Skip to main content
Log in

Clinical Pharmacokinetics and Pharmacodynamics of Inhaled Insulin

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The benefits of intensive insulin therapy in the prevention of complications in patients with diabetes mellitus are now well established. However, the current methods of insulin administration fall well short of the ideal. Consequently, alternative routes of insulin administration have been investigated. The pulmonary route has received the most attention, helped by advances in inhaler devices and insulin formulation technology. As a result, several insulin inhalation systems are at varying stages of development, with one already filed for marketing approval in Europe.

Knowledge of the pharmacokinetic and pharmacodynamic characteristics of the various inhaled insulin formulations will help to determine their positioning in current and evolving diabetes treatment strategies. For instance, a rapid onset and short duration of action would be desirable for use in postprandial glucose control. Pharmacokinetic studies with inhaled insulin reveal that serum insulin concentrations peak earlier and decay more rapidly following inhalation compared with subcutaneously administered regular insulin, and pharmacodynamic studies measuring glucose infusion rate under euglycaemic glucose clamp show corresponding rapid changes in glucose control. Furthermore, intrapatient variability in the pharmacokinetics and pharmacodynamics of inhaled insulin is low; variability is similar to (or perhaps less than) that seen when insulin is administered subcutaneously. Estimates of the bioavailability and bioefficacy achievable with the current inhalation systems are typically in the region of 10% of that experienced with subcutaneously administered insulin. Most of the losses are in the device, mouth and throat, with ≈30–50% of the insulin deposited in the lungs being absorbed.

Clinical experience to date indicates that inhaled insulin has the potential to be an effective treatment in patients with diabetes, and that it may have particular utility in the treatment of postprandial hyperglycaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Fig. 2
Table III
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Home PD, Boulton AJM, Jimenez J, et al. Issues relating to the early or earlier use of insulin in type 2 diabetes. Practical Diabetes Int 2003; 20(2): 63–71

    Article  Google Scholar 

  2. American Diabetes Association (ADA). Tests of glycemia in diabetes. Diabetes Care 2002 Jan; 25 Suppl. 1: S97–9

    Article  Google Scholar 

  3. Rosenstock J, for the Exubera® Phase III Study Group. Mealtime rapid-acting inhaled insulin (Exubera)® improves glycemic control in patients with type 2 diabetes failing combination oral agents: a 3-month, randomized, comparative trial [abstract]. Diabetes 2002; 51 Suppl. 2: A132

    Google Scholar 

  4. Diabetes Control and Complications Trial (DCCT) Research Group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 1993 Sep 30; 329(14): 977–86

    Article  Google Scholar 

  5. UK Prospective Diabetes Study Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998 Sep 12; 352(9131): 837–53

    Article  Google Scholar 

  6. Ohkubo Y, Kishikawa H, Araki E, et al. Intensive insulin therapy prevents the progression of diabetic microvascular complications in Japanese patients with non-insulin dependent diabetes mellitus: a randomized, prospective 6 year study. Diabetes Res Clin Pract May 1995; 8: 103–17

    Article  Google Scholar 

  7. Zambanini A, Newson RB, Maisey M, et al. Injection related anxiety in insulin-treated diabetes. Diabetes Res Clin Pract 1999 Dec; 46(3): 239–46

    Article  PubMed  CAS  Google Scholar 

  8. Heinemann L, Hohmann A, Starke AAR, et al. What is the correct timing of subcutaneous injections of regular insulin to cover carbohydrate rich meals? Horm Metab Res Suppl 1992; 26: 137–9

    CAS  Google Scholar 

  9. Heinemann L. Hypoglycemia and insulin analogues: is there a reduction in the incidence? J Diabetes Complications 1999 Mar-Apr; 13(2): 105–14

    Article  PubMed  CAS  Google Scholar 

  10. Heise T, Heinemann L. Rapid and long-acting analogues as an approach to improve insulin therapy: an evidence-based medicine assessment. Curr Pharm Des 2001 Sep; 7(14): 1303–25

    Article  PubMed  CAS  Google Scholar 

  11. Home PD. Intensive insulin therapy in clinical practice. Diabetologia 1997 Jul; 40 Suppl. 2: S83–7

    Article  PubMed  CAS  Google Scholar 

  12. Patton JS. Deep-lung delivery of therapeutic proteins. Chemtech 1997; 27(12): 34–8

    CAS  Google Scholar 

  13. Salzman R, Manson JE, Griffing GT, et al. Intranasal aerosolized insulin. Mixed-meal studies and long-term use in type I diabetes. N Engl J Med 1985 Apr 25; 312(17): 1078–84

    Article  PubMed  CAS  Google Scholar 

  14. Sayani AP, Chien YW. Systemic delivery of peptides and proteins across absorptive mucosae. Crit Rev Ther Drug Carrier Syst 1996; 13(1–2): 85–184

    PubMed  CAS  Google Scholar 

  15. Patton JS. Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 1996; 19: 3–36

    Article  CAS  Google Scholar 

  16. Hirai S, Yashiki T, Mima H. Mechanisms for the enhancement of insulin. Int J Pharm 1981; 9: 173–84

    Article  CAS  Google Scholar 

  17. Gänssien M. Uber inhalation von insulin. Klin Wochenschr 1925; 4: 71

    Article  Google Scholar 

  18. Wigley FW, Londono JH, Wood SH, et al. Insulin across respiratory mucosae by aerosol delivery. Diabetes 1971 Aug; 20(8): 552–6

    PubMed  CAS  Google Scholar 

  19. Elliott RB, Edgar BW, Pilcher CC, et al. Parenteral absorption of insulin from the lung in diabetic children. Aust Paediatr J 1987 Oct; 23(5): 293–7

    PubMed  CAS  Google Scholar 

  20. Köhler D. Aerosols for systemic treatment. Lung 1990; 168 Suppl.: 677–84

    Article  PubMed  Google Scholar 

  21. Byron PR. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J Pharm Sci 1986 May; 75(5): 433–8

    Article  PubMed  CAS  Google Scholar 

  22. Consensus Conference on Aerosols and Delivery Devices, 1999 Sep 24–26, Bermuda. Respir Care 2000 Jun; 45 (6): 586–768

  23. McElduff A, Farr S, Ward E, et al. Comparison of the pharmacokinetics and pharmacodynamics of subcutaneous and inhaled insulin lispro in healthy fasted volunteers. Diabetes 1998; 47 Suppl. 1: A105

    Google Scholar 

  24. Owens DR. New horizons: alternative routes for insulin therapy. Nature Rev Drug Discovery 2002; 1: 529–40

    Article  CAS  Google Scholar 

  25. Sha S, Becker RHA, Willavise SA, et al. The effect of smoking cessation on the absorption of inhaled insulin (Exubera®). Diabetes 2002; 51 Suppl. 2: A133

    Google Scholar 

  26. Farr SJ, McElduff A, Mather LE, et al. Pulmonary insulin administration using the AERx system: physiological and physicochemical factors influencing insulin effectiveness in healthy fasting subjects. Diabetes Technol Ther 2000; 2(2): 185–97

    Article  PubMed  CAS  Google Scholar 

  27. Heise T, Scharling B, Bellaire S, et al. Dose-response of pulmonary insulin with the AERx insulin diabetes management system in healthy subjects [abstract]. Diabetologia 2001; 44 Suppl. 2: A212

    Google Scholar 

  28. Henry RR, Mudaliar SRD, Howland III WC, et al. Inhaled insulin using the AERx insulin diabetes management system in healthy and asthmatic subjects. Diabetes Care Mar 2003; 26(3): 764–9

    Article  CAS  Google Scholar 

  29. Himmelmann A, Jendle J, Mellen A, et al. The impact of smoking on inhaled insulin. Diabetes Care 2003 Mar; 26(3): 677–82

    Article  PubMed  Google Scholar 

  30. McElduff A, Clauson P, Uy C, et al. Pulmonary absorption profiles of insulin during and after an upper respiratory tract infection in healthy volunteers using the AERx® insulin Diabetes Management System: an open labelled cross-over study in healthy volunteers. Diabetes 2002; 51 Suppl. 2: Al07

    Google Scholar 

  31. Fishman RS, Guinta D, Chambers F, et al. Insulin administration via the AeroDose™ inhaler: comparison to subcutaneously injected insulin. Diabetes 2000; 49 Suppl. 1: A9

    Google Scholar 

  32. Chien JY, Wise SD, Sathirakul K, et al. Time action profile of inhaled insulin via Spiros dry powder inhaler is consistent among user inhalation techniques. Diabetologia 2001; 44 Suppl. 2: A211

    Google Scholar 

  33. Rave K, Muchmore D, Gonzales C, et al. Inhaled insulin with an improved Spiros® dry powder inhaler: dose response and time-action profiles [abstract]. Diabetologia 2001; 44 Suppl 2: A211

    Google Scholar 

  34. Steiner S, Rave KM, Heise T, et al. Bioavailability and pharmacokinetic properties of inhaled dry powder Technosphere/Insulin [abstract]]. Diabetes 2000; 49 Suppl. 1: A126

    Article  Google Scholar 

  35. Steiner S, Pfützner A, Wilson BR, et al. Technosphere™/Insulin: proof of concept study with a new insulin formulation for pulmonary delivery. Exp Clin Endocrinol Diabetes 2002 Jan; 110(1): 17–21

    Article  PubMed  CAS  Google Scholar 

  36. Heinemann L, Traut T, Heise T. Time-action profile of inhaled insulin. Diabet Med 1997 Jan; 14(1): 63–72

    Article  PubMed  CAS  Google Scholar 

  37. Heinemann L, Klappoth W, Rave K, et al. Intra-individual variability of the metabolic effect of inhaled insulin together with an absorption enhancer. Diabetes Care Sep 2000; 23(9): 1343–7

    Article  CAS  Google Scholar 

  38. Jendle JH, Karlberg BE. Intrapulmonary administration of insulin to healthy volunteers. J Intern Med 1996 Aug; 240(2): 93–8

    Article  PubMed  CAS  Google Scholar 

  39. Brunner GA, Baient B, Ellmerer M, et al. Dose-response relation of liquid aerosol inhaled insulin in type I diabetic patients. Diabetologia 2001 Mar; 44(3): 305–8

    Article  PubMed  CAS  Google Scholar 

  40. Hompesch M, Kapitza C, Scharling B, et al. Intra-subject variability of pulmonary insulin via the AERx® insulin diabetes management system versus subcutaneous insulin. Diabetologia 2001; 44 Suppl. 2: A212

    Google Scholar 

  41. Kipnes M, Otulana B, Okikawa J, et al. Pharmacokinetics and pharmacodynamics of pulmonary insulin delivered via the AERx® diabetes management system in type 1 diabetics. Diabetologia 2000; 43 Suppl. 2: A202

    Google Scholar 

  42. Gelfand RA, Schwartz S, Horton M, et al. Pharmacological reproducibility of inhaled human insulin pre-meal dosing in patients with type 2 diabetes mellitus (NIDDM). Diabetes 1998; 47 Suppl. 1: A99

    Google Scholar 

  43. Henry RR, Mudaliar SRD, Chu N, et al. Pharmacokinetics and pharmacodynamics of pulmonary insulin in young and elderly type 2 diabetic patients using the AERx® insulin Diabetes Management System [abstract]. Diabetes 2002; 51 Suppl 2: A 129–30

    Google Scholar 

  44. Perera AD, Kapitza C, Nosek L, et al. Absorption and metabolic effect of inhaled insulin: intrapatient variability after inhalation via the Aerodose insulin inhaler in patients with type 2 diabetes. Diabetes Care Dec 2002; 25(12): 2276–81

    Article  CAS  Google Scholar 

  45. Kim D, Mudaliar S, Plodkowski R, et al. Dose-response relationships of inhaled and subcutaneous insulin in type 2 diabetic patients [abstract]. Diabetes 2002; 51 Suppl. 2: A47

    Google Scholar 

  46. Rave KM, Heise T, Pfützner A, et al. Results of a dose-response study with a new pulmonary insulin formulation and inhaler [abstract]. Diabetes 2000; 49 Suppl. 1: A75

    Google Scholar 

  47. Pfützner A, Pohlmann T, Hoberg C, et al. Variability of insulin absorption after subcutaneous and pulmonary application in patients with type 2 diabetes. Diabetes 2002; Suppl. 2: A47–8

    Google Scholar 

  48. Jendle JH, Karlberg BE. Effects of intrapulmonary insulin in patients with non-insulin-dependent diabetes. Scand J Clin Lab Invest 1996 Oct; 56(6): 555–61

    Article  PubMed  CAS  Google Scholar 

  49. Laube BL, Georgopoulos A, Adams III GK. Preliminary study of the efficacy of insulin aerosol delivered by oral inhalation in diabetic patients. JAMA 1993 Apr 28; 269(16): 2106–9

    Article  PubMed  CAS  Google Scholar 

  50. Laube BL, Benedict GW, Dobs AS. Time to peak insulin level, relative bioavailability, and effect of site of deposition of nebulized insulin in patients with noninsulin-dependent diabetes mellitus. J Aerosol Med 1998 Fall; 11(3): 153–73

    Article  PubMed  CAS  Google Scholar 

  51. Laube BL, Benedict GW, Dobs AS. The lung as an alternative route of delivery for insulin in controlling postprandial glucose levels in patients with diabetes. Chest 1998 Dec; 114(6): 1734–9

    Article  PubMed  CAS  Google Scholar 

  52. Cefalu WT, Skyler JS, Kourides IA, et al. Inhaled human insulin treatment in patients with type 2 diabetes mellitus. Ann Int Med 2001 Feb 6; 134(3): 203–7

    PubMed  CAS  Google Scholar 

  53. Heise T, Rave KM, Bott S, et al. Time-action profile of an inhaled insulin preparation in comparison to insulin lispro and regular insulin [abstract]. Diabetes 2000; 49 Suppl. 1: A10

    Google Scholar 

  54. Patton JS, Bukar J, Nagarajan S. Inhaled insulin. Adv Drug Deliv Rev Feb 1999; 35(2-3): 235–47

    Article  CAS  Google Scholar 

  55. Pfützner A, Heinemann L, Steiner S, et al. Influence of small dose i.v., s.c., and pulmonary insulin treatment on prandial glucose control in patients with type 2 diabetes. Diabelotogia 2001; 44 Suppl. 1: A212

    Google Scholar 

  56. Cryer PE, Fisher JN, Shamoon H. Hypoglycaemia. Diabetes Care 1994 Jul; 17(7): 734–55

    PubMed  CAS  Google Scholar 

  57. Gerich JE. Hypoglycaemia and counterregulation in type 2 diabetes. Lancet 2000 Dec 9; 356(9246): 1946–7

    Article  PubMed  CAS  Google Scholar 

  58. Spyer G, Hattersley AT, MacDonald IA, et al. Hypoglycaemic counter-regulation at normal blood glucose concentrations in patients with well controlled type-2 diabetes. Lancet 2000 Dec 9; 356(9246): 1970–4

    Article  PubMed  CAS  Google Scholar 

  59. Kapitza C, Heise T, Heinemann L, et al. Impact of particle size and aerosolization time on the metabolic effect of an inhaled insulin aerosol [abstract]. Diabetes 2001; 50 Suppl. 2: A118

    Google Scholar 

  60. Pfützner A, Heise T, Steiner S, et al. Inhaled Technosphere/Insulin shows a low variability in metabolic action in type 2 diabetic patients [abstract]. Diabetes 2000; 49 Suppl. 1: A121

    Article  Google Scholar 

  61. Yamamoto A, Tanaka H, Okumura S, et al. Evaluation of insulin permeability and effects of absorption enhancers on its permeability by an in vitro pulmonary epithelial system using Xenopus pulmonary membrane. Biol Pharm Bull 2001 Apr; 24(4): 385–9

    Article  PubMed  CAS  Google Scholar 

  62. Heinemann L, Weyer C, Rauhaus M, et al. Variability of the metabolic effect of soluble insulin and the rapid-acting insulin analog insulin aspart. Diabetes Care 1998 Nov; 21(11): 1910–4

    Article  PubMed  CAS  Google Scholar 

  63. Wise SD, Sathirakul K, Yeo KP, et al. Smoking increases the bioavailability of inhaled insulin, but relative insulin resistance ameliorates differences in action [abstract]. Diabetologia 2001; 44 Suppl. 2: A5

    Google Scholar 

  64. American Diabetes Association (ADA). Smoking and diabetes. Diabetes Care 2002; 25 Suppl. 1: S80–1

    Article  Google Scholar 

  65. Adamson U, Rönenemaa T, Petersen AH, et al. Inhaled human insulin via the AERx® iDMS insulin Diabetes Management System in combination with NPH insulin offers the same metabolic control as intensive sc therapy: a proof of concept trial in type 2 diabetic patients. Diabetologia 2002; 45 Suppl. 2: A255–6

    Google Scholar 

  66. Fineberg SE, Schatz D, Krasner A. Results of insulin antibody monitoring during phase II and III clinical studies of inhaled insulin (Exubera®) in patients with type 1 or type 2 diabetes [abstract]. Diabetologia 2002; 45 Suppl. 2: A17

    Google Scholar 

  67. Skyler JS, for the Exubera® Phase III Study Group. Efficacy and safety of inhaled insulin (Exubera®) compared to subcutaneous insulin therapy in an intensive insulin regimen in patients with type 1 diabetes: results of a 6-month, randomized, comparative trial [abstract]. Diabetes 2002; 51 Suppl. 2: A134

    Google Scholar 

  68. Quattrin T, for the Exubera® Phase III Study Group. Efficacy and safety of inhaled insulin (Exubera®) compared to conventional subcutaneous insulin therapy in patients with type 1 diabetes: results of a 6-month, randomised comparative trial [abstract]. Diabetologia 2002; 45 Suppl. 2: A261

    Google Scholar 

  69. Bélanger A, for the Exubera® Phase III Study Group. Efficacy and safety of inhaled insulin (Exubera®) compared to subcutaneous insulin therapy in patients with type 2 diabetes: results of a 6-month, randomised comparative trial. Diabetologia 2002; 45 Suppl. 2: A260–1

    Google Scholar 

  70. American Thoracic Society (ATS). Single-breath carbon monoxide diffusing capacity (transfer factor). Recommendations for a standard technique: 1995 update. Am J Respir Crit Care Med 1995 Dec; 152 (6 Pt 1): 2185–98

    Google Scholar 

  71. American Association for Respiratory Care (AARC) Clinical Practice Guidelines. Single-breath carbon monoxide diffusing capacity, 1999 update. Respir Care 1999; 44: 539–46

    Google Scholar 

  72. Galloway JA, Spradlin CT, Nelson RL, et al. Factors influencing the absorption, serum insulin concentration, and blood glucose responses after injections of regular insulin and various insulin mixtures. Diabetes Care 1981 May-June; 4(3): 366–76

    Article  PubMed  CAS  Google Scholar 

  73. Hsu MC, Bai JP. Investigation into the presence of insulindegrading enzyme in cultured type II alveolar cells and the effects of enzyme inhibitors on pulmonary bioavailability of insulin in rats. J Pharm Pharmacol 1998 May; 50(5): 507–14

    Article  PubMed  CAS  Google Scholar 

  74. Shen Z, Zhang Q, Wei S, et al. Proteolytic enzymes as a limitation for pulmonary absorption of insulin: in vitro and in vivo investigations. Int J Pharm 1999 Dec; 192(2): 115–21

    Article  PubMed  CAS  Google Scholar 

  75. Peyrat JP, Bonneterre J, Dusanter-Fourt I, et al. Characterization of insulin-like growth factor 1 receptors (IGF1-R) in human breast cancer cell lines. Bull Cancer 1989; 76(3): 311–9

    PubMed  CAS  Google Scholar 

  76. Skyler JS, Cefalu WT, Kourides IA, et al. Efficacy of inhaled human insulin in type 1 diabetes mellitus: a randomised proof-of-concept study. Lancet 2001 Feb 3; 357(9253): 331–5

    Article  PubMed  CAS  Google Scholar 

  77. Gerber RA, Cappelleri JC, Kourides IA, et al. Treatment satisfaction with inhaled insulin in patients with type 1 diabetes: a randomized controlled trial. Diabetes Care 2001 Sep; 24(9): 1556–9

    Article  PubMed  CAS  Google Scholar 

  78. Cappelleri JC, Cefalu WT, Rosenstock J, et al. Treatment satisfaction in type 2 diabetes: a comparison between an inhaled insulin regimen and a subcutaneous insulin regimen. Clin Ther 2002 Apr; 24(4): 552–64

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Drs Patton and Eldon are employees of Nektar Therapeutics, the company that has developed the technology for Exubera®. Ms Bukar was an employee of Nektar Therapeutics at the time of preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John S. Patton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patton, J.S., Bukar, J.G. & Eldon, M.A. Clinical Pharmacokinetics and Pharmacodynamics of Inhaled Insulin. Clin Pharmacokinet 43, 781–801 (2004). https://doi.org/10.2165/00003088-200443120-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200443120-00002

Keywords

Navigation