacokinetics and theoretical pharmacodynamics of intravenous levofloxacin in intensive care unit patients treated with 500mg b.i.d. for ventilator-associated pneumonia. J Chemother 2003; 15(6): 563–7

    PubMed  CAS  Google Scholar 

  69. Hansen GT, Blondeau JM. Comparison of the minimum inhibitory, mutant prevention and minimum bactericidal concentrations of ciprofloxacin, levofloxacin and garenoxacin against enteric Gram-negative urinary tract infection pathogens. J Chemother 2005; 17(5): 484–92

    PubMed  CAS  Google Scholar 

  70. Hansen GT, Zhao X, Drlica K, et al. Mutant prevention concentration for ciprofloxacin and levofloxacin with Pseudomonas aeruginosa. Int J Antimicrob Agents 2006; 27(2): 120–4

    Article  PubMed  CAS  Google Scholar 

  71. Fang GD, Brennen C, Wagener M, et al. Use of ciprofloxacin versus use of aminoglycosides for therapy of complicated urinary tract infection: prospective, randomized clinical and pharmacokinetic study. Antimicrob Agents Chemother 1991; 35(9): 1849–55

    Article  PubMed  CAS  Google Scholar 

  72. Peters HJ. Comparison of intravenous ciprofloxacin and mezlocillin in treatment of complicated urinary tract infection. Eur J Clin Microbiol 1986; 5(2): 253–5

    Article  PubMed  CAS  Google Scholar 

  73. Peters HJ. Sequential therapy with ofloxacin in complicated urinary tract infections: a randomized comparative study with ciprofloxacin. Infection 1992; 20(3): 172–3

    Article  PubMed  CAS  Google Scholar 

  74. Naber KG, di Silverio F, Geddes A, et al. Comparative efficacy of sparfloxacin versus ciprofloxacin in the treatment of complicated urinary tract infection. J Antimicrob Chemother 1996; 37 Suppl. A: 135–44

    Article  PubMed  CAS  Google Scholar 

  75. Mombelli G, Pezzoli R, Pinoja-Lutz G, et al. Oral vs intravenous ciprofloxacin in the initial empirical management of severe pyelonephritis or complicated urinary tract infections: a prospective randomized clinical trial. Arch Intern Med 1999; 159(1): 53–8

    Article  PubMed  CAS  Google Scholar 

  76. McCue JD. Complicated, recurrent, and geriatric UTI. Contemp Urol 1995; Suppl.: 10-7

  77. McCue JD, Gaziano P, Orders D. A randomised controlled trial of ofloxacin 200mg 4 times daily or twice daily vs ciprofloxacin 500mg twice daily in elderly nursing home patients with complicated UTI. Drugs 1995; 49 Suppl. 2: 368–73

    Article  PubMed  CAS  Google Scholar 

  78. Whitby M, Angus L, Nimmo G, et al. Complicated urinary infection in spinal injury patients: fleroxacin compared with ciprofloxacin. Chemotherapy 1996; 42(6): 468–72

    Article  PubMed  CAS  Google Scholar 

  79. Pisani E, Bartoletti R, Trinchieri A, et al. Lomefloxacin versus ciprofloxacin in the treatment of complicated urinary tract infections: a multicenter study. J Chemother 1996; 8(3): 210–3

    PubMed  CAS  Google Scholar 

  80. Raz R, Naber KG, Raizenberg C, et al. Ciprofloxacin 250mg twice daily versus ofloxacin 200mg twice daily in the treatment of complicated urinary tract infections in women. Eur J Clin Microbiol Infect Dis 2000; 19(5): 327–31

    Article  PubMed  CAS  Google Scholar 

  81. Krcmery S, Naber KG. Ciprofloxacin once versus twice daily in the treatment of complicated urinary tract infections. German Ciprofloxacin UTI Study Group. Int J Antimicrob Agents 1999; 11(2): 133–8

    Article  PubMed  CAS  Google Scholar 

  82. Frankenschmidt A, Naber KG, Bischoff W, et al. Once-daily fleroxacin versus twice-daily ciprofloxacin in the treatment of complicated urinary tract infections. J Urol 1997; 158(4): 1494–9

    Article  PubMed  CAS  Google Scholar 

  83. Cox CE, Marbury TC, Pittman WG, et al. A randomized, double-blind, multicenter comparison of gatifloxacin versus ciprofloxacin in the treatment of complicated urinary tract infection and pyelonephritis. Clin Ther 2002; 24(2): 223–36

    Article  PubMed  CAS  Google Scholar 

  84. Talan DA, Klimberg IW, Nicolle LE, et al. Once daily, extended release ciprofloxacin for complicated urinary tract infections and acute uncomplicated pyelonephritis. J Urol 2004; 171 (2 Pt1): 734–9

    Article  CAS  Google Scholar 

  85. Matsumoto T, Kumazawa J, Ueda S, et al. Treatment of complicated urinary tract infections with ofloxacin following an aminoglycoside. Chemotherapy 1991; 37 Suppl. 1: 60–7

    Article  PubMed  Google Scholar 

  86. Schalkhauser K. Comparison of i.V. ofloxacin and piperacillin in the treatment of complicated urinary tract infections. J Antimicrob Chemother 1990; 26 Suppl. D: 93–7

    Article  PubMed  Google Scholar 

  87. Cox CE. Comparison of intravenous fleroxacin with ceftazidime for treatment of complicated urinary tract infections. Am J Med 1993; 94(3A): 118S–25S

    PubMed  CAS  Google Scholar 

  88. Pittman W, Moon JO, Hamrick Jr LC, et al. Randomized double-blind trial of high- and low-dose fleroxacin versus norfloxacin for complicated urinary tract infection. Am J Med 1993; 94(3A): 101S–4S

    PubMed  CAS  Google Scholar 

  89. Gelfand MS, Simmons BP, Craft RB, et al. A sequential study of intravenous and oral fleroxacin in the treatment of complicated urinary tract infection. Am J Med 1993; 94(3A): 126S–30S

    PubMed  CAS  Google Scholar 

  90. Giamarellou H. Fleroxacin in complicated urinary tract infections. Chemotherapy 1996; 42 Suppl. 1: 17–27

    Article  PubMed  CAS  Google Scholar 

  91. Nicolle LE, Louie TJ, Dubois J, et al. Treatment of complicated urinary tract infections with lomefloxacin compared with that with trimethoprim-sulfamethoxazole. Antimicrob Agents Chemother 1994; 38(6): 1368–73

    Article  PubMed  CAS  Google Scholar 

  92. Hoepelman IM, Havinga WH, Benne RA, et al. Safety and efficacy of lomefloxacin versus norfloxacin in the treatment of complicated urinary tract infections. Eur J Clin Microbiol Infect Dis 1993; 12(5): 343–7

    Article  PubMed  CAS  Google Scholar 

  93. Gottlieb PL. Comparison of enoxacin versus trimethoprim-sulfamethoxazole in the treatment of patients with complicated urinary tract infection. Clin Ther 1995; 17(3): 493–502

    Article  PubMed  CAS  Google Scholar 

  94. Klimberg IW, Cox CE, 2nd, et al. A controlled trial of levofloxacin and lomefloxacin in the treatment of complicated urinary tract infection. Urology 1998; 51(4): 610–5

    Article  PubMed  CAS  Google Scholar 

  95. Peng MY. Randomized, double-blind, comparative study of levofloxacin and ofloxacin in the treatment of complicated urinary tract infections. J Microbiol Immunol Infect 1999; 32(1): 33–9

    PubMed  CAS  Google Scholar 

  96. Lubasch A, Keller I, Borner K, et al. Comparative pharmacokinetics of ciprofloxacin, gatifloxacin, grepafloxacin, levofloxacin, trovafloxacin, and moxifloxacin after single oral administration in healthy volunteers. Antimicrob Agents Chemother 2000; 44(10): 2600–3

    Article  PubMed  CAS  Google Scholar 

  97. Naber K. Antibacterial activity of antibacterial agents in urine: an overview of applied methods. In: Bergan T, editor. Urinary tract infections. Basel, Freiburg, Paris, London, New York: Karger, 1997: 74–83

    Chapter  Google Scholar 

  98. Wagenlehner F, Tischmeyer U, Kinzig-Schippers M, Sörgel F, Wagenlehner C, Naber KG. Plasma concentrations, urinary excretion and bactericidal activity of ciproloxacin XR (1,000mg) versus levofloxacin (500mg) in healthy volunteers receiving a single oral dose. 24th International Congress of Chemotherapy; 2005 June 4–6; Manila

    Google Scholar 

  99. Wagenlehner FM, Kinzig-Schippers M, Tischmeyer U, et al. Pharmacokinetics of ciprofloxacin XR (1000mg) versus levofloxacin (500mg) in plasma and urine of male and female healthy volunteers receiving a single oral dose. Int J Antimicrob Agents 2006; 27(1): 7–14

    Article  PubMed  CAS  Google Scholar 

  100. Boy D, Well M, Kinzig-Schippers M, et al. Urinary bactericidal activity, urinary excretion and plasma concentrations of gatifloxacin (400 mg) versus ciprofloxacin (500 mg) in healthy volunteers after a single oral dose. Int J Antimicrob Agents 2004; 23 Suppl. 1: S6–16

    Article  PubMed  CAS  Google Scholar 

  101. Stein GE, Schooley S. Urinary concentrations and bactericidal activities of newer fluoroquinolones in healthy volunteers. Int J Antimicrob Agents 2004; 24(2): 168–72

    Article  PubMed  CAS  Google Scholar 

  102. Wagenlehner FM, Kinzig-Schippers M, Tischmeyer U, et al. Urinary bactericidal activity of extended-release ciprofloxacin (1,000 milligrams) versus levofloxacin (500 milligrams) in healthy volunteers receiving a single oral dose. Antimicrob Agents Chemother 2006; 50(11): 3947–9

    Article  PubMed  CAS  Google Scholar 

  103. Allen A, Bygate E, Oliver S, et al. Pharmacokinetics and tolerability of gemifloxacin (SB-265805) after administration of single oral doses to healthy volunteers. Antimicrob Agents Chemother 2000; 44(6): 1604–8

    Article  PubMed  CAS  Google Scholar 

  104. Aminimanizani A, Beringer P, Jelliffe R. Comparative pharmacokinetics and pharmacodynamics of the newer fluoroquinolone antibacterials. Clin Pharmacokinet 2001; 40(3): 169–87

    Article  PubMed  CAS  Google Scholar 

  105. Vincent J, Venitz J, Teng R, et al. Pharmacokinetics and safety of trovafloxacin in healthy male volunteers following administration of single intravenous doses of the prodrug, alatrofloxacin. J Antimicrob Chemother 1997; 39 Suppl. B: 75–80

    Article  PubMed  CAS  Google Scholar 

  106. Richard GA, Klimberg IN, Fowler CL, et al. Levofloxacin versus ciprofloxacin versus lomefloxacin in acute pyelonephritis. Urology 1998; 52(1): 51–5

    Article  PubMed  CAS  Google Scholar 

  107. Naber KG, Bartnicki A, Bischoff W, et al. Gatifloxacin 200mg or 400mg once daily is as effective as ciprofloxacin 500mg twice daily for the treatment of patients with acute pyelonephritis or complicated urinary tract infections. Int J Antimicrob Agents 2004; 23 Suppl. 1: S41–53

    Article  PubMed  CAS  Google Scholar 

  108. Data on file, Bayer Healthcare

  109. Data on file, SmithKline Beecham

  110. Persky L, Liesen D, Yangco B. Reduced urosepsis in a veterans’ hospital. Urology 1992; 39(5): 443–5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian M. E. Wagenlehner.

About this article

Cite this article

Wagenlehner, F.M.E., Weidner, W. & Naber, K.G. Pharmacokinetic Characteristics of Antimicrobials and Optimal Treatment of Urosepsis. Clin Pharmacokinet 46, 291–305 (2007). https://doi.org/10.2165/00003088-200746040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200746040-00003

Keywords

Navigation