Skip to main content
Log in

Disposition of Liposomal Daunorubicin During Cotreatment with Cytarabine in Patients with Leukaemia

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective: To investigate the pharmacokinetics and pharmacodynamics of liposomal daunorubicin (DaunoXome™) 80 or 100 mg/m2 on days 1, 2 and 3 coadministered with standard or high-dose cytarabine to patients with poor-risk acute leukaemia.

Design: Unblinded pharmacokinetic-pharmacodynamic study.

Participants: Twenty-three adult patients with acute leukaemia.

Methods: Blood, bone marrow and urine samples were collected at appropriate intervals on days 1–6. Total daunorubicin and daunorubicinol concentrations in plasma, bone marrow, peripheral blood cells and urine were measured by high performance liquid chromatography.

Results: Liposomal daunorubicin exhibited a markedly different pharmacokinetic behaviour from the free drug due to a slow distribution of the liposomal moiety into the body. The ratio of area under the concentration-time curve (AUC) for metabolite to parent drug was lower for liposomal daunorubicin than for free daunorubicin, mainly due to higher concentrations of the parent drug in plasma, whereas daunorubicinol exposure was more or less comparable, if not higher. After liposomal daunorubicin at both 80 and 100 mg/m2, total daunorubicin concentrations in leukaemic cells were at least similar to those observed for free daunorubicin, and significant accumulation was also observed in bone marrow blast cells. Nineteen of 23 patients obtained a complete remission, although 13 had P-glycoprotein-overexpressing blast cells. Grade 3–4 mucositis was found only in three patients with very high AUCs for total daunorubicin and daunorubicinol.

Conclusions: Liposomal daunorubicin at both 80 and 100 mg/m2 in combination with cytarabine may represent a valid treatment for high-risk acute leukaemia. Liposomal daunorubicin may be helpful in overcoming multidrug resistance, since it shows significant accumulation into tumour target cells, irrespective of P-glycoprotein expression. The tolerability profile suggests that toxicity may be related to exposure to both the parent drug and the metabolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Table II
Fig. 2
Table III
Fig. 3
Table IV
Fig. 4
Table V

Similar content being viewed by others

Notes

  1. Use of tradenames is for product identification only and does not imply endorsement.

References

  1. Wolff SN, Herzig RH, Fay JW, et al. High-dose cytarabine and daunorubicin as consolidation therapy for acute myeloid leukemia in first remission: long-term follow-up and results. J Clin Oncol 1989; 7(9): 1260–7

    PubMed  CAS  Google Scholar 

  2. Champlin R, Gajewski J, Nimer S, et al. Postremission chemotherapy for adults with acute myelogenous leukemia: improved survival with high-dose cytarabine and daunorubicin consolidation treatment. J Clin Oncol 1990; 8(7): 1199–206

    PubMed  CAS  Google Scholar 

  3. Von Hoff DD, Rozencweig M, Layard M, et al. Daunomycin-induced cardiotoxicity in children and adults: a review of 110 cases. Am J Med 1977; 62(2): 200–8

    Article  Google Scholar 

  4. Bristow MR, Thompson PD, Martin RP, et al. Early anthracycline cardiotoxicity. Am J Med 1978; 65(5): 823–32

    Article  PubMed  CAS  Google Scholar 

  5. Steinherz LJ, Steinherz PG, Tan C. Cardiac failure and dysrhythmias 6–19 years after anthracycline therapy: a series of 15 patients. Med Pediatr Oncol 1995; 24(6): 352–61

    Article  PubMed  CAS  Google Scholar 

  6. Kuwazuru Y, Yoshimura A, Hanada S, et al. Expression of the multidrug transporter, P-glycoprotein, in acute leukemia cells and correlation to clinical drug resistance. Cancer 1990; 66(5): 868–73

    Article  PubMed  CAS  Google Scholar 

  7. Bellamy WT. P-glycoproteins and multidrug resistance. Annu Rev Pharmacol Toxicol 1996; 36: 161–83

    Article  PubMed  CAS  Google Scholar 

  8. Allen TM. Liposomes: opportunities in drug delivery. Drugs 1997; 54 Suppl. 4: 8–14

    Article  PubMed  CAS  Google Scholar 

  9. Mickisch GH, Rahman A, Pastan I, et al. Increased effectiveness of liposome-encapsulated doxorubicin in multidrug-resistant-transgenic mice compared with free doxorubicin. J Natl Cancer Inst 1992; 84(10): 804–5

    Article  PubMed  CAS  Google Scholar 

  10. Thierry AR, Vige D, Coughlin SS, et al. Modulation of doxorubicin resistance in multidrug-resistant cells by liposomes. FASEB J 1993; 7(6): 572–9

    PubMed  CAS  Google Scholar 

  11. Michieli M, Damiani D, Ermacora A, et al. Liposome-encapsulated daunorubicin for PGP-related multidrug resistance. Br J Haematol 1999; 106(1): 92–9

    Article  PubMed  CAS  Google Scholar 

  12. Forssen EA, Coulter DM, Proffitt RT. Selective in vivo localization of daunorubicin small unilamellar vesicles in solid tumors. Cancer Res 1992; 52(12): 3255–61

    PubMed  CAS  Google Scholar 

  13. Allen TM, Hansen CB, Lopes de Menezes DE. Pharmacokinetics of long-circulating liposomes. Adv Drug Deliv Rev 1995; 16: 267–84

    Article  CAS  Google Scholar 

  14. Guaglianone P, Chan K, DelaFlor-Weiss E, et al. Phase I and pharmacologic study of liposomal daunorubicin (DaunoXome). Invest New Drugs 1994; 12(2): 103–10

    Article  PubMed  CAS  Google Scholar 

  15. Gill PS, Espina BM, Muggia F, et al. Phase I/II clinical and pharmacokinetic evaluation of liposomal daunorubicin. J Clin Oncol 1995; 13(4): 996–1003

    PubMed  CAS  Google Scholar 

  16. Pea F, Russo D, Michieli M, et al. Liposomal daunorubicin plasmatic and renal disposition in patients with acute leukemia. Cancer Chemother Pharmacol 2000; 46(4): 279–86

    Article  PubMed  CAS  Google Scholar 

  17. Bellott R, Auvrignon A, Leblanc T, et al. Pharmacokinetics of liposomal daunorubicin (DaunoXome) during a phase I-II study in children with relapsed acute lymphoblastic leukaemia. Cancer Chemother Pharmacol 2001; 47(1): 15–21

    Article  PubMed  CAS  Google Scholar 

  18. Cortes J, Estey E, O’Brien S, et al. High-dose liposomal daunorubicin and high-dose cytarabine combination in patients with refractory or relapsed acute myelogenous leukemia. Cancer 2001; 92(1): 7–14

    Article  PubMed  CAS  Google Scholar 

  19. Marie JP, Zittoun R, Sikic BI. Multidrug resistance (mdr1) gene expression in adult acute leukemias: correlations with treatment outcome and in vitro drug sensitivity. Blood 1991; 78(3): 586–92

    PubMed  CAS  Google Scholar 

  20. Michieli M, Michelutti A, Damiani D, et al. A comparative analysis of the sensitivity of multidrug resistant (MDR) and non-MDR cells to different anthracycline derivatives. Leuk Lymphoma 1993; 9(3): 255–64

    Article  PubMed  CAS  Google Scholar 

  21. Michieli M, Damiani D, Ermacora A, et al. P-glycoprotein (PGP) and lung resistance-related protein (LRP) expression and function in leukaemic blast cells. Br J Haematol 1997; 96(2): 356–65

    Article  PubMed  CAS  Google Scholar 

  22. Damiani D, Michieli M, Ermacora A, et al. P-glycoprotein (PGP), and not lung resistance-related protein (LRP), is a negative prognostic factor in secondary leukemias. Haematologica 1998; 83(4): 290–7

    PubMed  CAS  Google Scholar 

  23. Michieli M, Damiani D, Ermacora A, et al. P-glycoprotein, lung resistance-related protein and multidrug resistance associated protein in de novo acute non-lymphocytic leukaemias: biological and clinical implications. Br J Haematol 1999; 104(2): 328–35

    Article  PubMed  CAS  Google Scholar 

  24. Speth PA, Linssen PC, Boezeman JB, et al. Leukemic cell and plasma daunomycin concentrations after bolus injection and 72h infusion. Cancer Chemother Pharmacol 1987; 20(4): 311–5

    PubMed  CAS  Google Scholar 

  25. Carnaggi CM, Carisi P, Stracchi E, et al. High-performance liquid Chromatographic analysis of idarubicin and fluorescent metabolites in biological fluids. Cancer Chemother Pharmacol 1992; 30(4): 303–6

    Article  Google Scholar 

  26. Gerani C, Pesenti E, Broggini M, et al. L1210 cells selected for resistance to methoxymorpholinyl doxorubicin appear specifically resistant to this class of morpholinyl derivatives. Br J Cancer 1994; 69(2): 315–9

    Article  Google Scholar 

  27. Alberts DS, Bachur NR, Holtzman JL. The pharmacokinetics of daunomycin in man. Clin Pharmacol Ther 1971; 12(1): 96–104

    PubMed  CAS  Google Scholar 

  28. Rahman A, Goodman A, Foo W, et al. Clinical pharmacology of daunorubicin in phase I patients with solid tumors: development of an analytical methodology for daunorubicin and its metabolites. Semin Oncol 1984; 11(4 Suppl. 3): 36–44

    PubMed  CAS  Google Scholar 

  29. Speth PA, Minderman H, Haanen C. Idarubicin vs daunorubicin: preclinical and clinical pharmacokinetic studies. Semin Oncol 1989; 16(1 Suppl. 2): 2–9

    PubMed  CAS  Google Scholar 

  30. Robert J, Rigal-Huguet F, Hurteloup P. Comparative pharmacokinetic study of idarubicin and daunorubicin in leukemia patients. Hematol Oncol 1992; 10(2): 111–6

    Article  PubMed  CAS  Google Scholar 

  31. Yeo W, Chan KK, Mukwaya G, et al. Phase II studies with DaunoXome in patients with nonresectable hepatocellular carcinoma: clinical and pharmacokinetic outcomes. Cancer Chemother Pharmacol 1999; 44(2): 124–30

    Article  PubMed  CAS  Google Scholar 

  32. Forssen EA, Ross ME. DaunoXome treatment of solid tumors: preclinical and clinical investigations. J Liposome Res 1994; 4: 481–512

    Article  Google Scholar 

  33. Forssen EA. The design and development of DaunoXome for solid tumor targeting in vivo. Adv Drug Deliv Rev 1997; 24: 133–50

    Article  CAS  Google Scholar 

  34. Paul C, Liliemark J, Tidefelt U, et al. Pharmacokinetics of daunorubicin and doxorubicin in plasma and leukemic cells from patients with acute nonlymphoblastic leukemia. Ther Drug Monit 1989; 11(2): 140–8

    Article  PubMed  CAS  Google Scholar 

  35. Galettis P, Boutagy J, Ma DD. Daunorubicin pharmacokinetics and the correlation with P-glycoprotein and response in patients with acute leukaemia. Br J Cancer 1994; 70(2): 324–9

    Article  PubMed  CAS  Google Scholar 

  36. Cusack BJ, Mushlin PS, Voulelis LD, et al. Daunorubicin-induced cardiac injury in the rabbit: a role for daunorubicinol?. Toxicol Appl Pharmacol 1993; 118(2): 177–85

    Article  PubMed  CAS  Google Scholar 

  37. de Jong J, Schoofs PR, Snabilie AM, et al. The role of biotransformation in anthracycline-induced cardiotoxicity in mice. J Pharmacol Exp Ther 1993; 266(3): 1312–20

    PubMed  Google Scholar 

  38. Samuel L, Cummings J, Shaw P. Daunorubicin cardiotoxicity in childhood cancer [letter]. Lancet 1998; 352(9134): 1150 ’

    Article  PubMed  CAS  Google Scholar 

  39. Ahmed NK. Daunorubicin reductase activity in human normal lymphocytes, myeloblasts and leukemic cell lines. Eur J Cancer Clin Oncol 1985; 21(10): 1209–13

    Article  PubMed  CAS  Google Scholar 

  40. Vasanthakumar G, Ahmed NK. Uptake and metabolism of daunorubicin by human myelocytic cells. Cancer Chemother Pharmacol 1985; 15(1): 35–9

    Article  PubMed  CAS  Google Scholar 

  41. Bachur NR, Huffman DH. Daunorubicin metabolism: estimation of daunorubicin reductase. Br J Pharmacol 1971; 43(4): 828–33

    Article  PubMed  CAS  Google Scholar 

  42. Bachur NR. Daunorubicinol, a major metabolite of daunorubicin: isolation from human urine and enzymatic reactions. J Pharmacol Exp Ther 1971; 177(3): 573–8

    PubMed  CAS  Google Scholar 

  43. Huffman DH, Benjamin RS, Bachur NR. Daunorubicin metabolism in acute nonlymphocytic leukemia. Clin Pharmacol Ther 1972; 13(6): 895–905

    PubMed  CAS  Google Scholar 

  44. Huffman DH, Bachur NR. Daunorubicin metabolism in acute myelocytic leukemia. Blood 1972; 39(5): 637–43

    PubMed  CAS  Google Scholar 

  45. Huffman DH, Bachur NR. Daunorubicin metabolism by human hematological components. Cancer Res 1972; 32(3): 600–5

    PubMed  CAS  Google Scholar 

  46. Oja CD, Semple SC, Chonn A, et al. Influence of dose on liposome clearance: critical role of blood proteins. Biochim Biophys Acta 1996; 1281(1): 31–7

    Article  PubMed  Google Scholar 

  47. Kokenberg E, Sonneveld P, Sizoo W, et al. Cellular pharmacokinetics of daunorubicin: relationships with the response to treatment in patients with acute myeloid leukemia. J Clin Oncol 1988; 6(5): 802–12

    PubMed  CAS  Google Scholar 

  48. Gieseler F, Nussler V, Brieden T, et al. Intracellular pharmacokinetics of anthracyclines in human leukemia cells: correlation of DNA-binding with apoptotic cell death. Int J Clin Pharmacol Ther 1998; 36(1): 25–8

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr Andrea Tandelle for his technical assistance. There was no conflict of interest directly relevant to the content of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Pea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pea, F., Russo, D., Michieli, M. et al. Disposition of Liposomal Daunorubicin During Cotreatment with Cytarabine in Patients with Leukaemia. Clin Pharmacokinet 42, 851–862 (2003). https://doi.org/10.2165/00003088-200342090-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200342090-00004

Keywords

Navigation