Skip to main content
Log in

Pharmacokinetics and Pharmacodynamics of Sedatives and Analgesics in the Treatment of Agitated Critically Ill Patients

  • Review Article
  • Special Populations
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The pharmacokinetics and pharmacodynamics of sedatives and analgesics are significantly altered in the critically ill. These changes may account for the large differences in drug dosage requirements compared with other patient populations. Drugs that in other settings may be considered short-acting often have significantly altered onset and duration of action in critically ill patients, necessitating a change in dosage.

Of the benzodiazepines, lorazepam is the drug whose parameters are the least likely to be altered in critical illness. The presence of active metabolites with other benzodiazepines complicates their use during periods of prolonged use. Similarly, the presence of active metabolites of morphine and pethidine (meperidine) warrants caution in patients with renal insufficiency. The fewer cardiovascular effects seen with high-potency opioids, such as fentanyl and sufentanil, increase their usefulness in haemodynamically compromised patients. The pharmacodynamics of propofol are not significantly altered in the critically ill. Ketamine should be used with a benzodiazepine to prevent the emergence of psychomimetic reactions. Lower sedative doses of benzodiazepines and anaesthetics may not provide reliable amnesia.

Barbiturates and propofol probably do not induce hyperalgesia and lack intrinsic analgesic activity. The antipsychotic agent haloperidol has a calming effect on patients and administration to the point of sedation is generally not necessary. Combinations of sedatives and analgesics are synergistic in producing sedation.

The costs of sedation and analgesia are very variable and closely linked to the pharmacokinetics and pharmacodynamics of the drug. Monitoring of sedation and analgesia is difficult in uncooperative patients in the intensive care unit. In the future, specific monitoring tools may assist clinicians in the regulation of infusions of sedative and analgesic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bodenham A, Shelly MP, Park GR. The altered pharmacokinetics and pharmacodynamics of drugs commonly used in critically ill patients. Clin Pharmacokinet 1988; 14: 347–73

    Article  PubMed  CAS  Google Scholar 

  2. Nielson C. Pharmacologic considerations in critical care of the elderly. Clin Geriat Med 1994; 10: 71–89

    CAS  Google Scholar 

  3. Stoltzfus DP. Advantages and disadvantages of combining sedative agents. Crit Care Clin 1995; 11: 903–12

    PubMed  CAS  Google Scholar 

  4. Beckwith MC, Barton RG, Graves C. A guide to drug therapy in patients with enterai feeding tubes: dosage form selection and administration methods. Hosp Pharm 1997; 32: 57–64

    Google Scholar 

  5. Gubbins PO, Bertch KE. Drug absorption in gastrointestinal disease and surgery. Clin Pharmacokinet 1991; 21: 431–47

    Article  PubMed  CAS  Google Scholar 

  6. Melnick G. Pharmacological aspects of enterai nutrition. In: Rombeau JL, Caldwell MD, editors. Clinical nutrition: enteral and tube feeding, 2nd ed. Philadelphia: WB Saunders, 1990: 472–509

    Google Scholar 

  7. Tanswell P, Hofgartner F, Bozler G, et al. Absolute bioavailability of pirenzepine in intensive care patients. Eur J Clin Pharm 1990; 38: 265–8

    Article  CAS  Google Scholar 

  8. Nicolau DP, Crowe H, Nightingale CH, et al. Bioavailability of fluconazole administered via a feeding tube in intensive care unit patients. J Antimicrob Chemother 1995; 36: 395–401

    Article  PubMed  CAS  Google Scholar 

  9. Rosemurgy AS, Markowsky S, Goode SE, et al. Bioavailability of fluconazole in surgical intensive care unit patients: a study comparing routes of administration. J Trauma 1995; 39: 445–7

    Article  PubMed  CAS  Google Scholar 

  10. Woodcock BG, Rietbrock I, Vöhringer HF, et al. Verapamil disposition in liver disease and intensive-care patients: kinetics, clearance, and apparent blood flow relationships. Clin Pharmacol Ther 1981; 29: 27–34

    Article  PubMed  CAS  Google Scholar 

  11. Biddle C, Gilliland C. Transdennal and transmucosal administration of pain-relieving and anxiolytic drugs: a primer for the critical care practitioner. Heart Lung 1992; 21: 115–24

    PubMed  CAS  Google Scholar 

  12. Bertz RJ, Granneman GR. Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 1997; 32: 210–58

    Article  PubMed  CAS  Google Scholar 

  13. Marietta MR, White PF, Pudwill CR, et al. Biodisposition of ketamine in the rat: self-induction of metabolism. J Pharmacol Exp Ther 1976; 196: 536–44

    CAS  Google Scholar 

  14. Fang J, Baker GB, Silverstone PH, et al. Involvement of CYP3A4 and CYP2D6 in the metabolism of haloperidol. Cell Mol Neurobiol 1997; 17: 227–33

    Article  PubMed  CAS  Google Scholar 

  15. Tateishi T, Krivoruk Y, Ueng YF, et al. Identification of human liver cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation. Anesth Analg 1996; 82: 167–72

    PubMed  CAS  Google Scholar 

  16. Pentel P, Benowitz N. Pharmacokinetic and pharmacodynamic considerations in drug therapy of cardiac emergencies. Clin Pharmacokinet 1984; 9: 273–308

    Article  PubMed  CAS  Google Scholar 

  17. Toler SM, Young AB, McClain CJ, et al. Head injury and cytochrome P-450 enzymes. Drug Metab Disp 1993; 21: 1064–9

    CAS  Google Scholar 

  18. Rauckman EJ, Rosen GM, Post SE, et al. Effect of traumatic injury on hepatic drug-metabolizing enzymes. J Trauma 1980; 20: 884–6

    Article  PubMed  CAS  Google Scholar 

  19. Mirvis L, Buchanan N, Eyberg C. Antipyrine elimination in critically ill patients. Intens Care Med 1979; 5: 69–71

    Article  CAS  Google Scholar 

  20. Schröter J, Wandel C, Bohrer H, et al. Lignocaine metabolite formation: an indicator for liver dysfunction and predictor of survival in surgical intensive care patients. Anaesthesia 1995; 50: 850–4

    Article  PubMed  Google Scholar 

  21. Prescott LF, Adjepon-Yamoah KK, Talbot RG. Impaired lignocaine metabolism in patients with myocardial infarction and cardiac failure. BMJ 1976; 1: 939–41

    Article  PubMed  CAS  Google Scholar 

  22. Boucher BA, Kuhl DA, Fabian TC, et al. Effect of neurotrauma on hepatic drug clearance. Clin Pharmacol Ther 1991; 50: 487–97

    Article  PubMed  CAS  Google Scholar 

  23. Griffeth LK, Rosen GM, Rauckman EJ. Effects of model traumatic injury on hepatic drug metabolism in the rat. IV: glucuronidation. Drug Metab Dispos 1985; 13: 391–7

    PubMed  CAS  Google Scholar 

  24. Griffeth LK, Rosen GM, Rauckman EJ. Effects of model traumatic injury on hepatic drug metabolism in the rat. V: sulfation and acetylation. Drug Metab Dispos 1985; 13: 398–405

    PubMed  CAS  Google Scholar 

  25. Bonate PL. Pathophysiology and pharmacokinetics following burn injury. Clin Pharmacokinet 1990; 18: 118–30

    Article  PubMed  CAS  Google Scholar 

  26. Bauer LA, Edwards WAD, Dellinger EP, et al. Importance of unbound phenytoin serum levels in head trauma patients. J Trauma 1983; 23: 1058–60

    Article  PubMed  CAS  Google Scholar 

  27. Gottlieb ME, Sarfeh IJ, Stratton H, et al. Hepatic perfusion and splanchnic oxygen consumption in patients postinjury. J Trauma 1983; 23: 836–43

    Article  PubMed  CAS  Google Scholar 

  28. Dahn MS, Lange MP, Wilson RF, et al. Hepatic blood flow and splanchnic oxygen consumption measurements in clinical sepsis. Surgery 1990; 107: 295–301

    PubMed  CAS  Google Scholar 

  29. Shafer A, Doze VA, White PF. Pharmacokinetic variability of midazolam infusions in critically ill patients. Crit Care Med 1990; 18: 1039–41

    Article  PubMed  CAS  Google Scholar 

  30. Rietbrock I, Lazarus G, Richter E, et al. Hexobarbitone disposition at different stages of intensive care treatment. Br J Anaesth 1981; 53: 283–92

    Article  PubMed  CAS  Google Scholar 

  31. Perry S, Inturrisi CE. Analgesia and morphine disposition in burn patients. J Burn Care Rehabil 1983; 4: 276–9

    Article  Google Scholar 

  32. Bloedow DC, Goodfellow LA, Mauvin J, et al. Meperidine disposition in burn patients. Res Comm Chem Path Pharmacol 1986; 54: 87–99

    CAS  Google Scholar 

  33. Bourne DWA. MULTI-FORTE, a microcomputer program for modelling and simulation of pharmacokinetic data. Comp Meth Prog Biomed 1986; 23: 277–81

    Article  CAS  Google Scholar 

  34. Sheiner LB, Stanski DR, Vozeh S, et al. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d-tubocurarine. Clin Pharmacol Ther 1979; 25: 358–71

    PubMed  CAS  Google Scholar 

  35. Schwilden H, Schuttler J, Stoeckel H. Closed-loop feedback control of methohexital anesthesia by quantitative EEG analysis in humans. Anesthesiology 1987; 67: 341–7

    Article  PubMed  CAS  Google Scholar 

  36. Owen H, Spence AA. Etomidate. Br J Anaesth 1984; 56: 555–7

    Article  PubMed  CAS  Google Scholar 

  37. Homer TD, Stanski DR. The effect of increasing age on thiopental disposition and anesthetic requirement. Anesthesiology 1985; 62: 714–24

    Article  PubMed  CAS  Google Scholar 

  38. Schwilden H, Stoeckel H. Effective therapeutic infusions produced by closed-loop feedback control of methohexital administration during total intravenous anesthesia with fentanyl. Anesthesiology 1990; 73: 225–9

    Article  PubMed  CAS  Google Scholar 

  39. Kinney JM. Metabolic responses of the critically ill patient. Crit Care Clin 1995; 11: 569–85

    PubMed  CAS  Google Scholar 

  40. Unverferth DV, Blanford M, Kates RE, et al. Tolerance to dobutamine after a 72 hour continuous infusion. Am J Med 1980; 69: 262–6

    Article  PubMed  CAS  Google Scholar 

  41. Silverman HJ, Penaranda R, Orens JB, et al. Impaired b-adrenergic receptor stimulation of cyclic adenosine monophosphate in human septic shock: association with myocardial hyporesponsiveness to catecholamines. Crit Care Med 1993; 21: 31–9

    Article  PubMed  CAS  Google Scholar 

  42. Martin SJ, Danziger LH. Continuous infusion of loop diuretics in the critically ill: a review of the literature. Crit Care Med 1994; 22: 1323–9

    Article  PubMed  CAS  Google Scholar 

  43. Denson DD, Concilus RR, Warden G, et al. Pharmacokinetics of continuous intravenous infusion of methadone in the early post-burn period. J Clin Pharmacol 1990; 30: 70–5

    PubMed  CAS  Google Scholar 

  44. Shafer A, White PF, Schüttler J, et al. Use of a fentanyl infusion in the intensive care unit: tolerance to its anesthetic effects? Anesthesiology 1983; 59: 245–8

    PubMed  CAS  Google Scholar 

  45. Sinclair ME, Sear JW, Summerfield RJ, et al. Alfentanil infusions in the intensive care unit. Intensive Care Med 1988; 14: 55–9

    Article  PubMed  CAS  Google Scholar 

  46. Sawada Y, Sugimoto H, Kobayashi H, et al. Acute tolerance to high-dose barbiturate treatment in patients with severe head injuries. Anesthesiology 1982; 56: 53–4

    Article  PubMed  CAS  Google Scholar 

  47. Bivins BA, Rapp RP, Griffen Jr WO, et al. Dopamine-phenytoin interaction: a cause of hypotension in the critically ill. Arch Surg 1978; 113: 245–9

    Article  PubMed  CAS  Google Scholar 

  48. Nolan Jr PE, Raehl CL. Toxic effects of drugs used in the ICU: antiarrhythmic agents. Crit Care Clin 1991; 7: 507–20

    PubMed  Google Scholar 

  49. Guidry JR, Raschke RA, Morkunas AR. Toxic effects of drugs used in the ICU: anticoagulants and thrombolytics: risks and benefits. Crit Care Clin 1991; 7: 533–54

    PubMed  CAS  Google Scholar 

  50. Hansen-Flaschen JH, Brazinsky S, Basile C, et al. Use of sedating drugs and neuromuscular blocking agnets in patients requiring mechnaical ventilation for respiratory failure: a national survey. JAMA 1991; 266: 2870–5

    Article  PubMed  CAS  Google Scholar 

  51. Greenblatt DJ, Shader RI, Abernethy DR. Current status of benzodiazepines. N Engl J Med 1983; 309: 354–8

    Article  PubMed  CAS  Google Scholar 

  52. Lister RG. The amnesic action of benzodiazepines in man. Neurosci Biobehav Rev 1985; 9: 87–94

    Article  PubMed  CAS  Google Scholar 

  53. Tateishi A, Maekawa T, Takeshita H, et al. Diazepam and intracranial pressure. Anesthesiology 1981; 54: 335–7

    Article  PubMed  CAS  Google Scholar 

  54. Abbondati G, Kuurne T, Tarkkanen L, et al. Ventricular fluid pressure in neurosurgical patients receiving intravenous lorazepam for premedication. Acta Neurochirurg 1982; 64: 69–73

    Article  CAS  Google Scholar 

  55. Papazian L, Albanese J, Thirion X, et al. Effect of bolus doses of midazolam on intracranial pressure and cerebral perfusion pressure in patients with severe head injury. Br J Anaesth 1993; 71: 267–71

    Article  PubMed  CAS  Google Scholar 

  56. Clinical depression of the central nervous system due to diazepam and chlordiazepoxide in relation to cigarette smoking and age. N Engl J Med 1973; 288: 277-80

  57. Deppe SA, Sipperly ME, Sargent AI, et al. Intravenous lorazepam as an amnestic and anxiolytic agent in the intensive care unit: a prospective study. Crit Care Med 1994; 22: 1248–52

    Article  PubMed  CAS  Google Scholar 

  58. Doi M, Ikeda K. Age-related changes in pharmacodynamics and pharmacokinetics of midazolam during sedation in ICU patients [abstract]. Anesthesiology 1994; 81: A259

    Article  Google Scholar 

  59. Jacobs JR, Reves JG, Marty J, et al. Aging increases pharmaco-dynamic sensitivity to the hypnotic effects of midazolam. Anesth Analg 1995; 80: 143–8

    PubMed  CAS  Google Scholar 

  60. Hoey LL, Nahum A, Vance-Bryan K. A prospective evaluation of benzodiazepine guidelines in the management of patients hospitalized for alcohol withdrawal. Pharmacotherapy 1994; 14: 579–85

    PubMed  CAS  Google Scholar 

  61. Spies CD, Dubisz N, Neumann T, et al. Therapy of alcohol withdrawal syndrome in intensive care unit patients following trauma: results of a prospective, randomized trial. Crit Care Med 1996; 24: 414–22

    Article  PubMed  CAS  Google Scholar 

  62. Vinik HR, Kissin I. Sedation in the ICU. Intensive Care Med 1991; 17 Suppl. 1: S20–3

    Article  PubMed  Google Scholar 

  63. Greenblatt DJ, Ehrenberg BL, Gunderman J, et al. Pharmacokinetic and electroencephalographic study of intravenous diazepam, midazolam, and placebo. Clin Pharmacol Ther 1989; 45: 356–65

    Article  PubMed  CAS  Google Scholar 

  64. Ariano RE, Kassum DA, Aronson KJ. Comparison of sedative recovery time after midazolam versus diazepam administration. Crit Care Med 1994; 22: 1492–6

    Article  PubMed  CAS  Google Scholar 

  65. Veselis RA. The EEG as a monitor of sedation: encouraging progress. J Clin Anesth 1996; 8 Suppl. 3: 81S–7S

    Article  PubMed  CAS  Google Scholar 

  66. Greenblatt DJ, Ehrenberg BL, Gunderman J, et al. Kinetic and dynamic study of intravenous lorazepam: comparison with intravenous diazepam. J Pharmacol Exp Ther 1989; 250: 134–40

    PubMed  CAS  Google Scholar 

  67. Scharf MB, Khosla N, Brocker N, et al. Differential amnestic properties of short- and long-acting benzodiazepines. J Clin Psychiatry 1984; 45: 51–3

    PubMed  CAS  Google Scholar 

  68. Klockowski PM, Levy G. Kinetics of drug action in disease states, XXV: effect of experiemental hypovolemia on the pharmacodynamics and pharmacokinetics of desmethyl-diazepam. J Pharmacol Exp Ther 1988; 245: 508–12

    PubMed  CAS  Google Scholar 

  69. Pohlman AS, Simpson KP, Hall JB. Continuous intravenous infusions of lorazepam versus midazolam for sedation during mechanical ventilatory support: a prospective, randomized study. Crit Care Med 1994; 22: 1241–7

    Article  PubMed  CAS  Google Scholar 

  70. Bauer TM, Titz R, Haberthür C, et al. Prolonged sedation due to accumulation of conjugated metabolites of midazolam. Lancet 1995; 346: 145–7

    Article  PubMed  CAS  Google Scholar 

  71. Lin KM, Friedel RO. Relationship of plasma levels of chlordiazepoxide and metabolites to clinical response. Am J Psychiatry 1979; 136: 18–23

    PubMed  CAS  Google Scholar 

  72. Baskin SI, Esdale A. Is chlordiazepoxide the rational choice among benzodiazepines? Pharmacotherapy 1982; 2: 110–9

    PubMed  CAS  Google Scholar 

  73. Ochs HR. Plasma levels following high diazepam doses in intensive-care medicine. Anast Intensivther Notfallmed 1981; 16: 143–4

    Article  CAS  Google Scholar 

  74. Oldenhof H, de Jong M, Steenhoek A, et al. Clinical pharmacokinetics of midazolam in intensive care patients, a wide inter-patient variability? Clin Pharmacol Ther 1988; 43: 263–9

    Article  PubMed  CAS  Google Scholar 

  75. Greenblatt DJ, Shader RI, MacLeod SM, et al. Clinical pharmacokinetics of chlordiazepoxide. Clin Pharmacokinet 1978; 3: 381–94

    Article  PubMed  CAS  Google Scholar 

  76. Roberts RK, Wilkinson GR, Branch RA, et al. Effect of age and parenchymal liver disease on the disposition and elimination of chlordiazepoxide (librium). Gastroenterology 1978; 75: 479–85

    PubMed  CAS  Google Scholar 

  77. Morgan DD, Robinson JD, Mendenhall CL. Clinical pharmacokinetics of chloridazepoxide in patients with alcoholic hepatitis. Eur J Clin Pharmacol 1981; 19: 279–85

    Article  PubMed  CAS  Google Scholar 

  78. Barton K, Auld PW, Scott MG, et al. Chlordiazepoxide metabolite accumulation in liver disease. Med Toxicol 1989; 4: 73–6

    CAS  Google Scholar 

  79. Desmond PV, Patwardhan RV, Schenker S, et al. Cimetidine impairs elimination of chlordiazepoxide (librium) in man. Ann Intern Med 1980; 93: 266–8

    PubMed  CAS  Google Scholar 

  80. Mattila MA, Suistomaa M. Intravenous premedication with diazepam: a comparison between two vehicles. Anaesthesia 1984; 39: 879–82

    Article  PubMed  CAS  Google Scholar 

  81. Ravnborg M, Hasselstrom L, Ostergard D. Premedication with oral and rectal diazepam. Acta Anaesthesiol Scand 1986; 30: 132–8

    Article  PubMed  CAS  Google Scholar 

  82. Greenblatt DJ, Allen MD, Harmatz JS, et al. Diazepam disposition determinants. Clin Pharmacol Ther 1980; 27: 301–12

    Article  PubMed  CAS  Google Scholar 

  83. Greenblatt DJ, Divoll MK, Soong MH, et al. Desmethyldiazepam pharmacokinetics: studies following intravenous and oral desmethyldiazepam, oral clorazepate, and intravenous diazepam. J Clin Pharmacol 1988; 28: 853–9

    PubMed  CAS  Google Scholar 

  84. Greenblatt DJ. Clinical pharmacokinetics of oxazepam and lorazepam. Clin Pharmacokinet 1981; 6: 89–105

    Article  PubMed  CAS  Google Scholar 

  85. Ochs HR, Greenblatt DJ, Eckardt B, et al. Repeated diazepam dosing in cirrhotic patients: cumulation and sedation. Clin Pharmacol Ther 1983; 33: 471–6

    Article  PubMed  CAS  Google Scholar 

  86. Thiessen JJ, Sellers EM, Denbeigh P, et al. Plasma protein binding of diazepam and tolbutamide in chronic alcoholics. J Clin Pharmacol 1976; 16: 345–51

    PubMed  CAS  Google Scholar 

  87. Kangas L, Kanto J, Forsström J, et al. The protein binding of diazepam and N-methyldiazepam in patients with poor renal function. Clin Nephrol 1976; 5: 114–8

    PubMed  CAS  Google Scholar 

  88. Martyn JAJ, Greenblatt DJ, Quinby WC. Diazepam kinetics in patients with severe burns. Anest Analg 1983; 62: 293–7

    CAS  Google Scholar 

  89. Lowry KG, Dundee JW, McClean E, et al. Pharmacokinetics of diazepam and midazolam when used for sedation following cardiopulmonary bypass. Br J Anaesth 1985; 57: 883–5

    Article  PubMed  CAS  Google Scholar 

  90. Ochs HR, Greenblatt DJ, Lauven PM, et al. Kinetics of high-dose i.V. diazepam. Br J Anaesth 1982; 54: 849–52

    Article  PubMed  CAS  Google Scholar 

  91. Andersson T, Andren K, Cederberg C, et al. Effect of omeprazole and cimetidine on plasma diazepam levels. Eur J Clin Pharmacol 1990; 39: 51–4

    Article  PubMed  CAS  Google Scholar 

  92. Clausen TG, Wolff J, Hansen PB, et al. Pharmacokinetics of midazolam and alpha-hydroxy-midazolam following rectal and intravenous administration. Br J Clin Pharmacol 1988; 25: 457–63

    Article  PubMed  CAS  Google Scholar 

  93. Allonen H, Ziegler G, Klotz U. Midazolam kinetics. Clin Pharmacol Ther 1981; 30: 653–61

    Article  PubMed  CAS  Google Scholar 

  94. Harper KW, Collier PS, Dundee JW, et al. Age and nature of operation influence the pharmacokinetics of midazolam. Br J Anaesth 1985; 57: 866–71

    Article  PubMed  CAS  Google Scholar 

  95. Dundee JW, Collier PS, Carlisle RJT, et al. Prolonged midazolam elimination half-life. Br J Clin Pharmacol 1986; 21: 425–9

    Article  PubMed  CAS  Google Scholar 

  96. Maitre PO, Funk B, Crevoisier C, et al. Pharmacokinetics of midazolam in patients recovering from cardiac surgery. Eur J Clin Pharmacol 1989; 37: 161–6

    Article  PubMed  CAS  Google Scholar 

  97. Nishiyama T, Hirasaki A, Toda N, et al. Pharmacokinetics of midazolam in patients with liver damage for hepatectomy. Masui 1993; 42: 871–5

    PubMed  CAS  Google Scholar 

  98. Trouvin JH, Farinotti R, Haberer JP, et al. Pharmacokinetics of midazolam in anaesthetized cirrhotic patients. Br J Anaesth 1988; 60: 762–7

    Article  PubMed  CAS  Google Scholar 

  99. Pentikäinen PJ, Valisalmi L, Himberg JJ, et al. Pharmacokinetics of midazolam following intravenous and oral administration in patients with chronic liver disease and in healthy subjects. J Clin Pharmacol 1989; 29: 272–7

    PubMed  Google Scholar 

  100. Calvo R, Suarez E, Rodriguez-Sasiain JM, et al. The influence of renal failure on the kinetics of intravenous midazolam: an ‘in vitro’ and ‘in vivo’ study. Res Commun Chem Pathol Pharmacol 1992; 78: 311–20

    PubMed  CAS  Google Scholar 

  101. Driessen JJ, Vree TB, Guelen PJ. The effects of acute changes in renal function on the pharmacokinetics of midazolam during long-term infusion in ICU patients. Acta Anaesthesiol Belg 1991; 42: 149–55

    PubMed  CAS  Google Scholar 

  102. Vree TB, Shimoda M, Driessen JJ, et al. Decreased plasma albumin concentration results in increased volume of distribution and decreased elimination of midazolam in intensive care patients. Clin Pharmacol Ther 1989; 46: 537–44

    Article  PubMed  CAS  Google Scholar 

  103. Malacrida R, Fritz ME, Suter PM, et al. Pharmacokinetics of midazolam administered by continuous intravenous infusion to intensive care patients. Crit Care Med 1991; 20: 1123–6

    Article  Google Scholar 

  104. Shelly MP, Mendel L, Park GR. Failure of critically ill patients to metabolise midazolam. Anaesthesia 1987; 42: 619–26

    Article  PubMed  CAS  Google Scholar 

  105. Byatt CM, Lewis LD, Dawling S, et al. Accumulation of midazolam after repeated dosage in patients receiving mechanical ventilation in an intensive care unit. BMJ 1984; 289: 799–800

    Article  PubMed  CAS  Google Scholar 

  106. Dirksen MSC, Vree TB, Driessen JJ. Clinical pharmacokinetics of long-term infusion of midazolam in critically ill patients: preliminary results. Anaesth Intensive Care 1987; 15: 440–4

    PubMed  CAS  Google Scholar 

  107. Behne M, Asskali F, Steuer A, et al. Continuous midazolam infusion for sedation of respirator patients. Anaesthesist 1987; 36: 228–32

    PubMed  CAS  Google Scholar 

  108. Michalk S, Moncorge C, Fichelle A, et al. Midazolam infusion for basal sedation in intensive care: absence of accumulation. Intensive Care Med 1988; 15: 37–41

    Article  PubMed  CAS  Google Scholar 

  109. McNulty SE, Gratch D, Costello D, et al. The effect of midazolam and lorazepam on postoperative recovery after cardiac surgery. Anesth Analg 1995; 81: 404–7

    PubMed  CAS  Google Scholar 

  110. Westphal LM, Cheng EY, White PF, et al. Use of midazolam infusion for sedation following cardiac surgery. Anesthesiology 1987; 67: 257–62

    Article  PubMed  CAS  Google Scholar 

  111. Backman JT, Olkkola KT, Aranko K, et al. Dose of midazolam should be reduced during diltiazem and verapamil treatments. Br J Clin Pharmacol 1994; 37: 221–5

    Article  PubMed  CAS  Google Scholar 

  112. Olkkola KT, Aranko K, Luurila H, et al. A potentially hazardous interaction between erythromycin and midazolam. Clin Pharmacol Ther 1993; 53: 298–305

    Article  PubMed  CAS  Google Scholar 

  113. Olkkola KT, Ahonen J, Neuvonen PJ. The effects of the systemic antimycotics, itraconazole and fluconazole, on the pharmacokinetics and pharmacodynamics of intravenous and oral midazolam. Anesth Analg 1996; 82: 511–6

    PubMed  CAS  Google Scholar 

  114. Elliot HW. Metabolism of lorazepam. Br J Anaesth 1976; 48: 1017–23

    Article  Google Scholar 

  115. Morrison G, Chiang ST, Koepke HH, et al. Effect of renal impairment and hemodialysis on lorazepam kinetics. Clin Pharmacol Ther 1984; 35: 646–52

    Article  PubMed  CAS  Google Scholar 

  116. Martyn J, Greenblatt DJ. Lorazepam conjugation is unimpaired in burn trauma. Clin Pharmacol Ther 1987; 43: 250–5

    Article  Google Scholar 

  117. Kraus JW, Desmond PV, Marshall JP, et al. Effects of aging and liver disease on disposition of lorazepam. Clin Pharmacol Ther 1978; 24: 411–9

    PubMed  CAS  Google Scholar 

  118. Dundee JW, Johnston UML, Gray RC. Lorazepam as a sedative-amnesic in an intensive care unit. Curr Med Res Opin 1976; 4: 290–5

    Article  PubMed  CAS  Google Scholar 

  119. Simpson PJ, Eltringham RJ. Lorazepam in intensive care. Clin Ther 1981; 4: 150–63

    PubMed  CAS  Google Scholar 

  120. Greenblatt DJ, Abernethy DR, Koepke HH, et al. Interaction of cimetidine with oxazepam, lorazepam, and flurazepam. J Clin Pharmacol 1984; 24: 187–93

    PubMed  CAS  Google Scholar 

  121. Anderson GD, Gidal BE, Kantor ED, et al. Lorazepam-valproate interaction: studies in normal subjects and isolated perfused rat liver. Epilepsia 1994; 35: 221–5

    Article  PubMed  CAS  Google Scholar 

  122. Shapiro BA, Warren J, Egol AB, et al. Practice parameters for intravenous analgesia and sedation for adult patients in the intensive care unit: an executive summary. Crit Care Med 1995; 23: 1596–600

    Article  PubMed  CAS  Google Scholar 

  123. Peduto VA, Concas A, Santoro G, et al. Biochemical and electrophysiologic evidence that propofol enhances GABA-ergic transmission in the rat brain. Anesthesiology 1991; 75: 1000–9

    Article  PubMed  CAS  Google Scholar 

  124. Alkire MT, Haier RJ, Barker SJ, et al. Cerebral metabolism during propofol anesthesia in humans studied with positron emission tomography. Anesthesiology 1995; 82: 393–403

    Article  PubMed  CAS  Google Scholar 

  125. Farling PA, Johnston JR, Coppel DL. Propofol infusion for sedation of patients with head injury in intensive care. Anaesthesia 1989; 44: 222–6

    Article  PubMed  CAS  Google Scholar 

  126. Kanto J, Gepts E. Pharmacokinetic implications for the clinical use of propofol. Clin Pharmacokinet 1989; 17: 308–26

    Article  PubMed  CAS  Google Scholar 

  127. Shafer A, Doze VA, Shafer SL, et al. Pharmacokinetics and pharmacodynamics of propofol infusions during general anesthesia. Anesthesiology 1988; 69: 348–56

    Article  PubMed  CAS  Google Scholar 

  128. Lange H, Stephan H, Rieke H, et al. Hepatic and extrahepatic disposition of propofol in patients undergoing coronary bypass surgery. Br J Anaesth 1990; 64: 563–70

    Article  PubMed  CAS  Google Scholar 

  129. Kirvela M, Olkkola KT, Rosenberg PH, et al. Pharmacokinetics of propofol and haemodynamic changes during induction of anaesthesia in uraemic patients. Br J Anaesth 1992; 68: 178–82

    Article  PubMed  CAS  Google Scholar 

  130. Nathan N, Debord J, Narcisse F, et al. Pharmacokinetics of propfol and its conjugates after continuous infusion in normal and in renal failure patients. Acta Anaesth Belg 1993; 44: 77–85

    PubMed  CAS  Google Scholar 

  131. Kirkpatrick T, Cockshott ID, Douglas EJ, et al. Pharmacokinetics of propofol (diprivan) in elderly patients. Br J Anaesth 1988; 60: 146–50

    Article  PubMed  CAS  Google Scholar 

  132. Massey NJA, Sherry KM, Oldroyd S, et al. Pharmacokinetics of an infusion of propofol during cardiac surgery. Br J Anaesth 1990; 65: 475–9

    Article  PubMed  CAS  Google Scholar 

  133. Albanese J, Martin C, Lacarelle B, et al. Pharmacokinetics of long-term propofol infusion used for sedation in ICU patients. Anesthesiology 1990; 73: 214–7

    Article  PubMed  CAS  Google Scholar 

  134. Bailie GR, Cockshott ID, Douglas EJ, et al. Pharmacokinetics of propofol during and after longterm continuous infusion for maintenance of sedation in ICU patients. Br J Anaesth 1992; 68: 486–91

    Article  PubMed  CAS  Google Scholar 

  135. Barr J, Egan T, Feeley T, et al. The pharmacokinetics of propofol administration by computer-controlled infusion in mechanically ventilated ICU patients [abstract]. Anesthesiology 1992; 77: A345

    Article  Google Scholar 

  136. Mandsager RE, Clarke CR, Shawley RV, et al. Effects of chloramphenicol on infusion pharmacokinetics of propofol in greyhounds. Am J Vet Res 1995; 56: 95–9

    PubMed  CAS  Google Scholar 

  137. Le Guellec C, Lacarelle B, Villard PH, et al. Glucuronidation of propofol in microsomal fractions from various tissues and species including humans: effect of different drugs. Anesth Analg 1995; 81: 855–61

    PubMed  CAS  Google Scholar 

  138. Audibert G, Saunier CG, Du Souich P. In vivo and in vitro effect of cimetidine, inflammation, and hypoxia on propofol kinetics. Drug Metab Dispos 1993; 21: 7–12

    PubMed  CAS  Google Scholar 

  139. Aitkenhead AR, Willats SM, Park GR, et al. Comparison of propofol and midazolam for sedation in critically ill patients. Lancet 1989; 2: 704–9

    Article  PubMed  CAS  Google Scholar 

  140. Roekaerts PMHJ, Huygen FJPM, de Lange S. Infusion of propofol versus midazolam for sedation in the intensive care unit following coronary artery surgery. J Cardiothorac Vasc Anesth 1993; 7: 142–7

    Article  PubMed  CAS  Google Scholar 

  141. Ronan KP, Gallagher TJ, George B, et al. Comparison of propofol and midazolam for sedation in intensive care unit patients. Crit Care Med 1995; 23: 286–93

    Article  PubMed  CAS  Google Scholar 

  142. Higgins TL, Yared JP, Estafanous FG, et al. Propofol versus midazolam for intensive care unit sedation after coronary artery bypass grafting. Crit Care Med 1994; 22: 1415–23

    Article  PubMed  CAS  Google Scholar 

  143. Veselis RA, Reinsel RA, Wronski M, et al. EEG and memory effects of low-dose infusions of propofol. Br J Anaesth 1992; 69: 246–54

    Article  PubMed  CAS  Google Scholar 

  144. Wessén A, Persson PM, Nilsson A, et al. Concentration-effect relationships of propofol after total intravenous anesthesia. Anesth Analg 1993; 77: 1000–7

    PubMed  Google Scholar 

  145. Chortkoff BS, Gonsowski CT, Bennett HL, et al. Subanesthetic concentrations of desflurane and propofol suppress recall of emotionally charged information. Anesth Analg 1995; 81: 728–36

    PubMed  CAS  Google Scholar 

  146. Mirenda J, Broyles G. Propofol as used for sedation in the ICU. Chest 1995; 108: 539–48

    Article  PubMed  CAS  Google Scholar 

  147. Borgeat A, Wilder-Smith OHG, Suter PM. The nonhypnotic therapeutic applications of propofol. Anesthesiology 1994; 80: 642–56

    Article  PubMed  CAS  Google Scholar 

  148. Ewen A, Archer DP, Samanani N, et al. Hyperalgesia during sedation: effects of barbiturates and propofol in the rat. Can J Anaesth 1995; 42: 532–40

    Article  PubMed  CAS  Google Scholar 

  149. Wilder-Smith O, Borgeat A. Analgesia with subhypnotic doses of thiopentone and propofol [letter]. Br J Anaesth 1991; 67: 226–7

    Article  PubMed  CAS  Google Scholar 

  150. Wilder-Smith OH, Kolletzki M, Wilder-Smith CH. Sedation with intravenous infusions of propofol or thiopentone. Anaesthesia 1995; 50: 218–22

    Article  PubMed  CAS  Google Scholar 

  151. Anker-Møller E, Spangsberg N, Arendt-Nielsen L, et al. Sub-hypnotic doses of thiopentone and propofol cause analgesia to experimentally induced acute pain. Br J Anaesth 1991; 66: 185–8

    Article  PubMed  Google Scholar 

  152. Park GR, Manara AR, Mendel L, et al. Ketamine infusion: its use as a sedative, inotrope and bronchodilator in a critically ill patient. Anaesthesia 1987; 42: 980–3

    Article  PubMed  CAS  Google Scholar 

  153. White PF, Schüttler J, Shafer A, et al. Comparative pharmacology of the ketamine isomers: studies in volunteers. Br J Anaesth 1985; 57: 197–203

    Article  PubMed  CAS  Google Scholar 

  154. Clements JA, Nimmo WS. Pharmacokinetics and analgesic effect of ketamine in man. Br J Anaesth 1981; 53: 27–30

    Article  PubMed  CAS  Google Scholar 

  155. Domino EF, Domino SE, Smith RE, et al. Ketamine kinetics in unmedicated and diazepam-premedicated subjects. Clin Pharmacol Ther 1984; 36: 645–53

    Article  PubMed  CAS  Google Scholar 

  156. Köppel C, Arndt I, Ibe K. Effects of enzyme induction, renal and cardiac function on ketamine plasma kinetics in patients with ketamine long-term analgosedation. Eur J Drug Metab Pharmacokinet 1990; 15: 259–63

    Article  PubMed  Google Scholar 

  157. Grant IS, Nimmo WS, Clements JA. Pharmacokinetics and analgesic effects of I.M. and oral ketamine. Br J Anaesth 1981; 53: 805–9

    Article  PubMed  CAS  Google Scholar 

  158. Pandit SK, Dundee JW, Bovill JG. Clinical studies of induction agents XXXVII: amnestic action of ketamine. Br J Anaesth 1971; 43: 362–4

    Article  PubMed  CAS  Google Scholar 

  159. Pandit SK, Kothary SP, Kumar SM. Low dose intravenous infusion technique with ketamine. Amnesic, analgesic and sedative effects in human volunteers. Anaesthesia 1980; 35: 669–75

    Article  PubMed  CAS  Google Scholar 

  160. Kochs E, Scharein E, Mollenberg O, et al. Analgesic efficacy of low-dose ketamine. Somatosensory evoked responses in relation to subjective pain ratings. Anesthesiology 1996; 85: 304–14

    Article  PubMed  CAS  Google Scholar 

  161. Reich DL, Solvay G. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth 1989; 36: 186–97

    Article  PubMed  CAS  Google Scholar 

  162. Adams HA, Claussen E, Gebhardt B, et al. Analgosedation with ketamine and midazolam in patients with exogenous catecholamine therapy. Anaesthesist 1991; 40: 238–44

    PubMed  CAS  Google Scholar 

  163. Reves JG, Flezzani P, Kissin I. Pharmacology of intravenous anesthetic induction drugs. In: Kaplan JA, editor. Cardiac anesthesia. 2nd ed. Philadelphia: WB. Saunders, 1987: 125–50

    Google Scholar 

  164. Gallagher CS, Hahn JR. Clinical assessment of etomidate for outpatient general anesthesia. J Oral Maxillofac Surg 1985; 43: 860–4

    Article  PubMed  Google Scholar 

  165. Sfez M, Le Mapihan Y, Levron JC, et al. Comparison of the pharmacokinetics of etomidate in children and in adults. Ann Francais Anesth Reanim 1990; 9: 127–31

    Article  CAS  Google Scholar 

  166. Van Hamme MJ, Ghoneim MM, Ambre JJ. Pharmacokinetics of etomidate, a new intravenous anesthetic. Anesthesiology 1978; 49: 274–7

    Article  PubMed  Google Scholar 

  167. Hebron BS, Edbrooke DL, Newby DM, et al. Pharmacokinetics of etomidate associated with prolonged i.V. infusion. Br J Anaesth 1983; 55: 281–7

    Article  PubMed  CAS  Google Scholar 

  168. Blendinger I, Patschke D. Experiences with continuous infusions of etomidate in cardiac surgery. Anaesthesist 1976; 25: 391–2

    PubMed  CAS  Google Scholar 

  169. Wagner RL, White PF, Kan PB, et al. Inhibition of adrenal steroidogenesis by the anesthetic etomidate. N Engl J Med 1984; 310: 1415–21

    Article  PubMed  CAS  Google Scholar 

  170. Duthie DJR, Fraser R, Nimmo WS. Effect of induction of anaesthesia with etomidate on corticosteroid synthesis in man. Br J Anaesth 1985; 57: 156–9

    Article  PubMed  CAS  Google Scholar 

  171. Tietjen CS, Hum PD, Ulatowski JA, et al. Treatment modalities for hypertensive patients with intracranial pathology: options and risks. Crit Care Med 1996; 24: 311–22

    Article  PubMed  CAS  Google Scholar 

  172. Browne TR, Evans JE, Szabo GK, et al. Studies with stable isotopes II: phenobarbital pharmacokinetics during monotherapy. J Clin Pharm 1985; 25: 51–8

    CAS  Google Scholar 

  173. Turcant A, Delhumeau A, Prmel-Cabic A, et al. Thiopental pharmacokinetics under conditions of long-term infusion. Anesthesiology 1985; 63: 50–4

    Article  PubMed  CAS  Google Scholar 

  174. Wermeling DP, Blouin RA, Porter WH, et al. Pentobarbital pharmacokinetics in patients with severe head injury. Drug Intell Clin Pharm 1987; 21: 459–63

    PubMed  CAS  Google Scholar 

  175. Nordstrom CH, Messeter K, Sundbarg G, et al. Cerebral blood flow, vasoreactivity, and oxygen consumption during barbiturate treatment in severe traumatic brain lesions. J Neurosurg 1988; 68: 424–31

    Article  PubMed  CAS  Google Scholar 

  176. Moerman N, Bonke B, Oosting J. Awareness and recall during general anesthesia. Anesthesiology 1993; 79: 454–64

    Article  PubMed  CAS  Google Scholar 

  177. Clutton-Brock J. Some pain threshold studies with particular reference to thiopentone. Anaesthesia 1960; 15: 71–2

    Article  PubMed  CAS  Google Scholar 

  178. Dundee JW. Alterations in response to somatic pain associated with anaesthesia. II: the effect of thiopentone and pentobarbital. Br J Anaesth 1960; 32: 407–14

    Article  PubMed  CAS  Google Scholar 

  179. Dykstra LA, Woods JH. A tail withdrawal procedure for assessing analgesic activity in rhesus monkeys. J Pharmacol Methods 1986; 15: 263–9

    Article  PubMed  CAS  Google Scholar 

  180. Eisenberg HM, Frankowski RF, Contant CF, et al. High-dose barbiturate control of elevated intracranial pressure in patients with severe head injury. J Neurosurg 1988; 69: 15–23

    Article  PubMed  CAS  Google Scholar 

  181. Bayliff CD, Schwartz ML, Hardy BG. Pharmacokinetics of high-dose pentobarbital in severe head trauma. Clin Pharmacol Ther 1985; 38: 457–61

    Article  PubMed  CAS  Google Scholar 

  182. Ehrnebo M. Pharmacokinetics and distribution properties of pentobarbital in humans following oral and intravenous administration. J Pharm Sci 1974; 63: 1114–8

    Article  PubMed  CAS  Google Scholar 

  183. Benowitz NL, Jones RT. Effects of delta-9-tetrahydrocannabinol on drug distribution and metabolism: antipyrine, pentobarbital, and ethanol. Clin Pharmacol Ther 1977; 22: 259–68

    PubMed  CAS  Google Scholar 

  184. Borel C, Hanley D, Diringer MN, et al. Intensive management of severe head injury. Chest 1990; 98: 180–9

    Article  PubMed  CAS  Google Scholar 

  185. Reidenberg MM, Lowenthal DT, Briggs W, et al. Pentobarbital elimination in patients with poor renal function. Clin Pharmacol Ther 1976; 20: 67–71

    PubMed  CAS  Google Scholar 

  186. Heinemeyer G, Roots I, Dennhardt R. Monitoring of pentobarbital plasma levels in critical care patients suffering from increased intracranial pressure. Ther Drug Monit 1986; 8: 145–50

    Article  PubMed  CAS  Google Scholar 

  187. Redke F, Bjšrkman S, Rosberg B. Pharmacokinetics and clinical experience of 20-H infusions of methohexitone in intensive care patients with postoperative pyrexia. Br J Anaesth 1991; 66: 53–9

    Article  PubMed  CAS  Google Scholar 

  188. Kakinohana M, Taira Y. Effects of in vivo pretreatment with various barbiturates on lidocaine metabolism in rat liver microsomes. Masui Jpn J Anesth 1994; 43: 1534–40

    CAS  Google Scholar 

  189. Heinemeyer G, Gramm HJ, Simgen W, et al. Kinetics of hexobarbital and dipyrone in critical care patients receiving high-dose pentobarbital. Eur J Clin Pharmacol 1987; 32: 273–7

    Article  PubMed  CAS  Google Scholar 

  190. Yoshida N, Oda Y, Nishi S, et al. Effect of barbiturate therapy on phenytoin pharmacokinetics. Crit Care Med 1993; 21: 1514–22

    Article  PubMed  CAS  Google Scholar 

  191. Lowenstein E, Hallowell P, Levine FH, et al. Cardiovascular response to large doses of intravenous morphine in man. N Engl J Med 1969; 281: 1389–93

    Article  PubMed  CAS  Google Scholar 

  192. Stanley TH, Liu WS. Cardiovascular effects of meperidine-N2O anesthesia before and after pancuronium. Anesth Analg 1977; 56: 669–73

    PubMed  CAS  Google Scholar 

  193. Lowenstein E, Philbin DM. Narcotic ‘anesthesia’ in the eighties. Anesthesiology 1981; 55: 195–7

    Article  PubMed  CAS  Google Scholar 

  194. Citron ML, Johnston-Early A, Fossieck BE, et al. Safety and efficacy of continuous intravenous morphine for severe cancer pain. Am J Med 1984; 77: 199–204

    Article  PubMed  CAS  Google Scholar 

  195. Bennett RL, Batenhorst RL, Bivens BA. Patient-controlled analgesia: a new concept of postoperative pain relief. Ann Surg 1982; 195: 700–5

    Article  PubMed  CAS  Google Scholar 

  196. Levine RL. Pharmacology of intravenous sedatives and opioids in critically ill patients. Crit Care Clin 1994; 10: 709–31

    PubMed  CAS  Google Scholar 

  197. Thorpe DH. Opiate structure and activity: a guide to understanding the receptor. Anesth Analg 1984; 63: 143–51

    Article  PubMed  CAS  Google Scholar 

  198. Keats AS, Mithoefer JC. The mechanism of increased intracranial pressure induced by morphine. N Engl J Med 1955; 252: 1110–3

    Article  PubMed  CAS  Google Scholar 

  199. Barker J, Miller JD, Johnston IH. The effect of pentazocine on pupillary size and intracranial pressure. Br J Anaesth 1972; 44: 197–202

    Article  PubMed  CAS  Google Scholar 

  200. Moss E. Alfentanil increases intracranial pressure when intracranial compliance is low. Anaesthesia 1992; 47: 134–6

    Article  PubMed  CAS  Google Scholar 

  201. Sperry RJ, Bailey PL, Reichman MV, et al. Fentanyl and sufentanil increase intracranial pressure in head trauma patients. Anesthesiology 1992; 77: 416–20

    Article  PubMed  CAS  Google Scholar 

  202. Bowdle TA, Rooke GA. Postoperative myoclonus and rigidity after anesthesia with opioids. Anesth Analg 1994; 78: 783–6

    Article  PubMed  CAS  Google Scholar 

  203. Barke KE, Hough LB. Opiates, mast cells and histamine release. Life Sci 1993; 53: 1391–9

    Article  PubMed  CAS  Google Scholar 

  204. Catalano RB. The medical approach to management of pain caused by cancer. Semin Oncol 1975; 2: 379–92

    PubMed  CAS  Google Scholar 

  205. Reuler JB, Girard DE, Nardone DA. The chronic pain syndrome: misconceptions and management. Ann Int Med 1980; 93: 588–96

    PubMed  CAS  Google Scholar 

  206. Baumann TJ. Pain management. In: DiPiro JT, Talbert RL, Yee GC, et al., editors. Pharmacotherapy: a pathophysiologic approach. 3rd ed. Stamford: Appleton & Lange, 1996: 1259–78

    Google Scholar 

  207. Flinn FJ, Wineland P, Peterson LJ. Duration of amnesia during sedation with diazepam and pentazocine: preliminary report. J Oral Surg 1975; 33: 23–6

    PubMed  CAS  Google Scholar 

  208. Hilgenberg JC. Intraoperative awareness during high-dose fentanyl-oxygen anesthesia. Anesthesiology 1981; 54: 341–3

    Article  PubMed  CAS  Google Scholar 

  209. Mummaneni N, Rao TLK, Montoya A. Awareness and recall with high-dose fentanyl-oxygen anesthesia. Anesth Analg 1980; 59: 948–9

    Article  PubMed  CAS  Google Scholar 

  210. Olson GA, Olson RD, Kastin AJ. Endogenous opiates: 1993. Peptides 1994; 15: 1513–56

    Article  PubMed  CAS  Google Scholar 

  211. Kerr B, Hill H, Coda B, et al. Concentration-related effects of morphine on cognition and motor control in human subjects. Neuropsychopharmacology 1991; 5: 157–66

    PubMed  CAS  Google Scholar 

  212. Veselis RA, Reinsel RA, Feshchenko VA, et al. Impaired memory and behavioral performance with fentanyl at low plasma concentrations. Anesth Analg 1994; 79: 952–60

    Article  PubMed  CAS  Google Scholar 

  213. Braida D, Gori E, Sala M. Relationship between morphine and etonitazene-induced working memory impairment and analgesia. Eur J Pharmacol 1994; 271: 497–504

    Article  PubMed  CAS  Google Scholar 

  214. Stanski DR. Narcotic pharmacokinetics and dynamics: the basis of infusion applications. Anaesth Intens Care 1987; 15: 23–6

    CAS  Google Scholar 

  215. O’Hara DA. Opioids in Anesthesia Practice. In: Longnecker DE, Murphy FL, editors. Dripps/Eckenhoff/Vandam introduction to anesthesia. 8th ed. Philadelphia: WB. Saunders, 1992: 102–9

    Google Scholar 

  216. Hoskin PJ, Hanks GW, Aherne GW, et al. The bioavailability and pharmacokinetics of morphine after intravenous, oral and buccal administration in healthy volunteers. Br J Clin Pharmacol 1989; 27: 499–505

    Article  PubMed  CAS  Google Scholar 

  217. Hasselstrom J, Eriksson S, Persson A, et al. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol 1990; 29: 289–97

    Article  PubMed  CAS  Google Scholar 

  218. Furman WR, Munster AM, Cone EJ. Morphine pharmacokinetics during anesthesia and surgery in patients with burns. J Burn Care Rehabil 1990; 11: 391–4

    Article  PubMed  CAS  Google Scholar 

  219. Herman RA, Veng-Pedersen P, Miotto J, et al. Pharmacokinetics of morphine sulfate in patients with burns. J Burn Care Rehabil 1994; 15: 95–103

    Article  PubMed  CAS  Google Scholar 

  220. Macnab MSP, Macrae DJ, Guy E, et al. Profound reduction in morphine clearance and liver blood flow in shock. Intensive Care Med 1986; 12: 366–9

    Article  PubMed  CAS  Google Scholar 

  221. D’Honneur G, Gilton A, Sandouk P, et al. Plasma and cerebrospinal fluid concentrations of morphine and morphine glucuronides after oral morphine: the influence of renal failure. Anesthesiology 1994; 81: 87–93

    Article  PubMed  Google Scholar 

  222. Sear JW, Hand CW, Moore RA, et al. Studies on morphine disposition: influence of renal failure on the kinetics of morphine and its metabolites. Br J Anaesth 1989; 62: 28–32

    Article  PubMed  CAS  Google Scholar 

  223. Osborne R, Joel S, Grebenik K, et al. The pharmacokinetics of morphine and morphine glucuronides in kidney failure. Clin Pharmacol Ther 1993; 54: 158–67

    Article  PubMed  CAS  Google Scholar 

  224. Bion JF, Logan BK, Newman PM, et al. Sedation in intensive care: morphine and renal function. Intensive Care Med 1986; 12: 359–65

    Article  PubMed  CAS  Google Scholar 

  225. Christie J, Markowsky SJ, Valdes C. Acute trauma alters morphine clearance. J Trauma 1995; 39: 749–52

    Article  PubMed  CAS  Google Scholar 

  226. Mojaverian P, Fedder IL, Vlasses PH, et al. Cimetidine does not alter morphine disposition in man. Br J Clin Pharmacol 1982; 14: 809–13

    Article  PubMed  CAS  Google Scholar 

  227. Reidenberg MM, Goodman H, Erle H, et al. Hydromorphone levels and pain control in patients with severe chronic pain. Clin Pharmacol Ther 1988; 44: 376–82

    Article  PubMed  CAS  Google Scholar 

  228. Cone EJ, Phelps BA, Gorodetzky CW. Urinary excretion of hydromorphone and metabolites in humans, rats, dogs, guinea pigs, and rabbits. J Pharm Sci 1977; 66: 1709–13

    Article  PubMed  CAS  Google Scholar 

  229. Babul N, Darke AC, Hagen N. Hydromorphone metabolite accumulation in renal failure. J Pain Symptom Management 1995; 10: 184–6

    Article  CAS  Google Scholar 

  230. Hill HF, Coda BA, Tanaka A, et al. Multiple-dose evaluation of intravenous hydromorphone pharmacokinetics in normal human subjects. Anesth Analg 1991; 72: 330–6

    Article  PubMed  CAS  Google Scholar 

  231. Parab PV, Ritschel WA, Coyle DE, et al. Pharmacokinetics of hydromorphone after intravenous, peroral and rectal administration to human subjects. Biopharm Drug Disp 1988; 9: 187–99

    Article  CAS  Google Scholar 

  232. Brown CR, Forest WH, Hayden J, et al. Respiratory effects of hydromorphone in man. Clin Pharmacol Ther 1973; 14: 331–7

    PubMed  CAS  Google Scholar 

  233. Miller RR. Clinical effects of parenteral narcotics in hospitalized medical patients. J Clin Pharm 1980; 20: 165–71

    CAS  Google Scholar 

  234. Austin KL, Stapleton JV, Mather LE. Relationship between blood meperidine concentration and analgesic response: a preliminary report. Anesthesiology 1980; 53: 460–6

    Article  PubMed  CAS  Google Scholar 

  235. Szeto HH, Inturrisi CE, Houde R, et al. Accumulation of normeperidine, an active metabolite of meperidine, in patients with renal failure or cancer. Ann Intern Med 1977; 86: 738–41

    PubMed  CAS  Google Scholar 

  236. Chan K, Tse J, Jennings F, Orme MLE. Pharmacokinetics of low-dose intravenous pethidine in patients with renal dysfunction. J Clin Pharmacol 1987; 27: 516–22

    PubMed  CAS  Google Scholar 

  237. Kirkwood CF, Edwards DJ, Lalka D, et al. The pharmacokinetics of meperidine in acute trauma patients. J Trauma 1986; 26: 1090–3

    Article  PubMed  CAS  Google Scholar 

  238. Pond SM, Tong T, Benowitz NL, et al. Enhanced bioavailability of pethidine and pentazocine in patients with cirrhosis of the liver. Aust NZ J Med 1980; 10: 515–9

    Article  CAS  Google Scholar 

  239. Klotz U, McHorse TS, Wilkinson GR, et al. The effect of cirrhosis on the disposition and elimination of meperidine in man. Clin Pharmacol Ther 1974; 16: 667–75

    PubMed  CAS  Google Scholar 

  240. Guay DRP, Meatherall RC, Chalmers JL, et al. Cimetidine alters pethidine disposition in man. Br J Clin Pharmacol 1984; 18: 907–14

    Article  PubMed  CAS  Google Scholar 

  241. McClain DA, Hug CC. Intravenous fentanil kinetics. Clin Pharmacol Ther 1980; 28: 106–14

    Article  PubMed  CAS  Google Scholar 

  242. Shupak RC, Harp JR. Comparison between high-dose sufentanil-oxygen and high-dose fentanyl-oxygen for neuroanaesthesia. Br J Anaesth 1985; 57: 375–81

    Article  PubMed  CAS  Google Scholar 

  243. Mostert JW, Evers JL, Hobika GH, et al. Cardiorespiratory effects of anesthesia with morphine or fentanyl in chronic renal failure and cerebral toxicity after morphine. Br J Anaesth 1971; 43: 1053–60

    Article  PubMed  CAS  Google Scholar 

  244. Norgaard M, Pineda EA, McGlinch BP, et al. Pharmacokinetics of fentanyl in congestive heart failure (CHF) [abstract]. Anesthesiology 1991; 75: A325

    Article  Google Scholar 

  245. Holley FO, Van Steenis C. Postoperative analgesia with fentanyl: pharmacokinetics and pharmacodynamics of constant-rate intravenous and transdermal delivery. Br J Anaesth 1988; 60: 608–13

    Article  PubMed  CAS  Google Scholar 

  246. Artru F, Levron JC, Chariot M, et al. Sufentanil versus fentanyl: a pharmacokinetic comparison during and after infusion for neurosurgical anesthesia [abstract]. Anesthesiology 1991; 75: A324

    Article  Google Scholar 

  247. Alazia M, Levron JC, Guidon C, et al. Pharmacokinetics of fentanyl (F) during continuous infusion in critically ill patients [abstract]. Anesthesiology 1987; 67: A665

    Article  Google Scholar 

  248. Meuldermans WEG, Hurkmans RMA, Hykants JJP. Plasma protein binding and distribution of fentanyl, sufentanil, al-fentanil and lofentanil in blood. Arch Int Pharmacodyn 1982; 257: 4–19

    PubMed  CAS  Google Scholar 

  249. Hill H, Walter MH, Saeger L, et al. Dose effect of alfentanil in human analgesia. Clin Pharmacol Ther 1986; 40: 178–86

    Article  PubMed  CAS  Google Scholar 

  250. Sear JW, Fisher A, Summerfield J. Is alfentanil by infusion useful for sedation on the ITU?. Eur J Anaesth 1987; Suppl. 1: 55–61

    CAS  Google Scholar 

  251. Yate PM, Thomas D, Short SM, et al. Comparison of infusion of alfentanil or pethidine for sedation of ventilated patients on the ITU. Br J Anaesth 1986; 58: 1091–9

    Article  PubMed  CAS  Google Scholar 

  252. Bodenham A, Park GR. Alfentanil infusion in patients requiring intensive care. Clin Pharmacokinet 1988; 15: 216–26

    Article  PubMed  CAS  Google Scholar 

  253. Van Peer A, Vercanteren M, Noorduin H, et al. Alfentanil kinetics in renal insufficiency. Eur J Clin Pharmacol 1986; 30: 245–7

    Article  PubMed  Google Scholar 

  254. Chauvin M, Lebrault C, Levron JC, et al. Pharmacokinetics of alfentanil in chronic renal failure. Anesth Analg 1987; 66: 53–6

    Article  PubMed  CAS  Google Scholar 

  255. Ferrier C, Marty J, Bouffard Y, et al. Alfentanil pharmacokinetics in patients with cirrhosis. Anesthesiology 1985; 62: 480–4

    Article  PubMed  CAS  Google Scholar 

  256. Chauvin M, Bonnet F, Montembault C, et al. The influence of hepatic plasma flow on alfentanil plasma concentration plateaus achieved with an infusion model in humans: measurement of alfentanil’s hepatic extraction coefficient. Anesth Analg 1986; 65: 999–1003

    Article  PubMed  CAS  Google Scholar 

  257. Kharasch ED, Russell M, Garton K, et al. Assessment of cytochrome P450 3A4 activity during the menstrual cycle using alfentanil as a noninvasive probe. Anesthesiology 1997; 87: 26–35

    Article  PubMed  CAS  Google Scholar 

  258. Kharasch ED, Russell M, Mautz S, et al. The role of cytochrome P450 3A4 in alfentanil clearance. Anesthesiology 1997; 87: 36–50

    Article  PubMed  CAS  Google Scholar 

  259. Macfie AC, Magides AD, Reilly CS. Disposition of alfentanil in burns patients. Br J Anaesth 1992; 69: 447–50

    Article  PubMed  CAS  Google Scholar 

  260. Martin C, Albanese J, Alazia M, et al. Pharmacokinetics of long-term alfentanil infusion (72 hours) used for sedation in patients in the ICU [abstract]. Anesthesiology 1990; 73: A335

    Google Scholar 

  261. Alazia M, Albanese J, Martin C, et al. Pharmacokinetics of long-term sufentanil infusion (72 hours) used for sedation in ICU patients [abstract]. Anesthesiology 1992; 77: A364

    Article  Google Scholar 

  262. Scholz J, Bause H, Schulz M, et al. Pharmacokinetics and effects on intracranial pressure of sufentanil in head trauma patients. Br J Clin Pharmacol 1994; 38: 369–72

    Article  PubMed  CAS  Google Scholar 

  263. Bovill JG, Sebel PS, Blackburn CL, et al. The pharmacokinetics of sufentanil in surgical patients. Anesthesiology 1984; 61: 502–6

    Article  PubMed  CAS  Google Scholar 

  264. Schedewie HK, Lee LA, Cowan GS, et al. Hepatic clearance of sufentanil in humans [abstract]. Anesthesiology 1987; 67: A291

    Article  Google Scholar 

  265. Chauvin M, Ferrier C, Haberer JP, et al. Sufentanil pharmacokinetics in patients with cirrhosis. Anesth Analg 1989; 68: 1–4

    Article  PubMed  CAS  Google Scholar 

  266. Kroll W, List WF. Is sufantanil suitable for long-term sedation of a critically ill patient. Anaesthesist 1992; 41: 271–5

    PubMed  CAS  Google Scholar 

  267. Westmoreland CL, Hoke JF, Sebel PS, et al. Pharmacokinetics of remifentanil (GI87084B) and its major metabolite (GI90291) in patients undergoing elective inpatient surgery. Anesthesiology 1993; 79: 893–903

    Article  PubMed  CAS  Google Scholar 

  268. Egan TD, Lemmens HJ, Fiset P, et al. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology 1993; 79: 881–92

    Article  PubMed  CAS  Google Scholar 

  269. Egan TD, Minto CF, Hermann DJ, et al. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology 1996; 84: 821–33

    Article  PubMed  CAS  Google Scholar 

  270. Dershwitz M, Rosow CE. The pharmacokinetics and pharmacodynamics of remifentanil in volunteers with severe hepatic or renal dysfunction. J Clin Anesth 1996; 8 Suppl. 3: 88S–90S

    Article  PubMed  CAS  Google Scholar 

  271. Dershwitz M, Hoke JF, Rosow CE, et al. Pharmacokinetics and pharmacodynamics of remifentanil in volunteer subjects with severe liver disease. Anesthesiology 1996; 84: 812–20

    Article  PubMed  CAS  Google Scholar 

  272. Evans TN, Park GR. Remifentanil in the critically ill. Anaesthesia 1997; 52: 797–811

    Google Scholar 

  273. Cunningham FE, Hoffman WE, Baughman VL. Comparative pharmacodynamics of remifentanil, a new short acting opioid, GI90921 the active metabolite and alfentanil [abstract]. Anesthesiology 1993; 79: A712

    Google Scholar 

  274. Cunningham FE, Hoke JF, Muir KT, et al. Pharmacokinetic/pharmacodynamic evaluation of remifentanil, GR90921, and alfentanil [abstract]. Anesthesiology 1995; 83: A376

    Google Scholar 

  275. Nilsson MI, Meresaar U, Ånggård E. Clinical pharmacokinetics of methadone. Acta Anaesth Scand 1982; S74: 66–99

    Article  Google Scholar 

  276. Gourlay GK, Wilson PR, Glynn CJ. Pharmacodynamics and pharmacokinetics of methadone during the perioperative period. Anesthesiology 1982; 57: 458–67

    Article  PubMed  CAS  Google Scholar 

  277. Inturrisi CE, Colburn WA, Kaiko RF, et al. Pharmacokinetics and pharmacodynamics of methadone in patients with chronic pain. Clin Pharmacol Ther 1987; 41: 392–401

    Article  PubMed  CAS  Google Scholar 

  278. Novick DM, Kreek MJ, Fanizza AM, et al. Methadone disposition in patients with chronic liver disease. Clin Pharmacol Ther 1981; 30: 353–62

    Article  PubMed  CAS  Google Scholar 

  279. Concilus R, Denson DD, Knarr D, et al. Continous intravenous infusion of methadone for control of burn pain. J Burn Care Rehabil 1989; 10: 406–9

    Article  PubMed  CAS  Google Scholar 

  280. Inturrisi CE, Portenoy RK, Max MB, et al. Pharmacokinetic-pharmacodynamic relationships of methadone infusions in patients with cancer pain. Clin Pharmacol Ther 1990; 47: 565–77

    Article  PubMed  CAS  Google Scholar 

  281. Kreek MJ, Garfield JW, Gutjahr CL, et al. Rifampin-induced methadone withdrawal. N Engl J Med 1976; 294: 1104–6

    Article  PubMed  CAS  Google Scholar 

  282. Tong TG, Pond SM, Kreek MJ, et al. Phenytoin-induced methadone withdrawal. Ann Intern Med 1981; 94: 349–51

    PubMed  CAS  Google Scholar 

  283. Zavodnick S. A pharmacological and theoretical comparison of high and low potency neuroleptics. J Clin Psychiatry 1978; 39: 332–6

    PubMed  CAS  Google Scholar 

  284. Holley FO, Magliozzi JR, Stanski DR, et al. Haloperidol kinetics after oral and intravenous doses. Clin Pharmacol Ther 1983; 33: 477–84

    Article  PubMed  CAS  Google Scholar 

  285. Forsman A, Öhman R. Pharmacokinetic studies on haloperidol in man. Curr Ther Res 1976; 20: 319–35

    PubMed  CAS  Google Scholar 

  286. Magliozzi JR, Hollister LE. Elimination half-life and bioavailability of haloperidol in schizophrenic patients. J Clin Psychiatry 1985; 46: 20–1

    PubMed  CAS  Google Scholar 

  287. Cheng YF, Paalzow LK, Bondesson U, et al. Pharmacokinetics of haloperidol in psychotic patients. Psychopharmacol 1987; 91: 410–4

    Article  CAS  Google Scholar 

  288. Chang WH, Lam YWF, Jann MW, et al. Pharmacokinetics of haloperidol and reduced haloperidol in Chinese schizophrenic patients after intravenous and oral administration of haloperidol. Psychopharmacol 1992; 106: 517–22

    Article  CAS  Google Scholar 

  289. Lerner Y, Lwow E, Levitin A, et al. Acute high-dose parenteral haloperidol treatment of psychosis. Am J Psychiat 1979; 136: 1061–4

    PubMed  CAS  Google Scholar 

  290. Menza MA, Murray GB, Holmes VF, et al. Controlled study of extrapyramidal reactions in the management of delirious, medically ill patients: intravenous haloperidol versus intravenous haloperidol plus benzodiazepines. Heart Lung 1988; 17: 238–41

    PubMed  CAS  Google Scholar 

  291. Simpson GM, Yadalam K. Blood levels of neuroleptics: state of the art. J Clin Psychiatry 1985; 46: 22–8

    PubMed  CAS  Google Scholar 

  292. Judkins KC, Harmer M. Haloperidol as an adjunct analgesic in the management of postoperative pain. Anaesthesia 1982; 37: 1118–20

    Article  PubMed  CAS  Google Scholar 

  293. Budd K. Psychotropic drugs in the treatment of chronic pain. Anaesthesia 1978; 33: 531–4

    Article  PubMed  CAS  Google Scholar 

  294. Morselli PL, Zarifian E. Clinical significance of monitoring plasma levels of psychotropic drugs. Ciba Found Sympos 1980; 74: 115–39

    Google Scholar 

  295. Aunsholt NA. Prolonged Q-T interval and hypokalemia caused by haloperidol. Acta Psychiatr Scand 1989; 79: 411–2

    Article  PubMed  CAS  Google Scholar 

  296. Metzger E, Friedman R. Prolongation of the corrected QT and torsades de pointes cardiac arrhythmia associated with intravenous haloperidol in the medically ill. J Clin Psychopharmacol. 1993; 13: 128–32

    Article  PubMed  CAS  Google Scholar 

  297. Aubree JC, Lader MH. High and very high dosage antipsychotics: a critical review. J Clin Psychiatry 1980; 41: 341–50

    PubMed  CAS  Google Scholar 

  298. Riker RR, Fraser GL, Cox PM. Continuous infusion of haloperidol controls agitation in critically ill patients. Crit Care Med 1994; 22: 433–40

    Article  PubMed  CAS  Google Scholar 

  299. Mungas D, Magliozzi JR, Laubly JN, et al. Effects of haloperidol on recall and information processing in verbal and spatial learning. Prog Neuropsychopharmacol Biol Psychiatr 1990; 14: 181–93

    Article  CAS  Google Scholar 

  300. Eitan N, Levin Y, Ben-Artzi E, et al. Effects of antipsychotic drugs on memory functions of schizophrenic patients. Acta Psychiatr Scand 1992; 85: 74–6

    Article  PubMed  CAS  Google Scholar 

  301. Peroutka SJ, Snyder SH. Relationship of neuroleptic drug effects at brain dopamine, serotonin, a-adrenergic, and hista-mine receptors to clinical potency. Am J Psychiatry 1980; 137: 1518–22

    PubMed  CAS  Google Scholar 

  302. Cressman WA, Plostnieks J, Johnson PC. Absorption, metabolism and excretion of droperidol by human subjects following intramuscular and intravenous administration. Anesthesiology 1973; 38: 363–9

    Article  PubMed  CAS  Google Scholar 

  303. Lehmann KA, Van Peer A, Ikonomakis M, et al. Pharmacokinetics of droperidol in surgical patients under different conditions of anaesthesia. Br J Anaesth 1988; 61: 297–301

    Article  PubMed  CAS  Google Scholar 

  304. Ayd FJ. Parenteral (IM/IV) droperidol for acutely disturbed behavior in psychotic and non-psychotic patients. Int Drug Ther 1980; 15: 13–6

    Google Scholar 

  305. Resnick M, Burton BT. Droperidol vs. haloperidol in the initial management of acutely agitated patients. J Clin Psychiatry 1984; 45: 298–9

    PubMed  CAS  Google Scholar 

  306. Thomas H, Schwartz E, Petrilli R. Droperidol versus haloperidol for chemical restraint of agitated and combative patients. Ann Emerg Med 1992; 21: 407–13

    Article  PubMed  Google Scholar 

  307. Korttila K, Linnoila M. Skills related to driving after intravenous diazepam, flunitrazepam or droperidol. Br J Anaesth 1974; 46: 961–9

    Article  PubMed  CAS  Google Scholar 

  308. Lischke V, Behne M, Doelken P, et al. Droperidol causes a dose-dependent prolongation of the QT-interval. Anesth Analg 1994; 79: 983–6

    Article  PubMed  CAS  Google Scholar 

  309. Frye MA, Coudreaut MF, Hakeman SM, et al. Continuous droperidol infusion for management of agitated delirium in an intensive care unit. Psychosomatics 1995; 36: 301–5

    Article  PubMed  CAS  Google Scholar 

  310. Kreuscher H. Modifications of the classic neuroleptanalgesic technique. Int Anesth Clin 1973; 11: 71–7

    CAS  Google Scholar 

  311. Handal KA, Schauben JL, Salamone FR. Naloxone. Ann Emerg Med 1983; 12: 438–45

    Article  PubMed  CAS  Google Scholar 

  312. Flacke JW, Flacke WE, Williams GD. Acute pulmonary edema following naloxone reversal of high-dose morphine anesthesia. Anesthesiology 1977; 47: 376–8

    Article  PubMed  CAS  Google Scholar 

  313. Michaelis LL, Hickey PR, Clark TA, et al. Ventricular irritability associated with the use of naloxone. Ann Thorac Surg 1974; 18: 608–14

    Article  PubMed  CAS  Google Scholar 

  314. Ngai SH, Berkowitz BA, Yang JC, et al. Pharmacokinetics of naloxone in rats and man: basis for its potency and short duration of action. Anesthesiology 1976; 44: 398–401

    Article  PubMed  CAS  Google Scholar 

  315. Goldfrank L, Weisman R, Errick J, et al. A dosing nomogram for continuous infusion of intravenous naloxone. Ann Emerg Med 1986; 15: 566–70

    Article  PubMed  CAS  Google Scholar 

  316. Groeger JS, Inturrisi CE. High-dose naloxone: pharmacokinetics in patients in septic shock. Crit Care Med 1987; 15: 751–6

    Article  PubMed  CAS  Google Scholar 

  317. Grevert P, Albert LH, Inturrisi CE, et al. Effects of eight-hour naloxone infusions on human subjects. Biol Psychiat 1983; 18: 1375–92

    PubMed  CAS  Google Scholar 

  318. Volavka J, Dornbush R, Mallya A, et al. Naloxone fails to affect short-term memory in man. Psychiat Res 1979; 1: 89–92

    Article  CAS  Google Scholar 

  319. Purdell-Lewis JG, Blair DM, McLeod CA. Studies in fentanyl-supplemented anaesthesia: awareness and effect of naloxone on early post-operative recovery. Can Anaesth Soc J 1981; 28: 57–61

    Article  PubMed  CAS  Google Scholar 

  320. Wolkowitz OM, Tinklenberg JR. Naloxone’s effect on cognitive functioning in drug-free and diazepam-treated normal humans. Psychopharmacol 1985; 85: 221–3

    Article  CAS  Google Scholar 

  321. Gal TJ, DiFazio CA. Prolonged antagonism of opioid action with intravenous nalmefene in man. Anesthesiology 1986; 64: 175–80

    Article  PubMed  CAS  Google Scholar 

  322. Abramowitz M. Nalmefene: a long acting injectable opioid antagonist. Med Lett Drug Ther 1995; 37: 97–8

    Google Scholar 

  323. Dixon R, Howes J, Gentile J, et al. Nalmefene: intravenous safety and kinetics of a new opioid antagonist. Clin Pharmacol Ther 1986; 39: 49–53

    Article  PubMed  CAS  Google Scholar 

  324. Glass PS, Jhaveri RM, Smith LR. Comparison of potency and duration of action of nalmefene and naloxone. Anesth Analg 1994; 78: 536–41

    Article  PubMed  CAS  Google Scholar 

  325. Breimer LT, Hennis PJ, Burm AG, et al. Pharmacokinetics and EEG effects of flumazenil in volunteers. Clin Pharmacokinet 1991; 20: 491–6

    Article  PubMed  CAS  Google Scholar 

  326. The Flumazenil in Intravenous Conscious Sedation with Diazepam Multicenter Study Group I. Reversal of central benzodiazepine effects by flumazenil after conscious sedation produced by intravenous diazepam. Clin Ther 1992; 14: 895–909

    Google Scholar 

  327. The Flumazenil in Intravenous Conscious Sedation with Midazolam Multicenter Study Group I. Reversal of central nervous system effects by flumazenil after intravenous conscious sedation with midazolam: report of a multicenter study. Clin Ther 1992; 14: 861–77

    Google Scholar 

  328. Janssen U, Walker S, Maier K, et al. Flumazenil disposition and elimination in cirrhosis. Clin Pharmacol Ther 1989; 46: 317–23

    Article  PubMed  CAS  Google Scholar 

  329. Pomier-Layrargues G, Giguere JF, Lavoie J, et al. Pharmacokinetics of benzodiazepine antagonist Ro 15-1788 in cirrhotic patients with moderate or severe liver dysfunction. Hepatology 1989; 10: 969–72

    Article  PubMed  CAS  Google Scholar 

  330. Ghoneim M, Block RI, Sum Ping ST, et al. The interactions of midazolam and flumazenil on human memory and cognition. Anesthesiology 1993; 79: 1183–92

    Article  PubMed  CAS  Google Scholar 

  331. Katz JA, Fragen RJ, Dunn KL. Flumazenil reversal of midazolam sedation in the elderly. Reg Anesth 1991; 16: 247–52

    PubMed  CAS  Google Scholar 

  332. Fan SZ, Liu CC, Yu HY, et al. Lack of effect of flumazenil on the reversal of propofol anaesthesia. Acta Anaesthesiol Scand 1995; 39: 299–301

    Article  PubMed  CAS  Google Scholar 

  333. Klotz U, Kanto J. Pharmacokinetics and clinical use of flumazenil (RO15-1788). Clin Pharmacokinet 1988; 14: 1–12

    Article  PubMed  CAS  Google Scholar 

  334. Hojer J, Baehrendtz S, Magnusson A, et al. A placebo-controlled trial of flumazenil given by continuous infusion in severe benzodiazepine overdosage. Acta Anaesthesiol Scand 1991; 35: 584–90

    Article  PubMed  CAS  Google Scholar 

  335. Carruthers SG, Shoeman DW, Hignite CE, et al. Correlation between plasma diphenhydramine level and sedative and antihistamine effects. Clin Pharmacol Ther 1978; 23: 375–82

    PubMed  CAS  Google Scholar 

  336. Chalfin DB, Fein AM. Critical care medicine in managed competition and a managed care environment. New Horizons 1994; 2: 275–82

    PubMed  CAS  Google Scholar 

  337. Dasta JF, Armstrong DK. Pharmacoeconomic impact of critically ill surgical patients. Drug Intell Clin Pharm 1988; 22: 994–8

    PubMed  CAS  Google Scholar 

  338. Beyer R, Seyde WC. Long-term sedation in the intensive care unit: a comparison of propofol with midazolam. Anaesthesist 1992; 41: 335–41

    PubMed  CAS  Google Scholar 

  339. Chamorro C, de Latorre FJ, Montera A, et al. Comparative study of propofol versus midazolam in the sedation of critically ill patients: results of a prospective, randomized, multicenter trial. Crit Care Med 1996; 24: 932–9

    Article  PubMed  CAS  Google Scholar 

  340. Fish D, Sintek C. Continuous infusions of lorazepam for ICU sedation: evaluation of dosing and cost in 37 patients [abstract]. Crit Care Med 1995; 23 Suppl.: A64

    Article  Google Scholar 

  341. Krosner SM, Lin HM, Nagy K, et al. Efficacy and cost: comparison of lorazepam and midazolam for continuous IV sedation in critically injured trauma patients [abstract]. Crit Care Med 1994; 22 Suppl.: A54

    Article  Google Scholar 

  342. Shwed JA, O’Neill ED, Byrne TK, et al. Comparison of continuous infusions of lorazepam, midazolam, and propofol for sedation of critically ill trauma/surgical patients [abstract]. Crit Care Med 1996; 24 Suppl.: A63

    Google Scholar 

  343. Carrasco G, Molina R, Costa J, et al. Propofol vs midazolam in short-, medium-, and long-term sedation of critically ill patients: a cost-benefit analysis. Chest 1993; 103: 557–64

    Article  PubMed  CAS  Google Scholar 

  344. Barrientos-Vega R, Sánchez-Soria MM, Morales-Garcia C, et al. Prolonged sedation of critically ill patients with midazolam or propofol: impact on weaning and costs. Crit Care Med 1997; 25: 33–40

    Article  PubMed  CAS  Google Scholar 

  345. Avripas MA, Smythe MA. Sedation and paralysis guidelines in a medical intensive care unit [abstract]. ASHP Midyear Clinical Meeting 1996; 31: P–14E

    Google Scholar 

  346. Nakamura AT, Earl G, Stanek EJ, et al. Pharmacoeconomic and pharmacodynamic impact of sedation guideline implementation in a coronary intensive care unit [abstract]. ASHP Midyear Clinical Meeting 1996; 31: CR–8

    Google Scholar 

  347. Devlin JW, Holbrook AM, Fuller HD. The effect of evidence-based ICU sedation guidelines on clinical outcomes and drug cost [abstract]. Crit Care Med 1997; 25 Suppl.: A88

    Google Scholar 

  348. 1997 Drug topics red book. Montvale (NJ): Medical Economics, 1997

  349. Harvey MA. Managing agitation in critically ill patients. Am J Crit Care 1996; 5: 7–16

    PubMed  CAS  Google Scholar 

  350. Aitkenhead AR. Analgesia and sedation in intensive care. Br J Anaesth 1989; 63: 196–206

    Article  PubMed  CAS  Google Scholar 

  351. Wagner BKJ, Evanovich-Zavotsky K, Sweeney JB, et al. Patient recall of therapeutic paralysis in a surgical critical care unit. Pharmacotherapy. In press

  352. Cook S, Palma O. Propofol as a sole agent for prolonged infusion in intensive care. J Drug Dev 1989; 2 Suppl. 2: 65–7

    Google Scholar 

  353. Hansen-Flaschen J, Cowen J. Beyond the Ramsay scale: need for a validated measure of sedating drug efficacy in the intensive care unit. Crit Care Med 1994; 22: 732–3

    Article  PubMed  CAS  Google Scholar 

  354. Marx CM, Smith PG, Lowrie LH, et al. Optimal sedation of mechanically ventilated pediatric critical care patients. Crit Care Med 1994; 22: 163–70

    PubMed  CAS  Google Scholar 

  355. Torgerson WS. What objective measures are there for evaluating pain?. J Trauma 1984; 24 Suppl.: S187–97

    Article  PubMed  CAS  Google Scholar 

  356. O’Hara DA, Chen B. Applications of biomedical engineeering to anesthesia. Prog Anesth 1995; 9: 375–96

    Google Scholar 

  357. Wilder-Smith OHG, Despland PA, Bettex D, et al. Thiopental or propofol interactions with midazolam: clinical and EEG endpoints [abstract]. Anesthesiology 1995; 83: A368

    Google Scholar 

  358. Scott JC, Ponganis KV, Stanski DR. EEG quantitation of narcotic effect: the comparative pharmacodynamics of fentanyl and alfentanil. Anesthesiology 1985; 62: 234–41

    Article  PubMed  CAS  Google Scholar 

  359. Moore K, Howie MB, Jopling MW, et al. EEG characteristics during continuous infusion of remifentanil for CABG surgery [abstract]. Anesthesiology 1995; 83: A377

    Article  Google Scholar 

  360. O’Hara DA, Bogen DK, Noordergraaf A. The use of computers for controlling the delivery of anesthesia. Anesthesiology 1992; 77: 563–81

    Article  PubMed  Google Scholar 

  361. Spencer EM, Green JL, Willatts SM. Continuous monitoring of depth of sedation by EEG spectral analysis in patients requiring mechanical ventilation. Br J Anaesth 1994; 73: 649–54

    Article  PubMed  CAS  Google Scholar 

  362. Kearse L, Rosow C, Sebel P, et al. The bispectral index correlates with sedation/hypnosis and recall: comparisons using multiple agents [abstract]. Anesthesiology 1995; 83: A507

    Google Scholar 

  363. Glass P, Gal TJ, Sebel PS, et al. Comparison of the bispectral index (BIS) and measured drug concentration for the monitored effects of propofol, midazolam, alfentanil and isoflurane [abstract]. Anesthesiology 1995; 83: A374

    Article  Google Scholar 

  364. Kearse LA, Manberg P, Chamoun N, et al. Use of EEG bispectral index to predict the depth of sedation and amnesia with propofol and midazolam [abstract]. Anesthesiology 1995; 83: A124

    Google Scholar 

  365. Watt RC, Sisemore CS, Fanemoto A, et al. Neural networks applied to bispectral analysis of EEG during anesthesia [abstract]. Anesthesiology 1995; 83: A503

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertil Wagner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, B., O’Hara, D.A. Pharmacokinetics and Pharmacodynamics of Sedatives and Analgesics in the Treatment of Agitated Critically Ill Patients. Clin Pharmacokinet 33, 426–453 (1997). https://doi.org/10.2165/00003088-199733060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199733060-00003

Keywords

Navigation