Skip to main content
Log in

Pharmacodynamics and Pharmacokinetics of Spiramycin and Their Clinical Significance

  • Review Article
  • Pharmacokinetic-Pharmacodynamic Relationships
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The absolute bioavailability of oral spiramycin is generally within the range of 30 to 40%. After a 1g oral dose, the maximum serum drug concentration was found to be within the range 0.4 to 1.4 mg/L. The tissue distribution of spiramycin is extensive. The volume of distribution is in excess of 300L, and concentrations achieved in bone, muscle, respiratory tract and saliva exceed those found in serum. The intracellular penetration of spiramycin is also rapid and extensive, with the concentrations in alveolar macrophages 10 to 20 times greater than simultaneous serum concentrations.

Spiramycin is less metabolised than some of the other macrolides. The renal excretion of spiramycin is low, with 4 to 20% of the dose being excreted by this route. High concentrations of spiramycin are achieved in bile, which is an important route of elimination. The serum elimination half-life of spiramycin is between 6.2 and 7.7 hours.

Of significance to clinicians may be the finding that spiramycin is highly concentrated in the respiratory tract and other tissues and macrophages. The post-antibiotic effect of spiramycin is significant and this effect is more prolonged than that of erythromycin against Staphylococcus aureus. Spiramycin has also been shown to greatly reduce the capacity of strains of Gram-positive cocci to adhere to human buccal cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Labro MT. Pharmacology of spiramycin: a comparison with other macrolides. Drug Invest. 1993; 6 Suppl. 1: 15–28.

    Google Scholar 

  2. Schentag JJ, Gengo FM. Principles of antibiotic tissue penetration and guidelines for pharmacokinetic analysis. Med Clin North Am. 1982; 66: 39–49.

    PubMed  CAS  Google Scholar 

  3. Frydman AM, Le Roux Y, Desnottes JF, et al. Pharmacokinetics of spiramycin in man. J Antimicrob Chemother 1988; 22 Suppl. B: 93–103.

    PubMed  CAS  Google Scholar 

  4. Kernbaum S. La spiramycine. Utilisation en therapeutique humaine. Semaine Hopit Paris. 1982; 58: 289–97.

    CAS  Google Scholar 

  5. Kavi J, Webberley JM, Andrews JM, et al. A comparison of the pharmacokinetics and tissue penetration of spiramycin and erythromycin. J Antimicrob Chemother 1988; 22 Suppl. B: 105–10.

    Article  PubMed  CAS  Google Scholar 

  6. Kamme C, Kahlmeter G, Melander A. Evaluation of spiramycin as a therapeutic agent for the elimination of nasopharyngeal pathogens: possible use of spiramycin for middle ear infections and for gonococcal and meningococcal nasapharyngeal carriage. Scand J Infect Dis. 1978; 10(2): 135–42.

    PubMed  CAS  Google Scholar 

  7. Wise R. Clinical pharmacokinetics of spiramycin. Drugs Invest. 1993; 6 Suppl. 1: 29–34.

    Google Scholar 

  8. Inoue A, Deguchi T. The pharmacokinetic studies of spiramycin and acetylspiramycin in rats [in Japanese]. Jpn J Antibiot. 1982; 35: 1998–2004.

    PubMed  CAS  Google Scholar 

  9. Osono T, Umezawa H. Pharmacokinetics of macrolides, lincosamides and streptogramins. J Antimicrob Chemother 1985; 16 Suppl. A: 151–66.

    PubMed  CAS  Google Scholar 

  10. Levrat M, Brette, R, Truchot R. L’eliminations biliare des antibiotiques. Rev Int Hepatol. 1964; 14: 137–69.

    PubMed  CAS  Google Scholar 

  11. MacFarlane J, Mitchell A, Walsh J, et al. Spiramycin in the prevention of post-operative staphylococcal sepsis. Lancet. 1968; I: 1–4.

    Article  Google Scholar 

  12. Lamy P, Anthoine D, Zack P, et al. Etude pharmacokinetique de la spiramycine en pathologie infectieuse respiratoire. Ann Med Nancy. 1977; 16: 109–12.

    Google Scholar 

  13. Gaillard L, Jakebowicz B, Tissier M, et al. La spiramycine tmax tissulaires dans les amygdales et les vegetations. Lyon Med. 1971; 225: 419–24.

    PubMed  CAS  Google Scholar 

  14. Bergogne-Berezin E. Spiramycin concentrations in the human respiratory tract: a review. J Antimicrob Chemother 1988; 22 Suppl. B: 117–22.

    PubMed  CAS  Google Scholar 

  15. Bergogne-Berezin E. Predicting antibiotic response in respiratory tract infections. Proceedings of the 7th International Congress if Infectious Diseases; 1996 Jun 10–13; Hong Kong.

    Google Scholar 

  16. Baldwin DR, Honeybourne D, Wise R. Pulmonary disposition of antimicrobial agents: in vivo observations and clinical relevance, antimicrobial agents and chemotherapy. Antimicrob Agents Chemother. 1992; 36(6): 1176–80.

    Article  PubMed  CAS  Google Scholar 

  17. Bremond G, Magnan J, de Micco C. Sinusites maxillaires. Etude clinique, microscopique, ultrastructurale et pharmacologique. J Fr Otorhinolaryngol. 1976; 25: 681–9.

    CAS  Google Scholar 

  18. Periti P, Mazzei T, Mini E, et al. Clinical pharmacokinetic properties of the macrolide antibiotics: effect of age and variouspathophysiological states. Part I. Clin Pharmacokinet. 1989; 16: 193–214.

    Article  PubMed  CAS  Google Scholar 

  19. Cremieux AC, Vallois JM, Maziere B, et al. 3H-spiramycin penetration into fibrin vegetations in an experimental model of streptococcal endocarditis. J Antimicrob Chemother 1988; 22 Suppl. B: 127–33.

    Article  PubMed  CAS  Google Scholar 

  20. Allen HH, Khalil MW, Vachon DL, et al. Spiramycin concentrations in female pelvic tissues, determined by HPLC: a preliminary report. J Antimicrob Chemother 1988; 22 Suppl. B: 111–6.

    PubMed  CAS  Google Scholar 

  21. Pocidalo JJ, Albert F, Desnottes JF. Intraphagocytic penetration of the macrolides: in vivo comparison of erythromycin and spiramycin. J Antimicrob Chemother 1985; 16 Suppl. A: 167–73.

    PubMed  CAS  Google Scholar 

  22. Veber B, Vallee E, Desmont JM, et al. Correlation between macrolide lung pharmacokinetics and therapeutic efficacy in a mouse model of pneumococcal pneumonia. J Antimicrob Chemother. 1993; 32: 473–82.

    Article  PubMed  CAS  Google Scholar 

  23. Harf R, Panteix G, Desnottes JF, et al. Spiramycin uptake by alveolar macrophages. J Antimicrob Chemother 1988; 22 Suppl. B: 135–40.

    Article  PubMed  CAS  Google Scholar 

  24. Brook I. Inoculum effect. Rev Infect Dis. 1989; 11(3): 361–8.

    Article  PubMed  CAS  Google Scholar 

  25. Watanabe T, Kanno M, Tejima E, et al. Effects of macrolides on ultrastructure of Staphylococcus aureus during the post-antibiotic phase [abstract]. Proceedings of the 17th International Congress of Chemotherapy, Berlin 1991.

    Google Scholar 

  26. Webster C, Ghazanfar K, Slack R. Sub-inhibitory and post-antibiotic effects of spiramycin and erythromycin on Staphylococcus aureus. J Antimicrob Chemother 1988; 22 Suppl. B: 33–9.

    PubMed  CAS  Google Scholar 

  27. Begue P. Antibiotic therapy of pharyngitis [in French]. Ann Pediatr (Paris). 1991; 38(8): 545–8.

    CAS  Google Scholar 

  28. Desnottes JF, Predicting antibiotic response in respiratory tract infections. Proceeding of the 7th International Congress of Infectious Diseases; 1996 Jun 10–13; Hong Kong.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brook, I. Pharmacodynamics and Pharmacokinetics of Spiramycin and Their Clinical Significance. Clin Pharmacokinet 34, 303–310 (1998). https://doi.org/10.2165/00003088-199834040-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199834040-00003

Keywords

Navigation