Skip to main content

Advertisement

Log in

Pharmacokinetic Optimisation of Treatment Schedules for Anthracyclines and Paclitaxel in Patients with Cancer

  • Review Articles
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The integration of paclitaxel into chemotherapy regimens with anthracyclines offers a new opportunity for devising effective therapy for patients with breast cancer. High response rates have been obtained by combining epirubicin or doxorubicin with paclitaxel. The pharmacokinetic analysis of paclitaxel and anthracyclines, as well as the identification of relationships with their pharmacodynamics, represents a rational approach for treatment optimisation.

A schedule-dependent interaction between paclitaxel and anthracyclines has been demonstrated in clinical pharmacokinetic studies. In patients given paclitaxel 125 to 200 mg/m2 as 3- to 24-hour infusions in combination with doxorubicin 48 to 60 mg/m2 as a 48-hour infusion or intravenous bolus, the peak plasma drug concentration (Cmax) of doxorubicin increased significantly and drug clearance was reduced in the sequence paclitaxel → doxorubicin as compared with doxorubicin → paclitaxel. The schedule paclitaxel → doxorubicin was more toxic as compared with doxorubicin → paclitaxel, and an incidence of 18 to 20% of congestive heart failure was observed in patients with breast cancer given doxorubicin 60 mg/m2 followed by paclitaxel 125 to 200 mg/m2.

Likewise, patients given epirubicin 90 mg/m2 had a sudden rebound of epirubicinol plasma concentrations shortly after the start of infusion of paclitaxel 200 mg/m2, with a significant increase in the area under the concentration-time curve (AUC) of epirubicinol as compared with epirubicin alone (1.27 ± 0.2 vs 0.61 ± 0.1 μmol/L • h). Moreover, the severity of the myelosuppression induced by paclitaxel, as defined by a sigmoid maximum effect (Emax) relationship between the decrease in neutrophil count and the duration of drug plasma concentrations above the threshold value of 0.1 μmol/L, was significantly enhanced by epirubicin.

Finally, chemotherapy with paclitaxel and anthracyclines may be improved by designing pharmacologically guided regimens in order to control the extent of pharmacokinetic interaction and reduce the risk of severe toxicity while maintaining the therapeutic efficacy of the combination. Future protocols should explore the activity of a prolonged paclitaxel infusion in association with an anthracycline separated from the taxane by a washout time interval in order to minimise the inhibitory effects exerted by paclitaxel on P-glycoprotein-mediated biliary clearance of anthracyclines, the most likely cause of pharmacokinetic interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisenhauer EA, Vermorken JB. The taxoids: comparative clinical pharmacology and therapeutic potential. Drugs 1998 Jan; 55 (1): 5–30.

    Article  PubMed  CAS  Google Scholar 

  2. Mamounas E, Brown A, Smith R, et al. Effect of taxol duration of infusion in advanced breast cancer: results from NSABP B-26 trial comparing 3- to 24-hr infusion of high-dose taxol [abstract no. 389]. Proc Annu Meet Am Soc Clin Oncol 1998; 17: 101.

    Google Scholar 

  3. Coukell AJ, Faulds D. Epirubicin: an updated review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy in the management of breast cancer. Drugs 1997 Mar; 53 (3): 453–82.

    Article  PubMed  CAS  Google Scholar 

  4. Gianni L, Munzone E, Capri G, et al. Paclitaxel by 3-hour infusion in combination with bolus doxorubicin in women with untreated metastatic breast cancer: high antitumor efficacy and cardiac effects in a dose-finding and sequence-finding study. J Clin Oncol 1995 Nov; 13 (11): 2688–99.

    PubMed  CAS  Google Scholar 

  5. Dombernowsky P, Gehl J, Boesgaard M, et al. Paclitaxel and doxorubicin, a highly active combination in the treatment of metastatic breast cancer. Semin Oncol 1996 Feb; 23 (1 Suppl. 1): 13–8.

    PubMed  CAS  Google Scholar 

  6. Conte PF, Baldini E, Gennari A, et al. Dose-finding study and pharmacokinetics of epirubicin and paclitaxel over 3 hours: a regimen with high activity and low cardiotoxicity in advanced breast cancer. J Clin Oncol 1997 Jul; 15 (7): 2510–7.

    PubMed  CAS  Google Scholar 

  7. Miller KD, Sledge Jr GW. Taxanes in the treatment of breast cancer: a prodigy comes of age. Cancer Invest 1999; 17 (2): 121–36.

    PubMed  CAS  Google Scholar 

  8. Henderson IC, Berry D, Demetri G, et al. Improved disease-free and overall survival from the addition of sequential paclitaxel but not from the escalation of doxorubicin dose level in the adjuvant chemotherapy of patients with node positive primary breast cancer [abstract no. 390A]. Proc Annu Meet Am Soc Clin Oncol 1998; 17: 101a.

    Google Scholar 

  9. Hudis C, Riccio L, Seidman A, et al. Lack of increased cardiac toxicity with sequential doxorubicin and paclitaxel. Cancer Invest 1998; 16 (2): 67–71.

    Article  PubMed  CAS  Google Scholar 

  10. Wiseman LR, Spencer CM. Paclitaxel: an update of its use in the treatment of metastatic breast cancer and ovarian and other gynaecological cancers. Drugs Aging 1998 Apr; 12 (4): 305–34.

    Article  PubMed  CAS  Google Scholar 

  11. Akutsu M, Kano Y, Tsunoda S, et al. Schedule-dependent interaction between paclitaxel and doxorubicin in human cancer cell lines in vitro. Eur J Cancer 1995 Dec; 31A (13–14): 2341–6.

    Article  PubMed  CAS  Google Scholar 

  12. Zoli W, Ricotti L, Barzanti F, et al. Schedule-dependent interaction of doxorubicin, paclitaxel and gemcitabine in human breast cancer cell lines. Int J Cancer 1999 Jan 29; 80 (3): 413–6.

    Article  PubMed  CAS  Google Scholar 

  13. Hahn SM, Liebmann JE, Cook J, et al. Taxol in combination with doxorubicin or etoposide. Possible antagonism in vitro. Cancer 1993 Nov 1; 72 (9): 2705–11.

    CAS  Google Scholar 

  14. Mechetner E, Kyshtoobayeva A, Zonis S, et al. Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin Cancer Res 1998 Feb; 4 (2): 389–98.

    PubMed  CAS  Google Scholar 

  15. Gianni L, Vigano L, Locatelli A, et al. Human pharmacokinetic characterization and in vitro study of the interaction between doxorubicin and paclitaxel in patients with breast cancer. J Clin Oncol 1997 May; 15 (5): 1906–15.

    PubMed  CAS  Google Scholar 

  16. Marks DC, Su GM, Davey RA, et al. Extended multidrug resistance in haemopoietic cells. Br J Haematol 1996 Dec; 95 (4): 587–95.

    Article  PubMed  CAS  Google Scholar 

  17. Su GM, Davey MW, Davey RA. Induction of broad drug resistance in small cell lung cancer cells and its reversal by paclitaxel. Int J Cancer 1998 May 29; 76 (5): 702–8.

    Article  PubMed  CAS  Google Scholar 

  18. Brouty-Boye D, Kolonias D, Lampidis TJ. Antiproliferative activity of taxol on human tumor and normal breast cells vs. effects on cardiac cells. Int J Cancer 1995 Feb 8; 60 (4): 571–5.

    CAS  Google Scholar 

  19. Decorti G, Candussio L, Klugmann FB, et al. Adriamycin-in-duced histamine release from heart tissue in vitro. Cancer Chemother Pharmacol 1997; 40 (4): 363–6.

    Article  PubMed  CAS  Google Scholar 

  20. Mushlin PS, Cusack BJ, Boucek Jr RJ, et al. Time-related increases in cardiac concentrations of doxorubicinol could interact with doxorubicin to depress myocardial contractile function. Br J Pharmacol 1993 Nov; 110 (3): 975–82.

    Article  PubMed  CAS  Google Scholar 

  21. Minotti G, Cavaliere AF, Mordente A, et al. Secondary alcohol metabolites mediate iron delocalization in cytosolic fractions of myocardial biopsies exposed to anticancer anthracyclines. Novel linkage between anthracycline metabolism and iron-induced cardiotoxicity. J Clin Invest 1995 Apr; 95 (4): 1595–605.

    Article  PubMed  CAS  Google Scholar 

  22. Kumar G, Ray S, Walle T, et al. Comparative in vitro cytotoxic effects of taxol and its major human metabolite 6α-hydroxytaxol. Cancer Chemother Pharmacol 1995; 36 (2): 129–35.

    Article  PubMed  CAS  Google Scholar 

  23. Raymond E, Faivre S, Izbicka E, et al. Comparison of prolonged and short term exposure paclitaxel (Taxol) using the human tumor cloning assay [abstract no. 351]. 10th NCI-EORTC Symposium on New Drugs in Cancer Therapy; 1998 Jun 16–19: Amsterdam. Ann Oncol 1998 Oct; 9 Suppl. 2: 92.

  24. Nicholson KM, Bibby MC, Phillips RM. Influence of drug exposure parameters on the activity of paclitaxel in multicellular spheroids. Eur J Cancer 1997 Jul; 33 (8): 1291–8.

    Article  PubMed  CAS  Google Scholar 

  25. Danesi R, Figg WD, Reed E, et al. Paclitaxel (taxol) inhibits protein isoprenylation and induces apoptosis in PC-3 human prostate cancer cells. Mol Pharmacol 1995 Jun; 47 (6): 1106–11.

    PubMed  CAS  Google Scholar 

  26. Colombo T, Gonzalez Paz O, Zucchetti M, et al. Paclitaxel induces significant changes in epidoxorubicin distribution in mice. Ann Oncol 1996 Oct; 7 (8): 801–5.

    Article  PubMed  CAS  Google Scholar 

  27. Webster LK, Cosson EJ, Stokes KH, et al. Effect of the paclitaxel vehicle, Cremophor EL, on the pharmacokinetics of doxorubicin and doxorubicinol in mice. Br J Cancer 1996 Feb; 73 (4): 522–4.

    Article  PubMed  CAS  Google Scholar 

  28. Sparreboom A, van Tellingen O, Nooijen WJ, et al. Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Res 1996 May 1; 56 (9): 2112–5.

    PubMed  CAS  Google Scholar 

  29. Cividalli A, Cruciani G, Livdi E, et al. Greater antitumor efficacy of paclitaxel administered before epirubicin in a mouse mammary carcinoma. J Cancer Res Clin Oncol 1998; 124 (5): 236–44.

    Article  PubMed  CAS  Google Scholar 

  30. Berg LB, Cowan KH, Balis FM, et al. Pharmacokinetics of taxol and doxorubicin administered alone and in combination by continuous 72-hour infusion. J Natl Cancer Inst 1994 Jan 19; 86 (2): 143–5.

    Article  PubMed  CAS  Google Scholar 

  31. Fisherman JS, Cowan KH, Noone M, et al. Phase MI study of 72-hour infusional paclitaxel and doxorubicin with granulocyte colony-stimulating factor in patients with metastatic breast cancer. J Clin Oncol 1996 Mar; 14 (3): 774–82.

    PubMed  CAS  Google Scholar 

  32. Holmes FA, Madden T, Newman RA, et al. Sequence-dependent alteration of doxorubicin pharmacokinetics by paclitaxel in a phase I study of paclitaxel and doxorubicin in patients with metastatic breast cancer. J Clin Oncol 1996 Oct; 14 (10): 2713–21.

    PubMed  CAS  Google Scholar 

  33. Danesi R, Innocenti F, Fogli S, et al. Pharmacokinetics and metabolic interaction of paclitaxel, epirubicin and epirubicinol in advanced breast cancer patients. Clin Pharmacol Ther. In press.

  34. Bartlett NL, Lum BL, Fisher G A, et al. Phase I trial of doxorubicin with cyclosporine as a modulator of multidrug resistance. J Clin Oncol 1994 Apr; 12 (4): 835–42.

    PubMed  CAS  Google Scholar 

  35. Panday VR, Huizing MT, Willemse PH, et al. Hepatic metabolism of paclitaxel and its impact in patients with altered hepatic function. Semin Oncol 1997 Aug; 24 (4 Suppl. 11): S1134–8.

    Google Scholar 

  36. Donelli MG, Zucchetti M, Munzone E, et al. Pharmacokinetics of anticancer agents in patients with impaired liver function. Eur J Cancer 1998 Jan; 34 (1): 33–46.

    Article  PubMed  CAS  Google Scholar 

  37. Rahman A, Korzekwa KR, Grogan J, et al. Selective biotransformation of taxol to 6-alpha-hydroxytaxol by human cytochrome P450 2C8. Cancer Res 1994 Nov 1; 54 (21): 5543–6.

    PubMed  CAS  Google Scholar 

  38. Monsarrat B, Royer I, Wright M, et al. Biotransfonnation of taxoids by human cytochromes P450: structure-activity relationship. Bull Cancer 1997 Feb; 84 (2): 125–33.

    PubMed  CAS  Google Scholar 

  39. Huizing MT, Vermorken JB, Rosing H, et al. Pharmacokinetics of paclitaxel and three major metabolites in patients with advanced breast carcinoma refractory to anthracycline therapy treated with a 3-hour paclitaxel infusion: a European Cancer Centre (ECC) trial. Ann Oncol 1995 Sep; 6 (7): 699–704.

    PubMed  CAS  Google Scholar 

  40. Sonnichsen DS, Liu Q, Schuetz EG, et al. Variability in human cytochrome P450 paclitaxel metabolism. J Pharmacol Exp Ther 1995 Nov; 275 (2): 566–75.

    PubMed  CAS  Google Scholar 

  41. Fischer V, Rodriguez-Gascon A, Heitz F, et al. The multidrug resistance modulator valspodar (PSC 833) is metabolized by human cytochrome P450 3A: implications for drug-drug interactions and pharmacological activity of the main metabolite. Drug Metab Dispos 1998 Aug 1; 26 (8): 802–11.

    PubMed  CAS  Google Scholar 

  42. Royer I, Monsarrat B, Sonnier M, et al. Metabolism of docetaxel by human cytochromes P450: interactions with paclitaxel and other antineoplastic drugs. Cancer Res 1996 Jan; 56 (1): 58–65.

    PubMed  CAS  Google Scholar 

  43. Marre F, Sanderink G-J, de Sousa G, et al. Hepatic biotransformation of docetaxel (Taxotere®) in vitro: involvement of the CYP3A subfamily in humans. Cancer Res 1996 Mar 15; 56 (6): 1296–302.

    PubMed  CAS  Google Scholar 

  44. Desai PB, Duan JZ, Zhu YW, et al. Human liver mircosomal metabolism of paclitaxel and drug interactions. Eur J Drug Metab Pharmacokinet 1998 Jul–Sep; 23 (3): 417–24.

    Article  PubMed  CAS  Google Scholar 

  45. Kumar GN, Walle UK, Walle T. Cytochrome P450 3A-mediated human liver microsomal taxol 6 alpha-hydroxylation. J Pharmacol Exp Ther 1994 Mar; 268 (3): 1160–5.

    PubMed  CAS  Google Scholar 

  46. Harris JW, Rahman A, Kim BR, et al. Metabolism of taxol by human hepatic microsomes and liver slices: participation of cytochrome P450 3A4 and an unknown P450 enzyme. Cancer Res 1994 Aug 1; 54 (15): 4026–35.

    PubMed  CAS  Google Scholar 

  47. Cresteil T, Monsarrat B, Alvinerie P, et al. Taxol metabolism by human liver microsomes: identification of cytochrome P450 isozymes involved in its biotransformation. Cancer Res 1994 Jan 15; 54 (2): 386–92.

    PubMed  CAS  Google Scholar 

  48. Chang SM, Kuhn JG, Rizzo J, et al. Phase I study of paclitaxel in patients with recurrent malignant glioma: a North American Brain Tumor Consortium report. J Clin Oncol 1998 Jun; 16 (6): 2188–94.

    PubMed  CAS  Google Scholar 

  49. Esposito M, Venturini M, Vannozzi MO, et al. Comparative effects of paclitaxel and docetaxel on the metabolism and pharmacokinetics of epirubicin in breast cancer patients. J Clin Oncol 1999 Apr; 17 (4): 1132–40.

    PubMed  CAS  Google Scholar 

  50. Monsarrat B, Alvinerie P, Wright M, et al. Hepatic metabolism and biliary excretion of Taxol in rats and humans. J Natl Cancer Inst Monogr 1993; 15: 39–46.

    PubMed  Google Scholar 

  51. Sikic BI, Fisher GA, Lum BL, et al. Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 1997; 40 Suppl.: S13–9.

    Article  PubMed  CAS  Google Scholar 

  52. Venook AP, Egorin MJ, Rosner GL, et al. Phase I and pharmacokinetic trial of paclitaxel in patients with hepatic dysfunction: Cancer and Leukemia Group B 9264. J Clin Oncol 1998 May; 16 (5): 1811–9.

    PubMed  CAS  Google Scholar 

  53. Twelves CJ, Dobbs NA, Gillies HC, et al. Doxorubicin pharmacokinetics: the effect of abnormal liver biochemistry tests. Cancer Chemother Pharmacol 1998; 42 (3): 229–34.

    Article  PubMed  CAS  Google Scholar 

  54. Twelves CJ, Dobbs NA, Michael Y, et al. Clinical pharmacokinetics of epirubicin: the importance of liver biochemistry tests. Br J Cancer 1992; 66 (4): 765–9.

    Article  PubMed  CAS  Google Scholar 

  55. Gianni L, Kearns CM, Giani A, et al. Nonlinear pharmacokinetics and metabolism of paclitaxel and its pharmacokinetic/pharmacodynamic relationships in humans. J Clin Oncol 1995 Jan; 13 (1): 180–90.

    PubMed  CAS  Google Scholar 

  56. Huizing MT, Giaccone G, van Warmerdam LJC, et al. Pharmacokinetics of paclitaxel and carboplatin in a dose-escalating and dose-sequencing study in patients with non-small cell lung cancer. J Clin Oncol 1997 Jan; 15 (1): 317–29.

    PubMed  CAS  Google Scholar 

  57. Beijnen JH, Huizing MT, ten Bokkel Huinink WW, et al. Bioanalysis, pharmacokinetics, and pharmacodynamics of the novel anticancer drug paclitaxel (Taxol). Semin Oncol 1994 Oct; 21 (5 Suppl. 8): 53–62.

    PubMed  CAS  Google Scholar 

  58. Hon YY, Evans WE. Making TDM work to optimize cancer chemotherapy: a multidisciplinary team approach. Clin Chem 1998 Feb; 44 (2): 388–400.

    PubMed  CAS  Google Scholar 

  59. Hortobagyi GN, Holmes FA. Optimal dosing of paclitaxel and doxorubicin in metastatic breast cancer. Semin Oncol 1997 Feb; 24(1 Suppl. 3): S4–7.

    PubMed  CAS  Google Scholar 

  60. Baker SD. Drug interactions with the taxanes. Pharmacotherapy 1997 Sep; 17(5 Pt 2): 126–32S.

    Google Scholar 

  61. Amadori D, Frassinetti GL, Zoli W, et al. A phasel/II study of paclitaxel and doxorubicin in the treatment of advanced breast cancer. Semin Oncol 1996 Feb; 23 (1 Suppl. 1): 19–23.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romano Danesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danesi, R., Conte, P.F. & Tacca, M.D. Pharmacokinetic Optimisation of Treatment Schedules for Anthracyclines and Paclitaxel in Patients with Cancer. Clin Pharmacokinet 37, 195–211 (1999). https://doi.org/10.2165/00003088-199937030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199937030-00002

Keywords

Navigation