Skip to main content

Advertisement

Log in

Phase I and pharmacokinetic study of the novel anthracycline derivative 5-imino-13-deoxydoxorubicin (GPX-150) in patients with advanced solid tumors

  • PHASE I STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Purpose 5-imino-13-deoxydoxorubicin (DIDOX; GPX-150) is a doxorubicin analog modified in two locations to prevent formation of cardiotoxic metabolites and reactive oxygen species. Preclinical studies have demonstrated anti-cancer activity without cardiotoxicity. A phase I study was performed in order to determine the maximum-tolerated dose (MTD) of GPX-150 in patients with metastatic solid tumors. Methods GPX-150 was administered as an intravenous infusion every 21 days for up to 8 cycles. An accelerated dose escalation was used for the first three treatment groups. The dosing groups were (A) 14 mg/m2, (B) 28 mg/m2, (C), 56 mg/m2, (D) 84 mg/m2, (E) 112 mg/m2, (F) 150 mg/m2, (G) 200 mg/m2, and (H) 265 mg/m2. Pharmacokinetic samples were drawn during the first 72 h of cycle 1. Results The MTD was considered to be reached at the highest dosing level of 265 mg/m2 since dose reduction was required in 5 of 6 patients for neutropenia. The most frequent adverse events were neutropenia, anemia, fatigue, and nausea. No patients experienced cardiotoxicity while on the study. The best overall response was stable disease in four (20 %) patients. Pharmacokinetic analysis revealed an AUC of 8.0 (±2.6) μg · h/mL, a clearance of 607 (±210) mL/min/m2 and a t1/2β of 13.8 (±4.6) hours. Conclusions GPX-150 administered every 21 days has an acceptable side effect profile and no cardiotoxicity was observed. Further investigation is needed to determine the efficacy of GPX-150 in anthracycline-sensitive malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bristow MR, Thompson PD, Martin RP, Mason JW, Billingham ME, Harrison DC (1978) Early anthracycline cardiotoxicity. Am J Med 65(5):823–832

    Article  CAS  PubMed  Google Scholar 

  2. Buzdar AU, Marcus C, Smith TL, Blumenschein GR (1985) Early and delayed clinical cardiotoxicity of doxorubicin. Cancer 55(12):2761–2765

    Article  CAS  PubMed  Google Scholar 

  3. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML (1991) Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 266(12):1672–1677

    Article  CAS  PubMed  Google Scholar 

  4. Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, Muggia FM (1979) Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 91(5):710–717

    Article  Google Scholar 

  5. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97(11):2869–2879. doi:10.1002/cncr.11407

    Article  CAS  PubMed  Google Scholar 

  6. Alexander J, Dainiak N, Berger HJ, Goldman L, Johnstone D, Reduto L, Duffy T, Schwartz P, Gottschalk A, Zaret BL (1979) Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med 300(6):278–283. doi:10.1056/NEJM197902083000603

    Article  CAS  PubMed  Google Scholar 

  7. Romero A, Caldes T, Diaz-Rubio E, Martin M (2012) Topoisomerase 2 alpha: a real predictor of anthracycline efficacy? Clin Transl Oncol 14(3):163–168. doi:10.1007/s12094-012-0779-1

    Article  CAS  PubMed  Google Scholar 

  8. Davies KJ, Doroshow JH (1986) Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. J Biol Chem 261(7):3060–3067

    CAS  PubMed  Google Scholar 

  9. Vasquez-Vivar J, Martasek P, Hogg N, Masters BS, Pritchard KA Jr, Kalyanaraman B (1997) Endothelial nitric oxide synthase-dependent superoxide generation from adriamycin. Biochemistry 36(38):11293–11297. doi:10.1021/bi971475e

    Article  CAS  PubMed  Google Scholar 

  10. Minotti G, Recalcati S, Mordente A, Liberi G, Calafiore AM, Mancuso C, Preziosi P, Cairo G (1998) The secondary alcohol metabolite of doxorubicin irreversibly inactivates aconitase/iron regulatory protein-1 in cytosolic fractions from human myocardium. FASEB J 12(7):541–552

    CAS  PubMed  Google Scholar 

  11. Cusack BJ, Mushlin PS, Voulelis LD, Li X, Boucek RJ Jr, Olson RD (1993) Daunorubicin-induced cardiac injury in the rabbit: a role for daunorubicinol? Toxicol Appl Pharmacol 118(2):177–185

    Article  CAS  PubMed  Google Scholar 

  12. Olson RD, Mushlin PS, Brenner DE, Fleischer S, Cusack BJ, Chang BK, Boucek RJ Jr (1988) Doxorubicin cardiotoxicity may be caused by its metabolite, doxorubicinol. Proc Natl Acad Sci U S A 85(10):3585–3589

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Mushlin PS, Cusack BJ, Boucek RJ Jr, Andrejuk T, Li X, Olson RD (1993) Time-related increases in cardiac concentrations of doxorubicinol could interact with doxorubicin to depress myocardial contractile function. Br J Pharmacol 110(3):975–982

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Shadle SE, Bammel BP, Cusack BJ, Knighton RA, Olson SJ, Mushlin PS, Olson RD (2000) Daunorubicin cardiotoxicity: evidence for the importance of the quinone moiety in a free-radical-independent mechanism. Biochem Pharmacol 60(10):1435–1444

    Article  CAS  PubMed  Google Scholar 

  15. Lyu YL, Kerrigan JE, Lin CP, Azarova AM, Tsai YC, Ban Y, Liu LF (2007) Topoisomerase IIbeta mediated DNA double-strand breaks: implications in doxorubicin cardiotoxicity and prevention by dexrazoxane. Cancer Res 67(18):8839–8846. doi:10.1158/0008-5472.CAN-07-1649

    Article  CAS  PubMed  Google Scholar 

  16. Kratz F, Ehling G, Kauffmann HM, Unger C (2007) Acute and repeat-dose toxicity studies of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin (DOXO-EMCH), an albumin-binding prodrug of the anticancer agent doxorubicin. Hum Exp Toxicol 26(1):19–35

    Article  CAS  PubMed  Google Scholar 

  17. Kratz F, Warnecke A, Scheuermann K, Stockmar C, Schwab J, Lazar P, Druckes P, Esser N, Drevs J, Rognan D, Bissantz C, Hinderling C, Folkers G, Fichtner I, Unger C (2002) Probing the cysteine-34 position of endogenous serum albumin with thiol-binding doxorubicin derivatives. Improved efficacy of an acid-sensitive doxorubicin derivative with specific albumin-binding properties compared to that of the parent compound. J Med Chem 45(25):5523–5533

    Article  CAS  PubMed  Google Scholar 

  18. Lebrecht D, Geist A, Ketelsen UP, Haberstroh J, Setzer B, Kratz F, Walker UA (2007) The 6-maleimidocaproyl hydrazone derivative of doxorubicin (DOXO-EMCH) is superior to free doxorubicin with respect to cardiotoxicity and mitochondrial damage. Int J Cancer 120(4):927–934. doi:10.1002/ijc.22409

    Article  CAS  PubMed  Google Scholar 

  19. Mita MM, Natale RB, Wolin EM, Laabs B, Dinh H, Wieland S, Levitt DJ, Mita AC (2014) Pharmacokinetic study of aldoxorubicin in patients with solid tumors. Invest New Drugs. doi:10.1007/s10637-014-0183-5

    PubMed Central  Google Scholar 

  20. Chawla SP, Chua VS, Hendifar AF, Quon DV, Soman N, Sankhala KK, Wieland DS, Levitt DJ (2014) A phase 1B/2 study of aldoxorubicin in patients with soft tissue sarcoma. Cancer. doi:10.1002/cncr.29081

    Google Scholar 

  21. Unger C, Haring B, Medinger M, Drevs J, Steinbild S, Kratz F, Mross K (2007) Phase I and pharmacokinetic study of the (6-maleimidocaproyl)hydrazone derivative of doxorubicin. Clin Cancer Res 13(16):4858–4866. doi:10.1158/1078-0432.CCR-06-2776

    Article  CAS  PubMed  Google Scholar 

  22. Hofmann PA, Israel M, Koseki Y, Laskin J, Gray J, Janik A, Sweatman TW, Lothstein L (2007) N-Benzyladriamycin-14-valerate (AD 198): a non-cardiotoxic anthracycline that is cardioprotective through PKC-epsilon activation. J Pharmacol Exp Ther 323(2):658–664. doi:10.1124/jpet.107.126110

    Article  CAS  PubMed  Google Scholar 

  23. Smith LA, Cornelius VR, Plummer CJ, Levitt G, Verrill M, Canney P, Jones A (2010) Cardiotoxicity of anthracycline agents for the treatment of cancer: systematic review and meta-analysis of randomised controlled trials. BMC Cancer 10:337. doi:10.1186/1471-2407-10-337

    Article  PubMed Central  PubMed  Google Scholar 

  24. Slupe A, Williams B, Larson C, Lee LM, Primbs T, Bruesch AJ, Bjorklund C, Warner DL, Peloquin J, Shadle SE, Gambliel HA, Cusack BJ, Olson RD, Charlier HA Jr (2005) Reduction of 13-deoxydoxorubicin and daunorubicinol anthraquinones by human carbonyl reductase. Cardiovasc Toxicol 5(4):365–376

    Article  CAS  PubMed  Google Scholar 

  25. Busby L, Fitch T, Perez E, Farmer R, Roedig B, Dechow F, Wheeler RH (2001) A Phase I study of 13-deoxydoxorubicin (GPX-100) using accelerated dose titration. Proc Am Assos Cancer Res 42:834

    Google Scholar 

  26. Wagner JG (1976) Linear pharmacokinetic equations allowing direct calculation of many needed pharmacokinetic parameters from the coefficients and exponents of polyexponential equations which have been fitted to the data. J Pharmacokinet Biopharm 4(5):443–467

    Article  CAS  PubMed  Google Scholar 

  27. Wagner JG (1977) Pharmacokinetic data. Pharmacokinetic parameters estimated from intravenous data by uniform methods and some of their uses. J Pharmacokinet Biopharm 5(2):161–182

    Article  CAS  PubMed  Google Scholar 

  28. Hochster H, Liebes L, Wadler S, Oratz R, Wernz JC, Meyers M, Green M, Blum RH, Speyer JL (1992) Pharmacokinetics of the cardioprotector ADR-529 (ICRF-187) in escalating doses combined with fixed-dose doxorubicin. J Natl Cancer Inst 84(22):1725–1730

    Article  CAS  PubMed  Google Scholar 

  29. Robert J, Bui NB, Vrignaud P (1987) Pharmacokinetics of doxorubicin in sarcoma patients. Eur J Clin Pharmacol 31(6):695–699

    Article  CAS  PubMed  Google Scholar 

  30. Piscitelli SC, Rodvold KA, Rushing DA, Tewksbury DA (1993) Pharmacokinetics and pharmacodynamics of doxorubicin in patients with small cell lung cancer. Clin Pharmacol Ther 53(5):555–561

    Article  CAS  PubMed  Google Scholar 

  31. Rodvold KA, Rushing DA, Tewksbury DA (1988) Doxorubicin clearance in the obese. J Clin Oncol 6(8):1321–1327

    CAS  PubMed  Google Scholar 

  32. Speth PA, van Hoesel QG, Haanen C (1988) Clinical pharmacokinetics of doxorubicin. Clin Pharmacokinet 15(1):15–31. doi:10.2165/00003088-198815010-00002

    Article  CAS  PubMed  Google Scholar 

  33. Ryu RJ, Eyal S, Kaplan HG, Akbarzadeh A, Hays K, Puhl K, Easterling TR, Berg SL, Scorsone KA, Feldman EM, Umans JG, Miodovnik M, Hebert MF (2014) Pharmacokinetics of doxorubicin in pregnant women. Cancer Chemother Pharmacol 73(4):789–797. doi:10.1007/s00280-014-2406-z

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Smith TJ, Khatcheressian J, Lyman GH, Ozer H, Armitage JO, Balducci L, Bennett CL, Cantor SB, Crawford J, Cross SJ, Demetri G, Desch CE, Pizzo PA, Schiffer CA, Schwartzberg L, Somerfield MR, Somlo G, Wade JC, Wade JL, Winn RJ, Wozniak AJ, Wolff AC (2006) 2006 update of recommendations for the use of white blood cell growth factors: an evidence-based clinical practice guideline. J Clin Oncol 24(19):3187–3205. doi:10.1200/JCO.2006.06.4451

    Article  CAS  PubMed  Google Scholar 

  35. Aapro MS, Cameron DA, Pettengell R, Bohlius J, Crawford J, Ellis M, Kearney N, Lyman GH, Tjan-Heijnen VC, Walewski J, Weber DC, Zielinski C, European Organisation for R, Treatment of Cancer Granulocyte Colony-Stimulating Factor Guidelines Working P (2006) EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphomas and solid tumours. Eur J Cancer 42(15):2433–2453. doi:10.1016/j.ejca.2006.05.002

    Article  CAS  PubMed  Google Scholar 

Download references

Funding/Support

This study was sponsored by Gem Pharmaceuticals, LLC, Birmingham, AL and Coronado Biosciences, Inc., Burlington, MA.

Author’s disclosures of potential conflicts of interest

Sarah A. Holstein: none

James C. Bigelow: none

Richard D. Olson: consultant for Gem Pharmaceuticals, LLC

Robert E. Vestal: consultant for Gem Pharmaceuticals, LLC

Gerald M. Walsh: employee of Gem Pharmaceuticals, LLC

Raymond J. Hohl: research funding from Gem Pharmaceuticals, LLC

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah A. Holstein.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holstein, S.A., Bigelow, J.C., Olson, R.D. et al. Phase I and pharmacokinetic study of the novel anthracycline derivative 5-imino-13-deoxydoxorubicin (GPX-150) in patients with advanced solid tumors. Invest New Drugs 33, 594–602 (2015). https://doi.org/10.1007/s10637-015-0220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-015-0220-z

Keywords

Navigation