Skip to main content
Log in

Clinical Pharmacokinetics of Atomoxetine

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Atomoxetine (Strattera®), a potent and selective inhibitor of the presynaptic norepinephrine transporter, is used clinically for the treatment of attention-deficit hyperactivity disorder (ADHD) in children, adolescents and adults. Atomoxetine has high aqueous solubility and biological membrane permeability that facilitates its rapid and complete absorption after oral administration. Absolute oral bioavailability ranges from 63 to 94%, which is governed by the extent of its first-pass metabolism. Three oxidative metabolic pathways are involved in the systemic clearance of atomoxetine: aromatic ring-hydroxylation, benzylic hydroxylation and N-demethylation. Aromatic ring-hydroxylation results in the formation of the primary oxidative metabolite of atomoxetine, 4-hydroxyatomoxetine, which is subsequently glucuronidated and excreted in urine. The formation of 4-hydroxy-atomoxetine is primarily mediated by the polymorphically expressed enzyme cytochrome P450 (CYP) 2D6. This results in two distinct populations of individuals: those exhibiting active metabolic capabilities (CYP2D6 extensive metabolisers) and those exhibiting poor metabolic capabilities (CYP2D6 poor metabolisers) for atomoxetine.

The oral bioavailability and clearance of atomoxetine are influenced by the activity of CYP2D6; nonetheless, plasma pharmacokinetic parameters are predictable in extensive and poor metaboliser patients. After single oral dose, atomoxetine reaches maximum plasma concentration within about 1–2 hours of administration. In extensive metabolisers, atomoxetine has a plasma half-life of 5.2 hours, while in poor metabolisers, atomoxetine has a plasma half-life of 21.6 hours. The systemic plasma clearance of atomoxetine is 0.35 and 0.03 L/h/kg in extensive and poor metabolisers, respectively. Correspondingly, the average steady-state plasma concentrations are approximately 10-fold higher in poor metabolisers compared with extensive metabolisers. Upon multiple dosing there is plasma accumulation of atomoxetine in poor metabolisers, but very little accumulation in extensive metabolisers. The volume of distribution is 0.85 L/kg, indicating that atomoxetine is distributed in total body water in both extensive and poor metabolisers. Atomoxetine is highly bound to plasma albumin (approximately 99% bound in plasma). Although steady-state concentrations of atomoxetine in poor metabolisers are higher than those in extensive metabolisers following administration of the same mg/kg/day dosage, the frequency and severity of adverse events are similar regardless of CYP2D6 phenotype.

Atomoxetine administration does not inhibit or induce the clearance of other drugs metabolised by CYP enzymes. In extensive metabolisers, potent and selective CYP2D6 inhibitors reduce atomoxetine clearance; however, administration of CYP inhibitors to poor metabolisers has no effect on the steady-state plasma concentrations of atomoxetine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Fig. 3
Table II
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Spencer T, Biederman J, Wilens T, et al. Pharmacotherapy of attention-deficit hyperactivity disorder across the life cycle. Child Adol Psychiatry 1996; 35: 409–32

    Article  CAS  Google Scholar 

  2. Swanson JM, Sergeant JA, Sonuga-Barke EJS, et al. Attention-deficit hyperactivity disorder and hyperkinetic disorder. Lancet 1998; 351: 429–33

    Article  PubMed  CAS  Google Scholar 

  3. Weiss G. Follow-up studies on outcome of hyperactive children. Psychopharmacol Bull 1985; 21: 169–77

    PubMed  CAS  Google Scholar 

  4. Pary R, Lewis S, Matuschka PR, et al. Attention deficit disorder in adults. Ann Clin Psychiatry 2002; 14: 105–11

    PubMed  Google Scholar 

  5. Adler LA, Chua HC. Management of ADHD in adults. J Clin Psychiatry 2002; 63 Suppl. 12: 29–35

    PubMed  Google Scholar 

  6. Barkley FA, Fischer M, Edelbrock CS, et al. The adolescent outcome of hyperactive children diagnosed by research criteria: I. An 8-year prospective follow-up study. J Am Acad Child Adolesc Psychiatry 1990; 29: 546–57

    Article  PubMed  CAS  Google Scholar 

  7. Munir K, Biederman J, Knee D. Psychiatric comorbidity in patients with attention deficit disorder: a controlled study. J Am Acad Child Adolesc Psychiatry 1987; 26: 844–8

    Article  PubMed  CAS  Google Scholar 

  8. Biederman J, Newcorn J, Sprich S. Comorbidity of attention deficit hyperactivity disorder with conduct, depressive, anxiety, and other disorders. Am J Psychiatry 1991; 148: 564–77

    PubMed  CAS  Google Scholar 

  9. Spencer TJ, Biederman J, Wilens TE, et al. Overview and neurobiology of attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002; 63 Suppl. 12: 3–9

    PubMed  Google Scholar 

  10. Volkow ND, Fowler JS, Wang G-J, et al. Role of dopamine in the therapeutic and reinforcing effects of methylphenidate in humans: results from imaging studies. Eur Neuropsychopharmacol 2002; 12: 557–66

    Article  PubMed  CAS  Google Scholar 

  11. Giros B, Caron MG. Molecular characterization of the dopamine transporter. Trends Pharmacol Sci 1993; 14: 43–9

    Article  PubMed  CAS  Google Scholar 

  12. Patrick KS, Markowitz JS. Pharmacology of methylphenidate, amphetamine enantiomers and pemoline in attention-deficit hyperactivity disorder: a review. Hum Psychopharmacol 1997; 12: 527–46

    Article  CAS  Google Scholar 

  13. Dackis CA, Gold MS. Addictiveness of central stimulants. Adv Alcohol Subst Abuse 1990; 9: 9–26

    Article  PubMed  CAS  Google Scholar 

  14. Markowitz JS, Patrick KS. Pharmacokinetic and pharmacodynamic drug interactions in the treatment of attention-deficit hyperactivity disorder. Clin Pharmacokinet 2001; 40: 753–72

    Article  PubMed  CAS  Google Scholar 

  15. Pelham WE, Gnagy EM, Burrows-Maclean L, et al. Once-a-day Concerta methylphenidate versus three-times-daily methylphenidate in laboratory and natural settings [abstract]. Pediatrics 2001; 107: E105

    Article  PubMed  CAS  Google Scholar 

  16. Lyseng-Williamson KA, Keating GM. Extended-release methylphenidate (Ritalin LA). Drugs 2002; 62: 2251–9

    Article  PubMed  CAS  Google Scholar 

  17. Tulloch SJ, Zhang Y, McLean A, et al. SLI381 (Adderall XR), a two-component, extended-release formulation of mixed amphetamine salts: bioavailability of three test formulations and comparison of fasted, fed, and sprinkled administration. Pharmacotherapy 2002; 22: 1405–15

    Article  PubMed  CAS  Google Scholar 

  18. Wu D, Otton SV, Inaba T, et al. Interactions of amphetamine analogs with human liver CYP2D6. Biochem Pharmacol 1997; 53: 1605–12

    Article  PubMed  CAS  Google Scholar 

  19. Nehra A, Mullick R, Ishak KG, et al. Pemoline-associated hepatic injury. Gastroenterology 1990; 99: 1517–9

    PubMed  CAS  Google Scholar 

  20. Popper CW. Antidepressants in the treatment of attention-deficit/hyperactivity disorder. J Clin Psychiatry 1997; 58 Suppl. 14: 14–29

    PubMed  CAS  Google Scholar 

  21. Wong DT, Threlkeld PG, Best KL, et al. A new inhibitor of norepinephrine uptake devoid of affinity for receptors in rat brain. J Pharmacol Exp Ther 1982; 222: 61–5

    PubMed  CAS  Google Scholar 

  22. Bymaster FP, Katner JS, Nelson DL, et al. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2002; 27: 699–711

    Article  PubMed  CAS  Google Scholar 

  23. Spencer T, Biederman J, Wilens T, et al. Effectiveness and tolerability of tomoxetine in adults with attention deficit hyper-activity disorder. Am J Psychiatry 1998; 155: 693–5

    PubMed  CAS  Google Scholar 

  24. Michelson D, Adler L, Spencer T, et al. Atomoxetine in adults with ADHD: two randomized, placebo-controlled studies. Biol Psychiatry 2003; 53: 112–20

    Article  PubMed  CAS  Google Scholar 

  25. Michelson D, Faries DE, Wernicke J, et al. Atomoxetine in the treatment of children and adolescents with ADHD: a randomized, placebo-controlled dose-response study [abstract]. Pediatrics 2001; 108: E83

    Article  PubMed  CAS  Google Scholar 

  26. Michelson D, Allen AJ, Busner J, et al. Once-daily atomoxetine treatment for children and adolescents with attention deficit hyperactivity disorder: a randomized, placebo-controlled study. Am J Psychiatry 2002; 159: 1896–901

    Article  PubMed  Google Scholar 

  27. Kratochvil CJ, Heiligenstein JH, Dittmann R, et al. Atomoxetine and methylphenidate treatment in children with ADHD: a prospective, randomized, open-label trial. Am Acad Child Adolesc Psychiatry 2002; 41: 776–84

    Article  Google Scholar 

  28. Sauer JM, Ponsler GD, Mattiuz EL, et al. Disposition and metabolic fate of atomoxetine hydrochloride: the role of CYP2D6 in human disposition and metabolism. Drug Metab Dispos 2003; 31: 98–107

    Article  PubMed  CAS  Google Scholar 

  29. Farid NA, Bergstrom RF, Ziege EA, et al. Single-dose and steady-state pharmacokinetics of tomoxetine in normal subjects. J Clin Pharmacol 1985; 25: 296–301

    PubMed  CAS  Google Scholar 

  30. Belle DJ, Ernest S, Sauer JM, et al. Effect of potent CYP2D6 inhibition by paroxetine on atomoxetine pharmacokinetics. J Clin Pharmacol 2002; 42: 1–9

    Google Scholar 

  31. Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz de Montellano PR, editor. Cytochrome P450: structure, mechanism, and biochemistry. New York: Plenum Press, 1995: 473–535

    Google Scholar 

  32. Sachse C, Brockmoller J, Bauer S, et al. Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–95

    PubMed  CAS  Google Scholar 

  33. Agundez JA, Ledesma MC, Ladero JM, et al. Prevalence of CYP2D6 gene duplication and its repercussion on the oxidative phenotype in a white population. Clin Pharmacol Ther 1995; 57: 265–9

    Article  PubMed  CAS  Google Scholar 

  34. Chalon S, Desager JP, DeSante K, et al. Effect of liver impairment on the pharmacokinetics of atomoxetine and its metabolites. Clin Pharmacol Ther 2003; 73: 178–91

    Article  PubMed  CAS  Google Scholar 

  35. Sauer JM, Long AJ, Ring B, et al. Disposition and metabolic fate of atomoxetine hydrochloride: clinical drug-drug interaction prediction and outcome. J Pharmacol and Exp Ther 2004; 308: 410–8

    Article  CAS  Google Scholar 

  36. Witcher JW, Long AJ, Sauer JM, et al. Atomoxetine pharmacokinetics in children with attention deficit hyperactivity disorder. J Child Adolesc Psychopharmacol 2003; 13: 53–64

    Article  PubMed  Google Scholar 

  37. Strattera™ (atomoxetine) package insert (NDA21–411). Indianapolis (IN); Eli Lilly and Co., 2003

  38. Evans DAP, Maghoub A, Sloan TP, et al. A family and population study of the genetic polymorphism of the debrisoquine oxidation in a white British population. J Med Genet 1980; 17: 102–5

    Article  PubMed  CAS  Google Scholar 

  39. Steiner E, Bertilsson L, Sawe J, et al. Polymorphic debrisoquine hydroxylation in 757 Swedish subjects. Clin Pharmacol Ther 1988; 44: 431–5

    Article  PubMed  CAS  Google Scholar 

  40. DeSante K, Long A, Smith B, et al. Atomoxetine absolute bioavailability and effects of food, Maalox or omeprazole on atomoxetine bioavailability. AAPS Annual Meeting and Exposition; 2001 Oct 21–25; Denver

    Google Scholar 

  41. Herman JL, Kou F, Sauer JM, et al. Tissue disposition of 14C-tomoxetine in male Fischer 344 rats following a single oral dose administration. Society for Whole-Body Autoradiography Meeting; 1999 Apr 18–20; St Louis

    Google Scholar 

  42. Hamilton MM, Herman JL, Kou F, et al. Placental transfer and milk excretion in rats after a single oral 50 mg/kg dose of [14C]atomoxetine administered as the hydrochloride salt. European Society for Whole Body Autoradiography; 2000, Paris

  43. Ring BJ, Gillespie JS, Eckstein JA, et al. Identification of the human cytochromes P450 responsible for atomoxetine metabolism. Drug Metab Dispos 2002; 30: 319–23

    Article  PubMed  CAS  Google Scholar 

  44. Segel IH. Enzyme kinetics. New York: John Wiley and Sons, Inc., 1975

    Google Scholar 

  45. Oberlender R, Nichols DE, Ramachandran PV, et al. Tomoxetine and the stereoselectivity of drug action. J Pharm Pharmacol 1987; 39: 1055–6

    Article  PubMed  CAS  Google Scholar 

  46. Gehlert DR, Gackenheimer SL, Robertson DW. Localization of rat brain binding sites for [3H]tomoxetine, an enantiomerically pure ligand for norepinephrine reuptake sites. Neurosci Lett 1993; 157: 203–6

    Article  PubMed  CAS  Google Scholar 

  47. Gehlert DR, Schober DA, Gackenheimer SL. Comparison of (R)-[3H]tomoxetine and (R/S)-[3H]nisoxetine binding in rat brain. J Neurochem 1995; 64: 2792–800

    Article  PubMed  CAS  Google Scholar 

  48. Heil SH, Holmes HW, Bickel WK, et al. Comparison of the subjective, physiological, and psychomotor effects of atomoxetine and methylphenidate in light drug users. Drug Alcohol Depend 2002; 67: 149–56

    Article  PubMed  CAS  Google Scholar 

  49. Wheeler WJ, Bymaster FP, Calligaro DO, et al. Strattera® (atomoxetine HCl), an inhibitor of the norepinephrine transporter. I: the preparation of C-14 labeled atomoxetine, and two of its metabolites; II: The preparation and biological evaluation of some additional putative metabolites of atomoxetine. In: Dean DC, Filer CN, McCarthy KE, editors. Synthesis and applications of isotopically labelled compounds. Vol 8. New York: John Wiley and Sons, Inc., 2004: 357–60

    Google Scholar 

  50. Fuller RW, Hemrick-Luecke SK. Antagonism by tomoxetine of the depletion of norepinephrine and epinephrine in rat brain by alpha-methyl-m-tyrosine. Res Commun Chem Path Pharmacol 1983; 41: 169–72

    CAS  Google Scholar 

  51. Mattiuz EL, Ponsler GD, Barbuch RJ, et al. Disposition and metabolic fate of atomoxetine hydrochloride: pharmacokinetics, metabolism, and excretion in the fischer 344 rat and beagle dog. Drug Metab Dispos 2003; 31: 88–97

    Article  PubMed  CAS  Google Scholar 

  52. Tidey JW, Bergman J. Drug discrimination in methamphetamine-trained monkeys: agonist and antagonist effects of dopaminergic drugs. J Pharmacol Exp Ther 1998; 285: 1163–74

    PubMed  CAS  Google Scholar 

  53. Wernicke JF, Kratochvil CJ. Safety profile of atomoxetine in the treatment of children and adolescents with ADHD. J Clin Psychiatry 2002; 63 Suppl. 12: 50–5

    PubMed  CAS  Google Scholar 

  54. Wernicke JF, Allen AJ, Faries D, et al. Safety of tomoxetine in clinical trials [abstract]. Biol Psychiatry 2001; 49(8 Suppl.): 159S

    Google Scholar 

  55. Spencer T, Heiligenstein JH, Biederman J, et al. Results from 2 proof-of-concept, placebo-controlled studies of atomoxetine in children with attention-deficit/hyperactivity disorder. J Clin Psychiatry 2002; 63: 1140–7

    Article  PubMed  CAS  Google Scholar 

  56. Wernicke JF, Faries D, Girod D, et al. Cardiovascular effects of atomoxetine in children, adolescents, and adults. Drug Saf 2003; 26: 729–40

    Article  PubMed  CAS  Google Scholar 

  57. Chouinard G, Annable L, Bradwejn J. An early phase II clinical trial of tomoxetine (LY139603) in the treatment of newly admitted depressed patients. Psychopharmacologia 1984; 83: 126–8

    Article  CAS  Google Scholar 

  58. Zerbe RL, Rowe H, Enas GG, et al. Clinical pharmacology of tomoxetine, a potential antidepressant. J Pharmacol Exp Ther 1985; 232: 139–43

    PubMed  CAS  Google Scholar 

  59. Allen AJ, Wernicke JF, Dunn D, et al. Safety and efficacy of atomoxetine in pediatric CYP2D6 extensive and poor metabolizers. Biol Psychiatry 2001; 49(8 Suppl.): 37S

    Google Scholar 

  60. Caccia S. Metabolism of the newer antidepressants: an overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998; 34: 281–302

    Article  PubMed  CAS  Google Scholar 

  61. Preskorn SH. Clinically relevant pharmacology of selective serotonin reuptake inhibitors: an overview with emphasis on pharmacokinetics and effects on oxidative drug metabolism. Clin Pharmacokinet 1997; 32S: 1–21

    Article  PubMed  CAS  Google Scholar 

  62. Brøsen K, Hansen JG, Nielsen KK, et al. Inhibition by paroxetine of desipramine metabolism in extensive but not in poor metabolizers of sparteine. Eur J Clin Pharmacol 1993; 44: 349–55

    Article  PubMed  Google Scholar 

  63. Özdemir V, Naranjo CA, Herrmann N, et al. Paroxetine potentiates the central nervous system side effects of perphenazine: contribution of cytochrome P4502D6 inhibition in vivo. Clin Pharmacol Ther 1997; 62: 334–47

    Article  PubMed  Google Scholar 

  64. Alderman J, Preskorn SH, Greenblatt DJ, et al. Desipramine pharmacokinetics when coadministered with paroxetine or sertraline in extensive metabolizers. J Clin Psychopharmacol 1997; 17: 284–91

    Article  PubMed  CAS  Google Scholar 

  65. Hemeryck A, Lefebvre RA, De Vriendt C, et al, editor. Paroxetine affects metoprolol pharmacokinetics and pharmacodynamics in healthy volunteers. Drug Metab Dispos 2001; 29: 656–63

    PubMed  CAS  Google Scholar 

  66. Kobayashi K, Yamamoto T, Chiba K, et al. The effects of selective serotonin reuptake inhibitors and their metablites on S-mephenytoin 4′-hydroxylase activity in human liver microsomes. Br J Clin Pharmacol 1995; 40: 481–5

    Article  PubMed  CAS  Google Scholar 

  67. von Moltke LL, Greenblatt DJ, Court MH, et al. Inhibition of alprazolam and desipramine hydroxylation in vitro by paroxetine and fluvoxamine: comparison with other selective serotonin reuptake inhibitor antidepressants. J Clin Psychopharmacol 1995; 15: 125–31

    Article  Google Scholar 

  68. Jeppesen U, Gram LF, Vistisen K, et al. Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996; 51: 73–8

    Article  PubMed  CAS  Google Scholar 

  69. Martin DE, Zussman BD, Everitt DE, et al. Paroxetine does not affect the cardiac safety and pharmacokinetics of terfenadine in healthy adult men. J Clin Psychopharmacol 1997; 17: 451–9

    Article  PubMed  CAS  Google Scholar 

  70. Schmider J, Greenblatt DJ, von Moltke LL, et al. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors in vitro: studies of phenytoin p-hydroxylation. Br J Clin Pharmacol 1997; 44: 495–8

    Article  PubMed  CAS  Google Scholar 

  71. Hemeryck A, De Vriendt C, Belpaire FM. Inhibition of CYP2C9 by selective serotonin reuptake inhibitors: in vitro studies with tolbutamide and (S)-warfarin using human liver microsomes. Eur J Clin Pharmacol 1999; 54: 947–51

    Article  PubMed  CAS  Google Scholar 

  72. Long A, Witcher J, Smith B, et al. Atomoxetine does not alter the plasma pharmacokinetics of desipramine in healthy subjects. AAPS Annual Meeting and Exposition; 2001 Oct 21–25, Denver

    Google Scholar 

  73. Spina E, Avenoso A, Campo GM, et al. Effect of ketoconazole on the pharmacokinetics of imipramine and desipramine in healthy subjects. Br J Clin Pharmacol 1997; 43: 315–8

    Article  PubMed  CAS  Google Scholar 

  74. Sanburn N, Long A, Witcher J, et al. Co-administration of atomoxetine hydrochloride and midazolam results in no clinically significant drug-drug interaction. AAPS Annual Meeting and Exposition; 2001 Oct 21–25, Denver

    Google Scholar 

  75. Kronbach T, Mathys D, Umeno M, et al. Oxidation of midazolam and triazolam by human liver cytochrome P450IIIA4. Mol Pharmacol 1989; 36: 89–96

    PubMed  CAS  Google Scholar 

  76. Olkkola KT, Backman JT, Neuvonen PJ. Midazolam should be avoided in patients receiving the systemic antimycotics ketoconazole or itraconazole. Clin Pharmacol Ther 1994; 55: 481–5

    Article  PubMed  CAS  Google Scholar 

  77. Yuan R, Flockhart D, Balian J. Pharmacokinetic and pharmacodynamic consequences of metabolism-based drug interactions with alprazolam, midazolam, and triazolam. J Clin Pharmacol 1999; 39: 1109–25

    PubMed  CAS  Google Scholar 

  78. Witcher JW, Kurtz DL, Sauer JM, et al. Pharmacokinetic/pharmacodynamic relationship of atomoxetine exposure and efficacy in child and adolescent ADHD patients. Philadelphia (PA): American Psychiatric Association, 2002

    Google Scholar 

  79. Horai Y, Nakano M, Ishizaki T, et al. Metoprolol and mephenytoin oxidation polymorphisms in Far Eastern Oriental subjects: Japanese versus mainland Chinese. Clin Pharmacol Ther 1989; 46: 198–207

    Article  PubMed  CAS  Google Scholar 

  80. Zanger UM, Eichelbaum M. CYP2D6. In: Levy RH, Thummel KE, Trager WF, et al, editors. Metabolic drug interactions. New York: Lippincott Williams & Wilkins, 2000: 87–94

    Google Scholar 

  81. McLellan RA, Oscarson M, Seidegard J, et al. Frequent occurrence of CYP2D6 gene duplication in Saudi Arabians. Pharmacogenetics 1997; 7: 187–91

    Article  PubMed  CAS  Google Scholar 

  82. Griese EU, Asante-Poku S, Ofori-Adjei D, et al. Analysis of the CYP2D6 gene mutations and their consequences for enzyme function in a West African population. Pharmacogenetics 1999; 9: 715–23

    Article  PubMed  CAS  Google Scholar 

  83. Bradford LD. CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–43

    Article  PubMed  CAS  Google Scholar 

  84. Evans W, Relling M, Petros W, et al. Dextromethorphan and caffeine as probes for simultaneous determination of debrisoquin-oxidation and N-acetylation phenotypes in children. Clin Pharmacol Ther 1989; 45: 568–73

    Article  PubMed  CAS  Google Scholar 

  85. Relling M, Cherrie J, Schell M, et al. Lower prevalence of the debrisoquin oxidative poor metabolizer phenotype in American black versus white subjects. Clin Pharmacol Ther 1991; 50: 308–13

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr Richard F. Bergstrom from Department of Drug Disposition, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, USA, for his helpful guidance and insightful scientific comments. The authors also thank Ms Amanda J. Long for her contributions to the work presented herein. Finally, the authors thank Mr Nathan P. Sanburn for his editorial comments. At the time of preparation of this review all authors were employees of Eli Lilly and Company, Indianapolis, IN, USA.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauer, JM., Ring, B.J. & Witcher, J.W. Clinical Pharmacokinetics of Atomoxetine. Clin Pharmacokinet 44, 571–590 (2005). https://doi.org/10.2165/00003088-200544060-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200544060-00002

Keywords

Navigation