Skip to main content
Log in

Pharmacokinetics, Metabolism and Interactions of Acid Pump Inhibitors

Focus on Omeprazole, Lansoprazole and Pantoprazole

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

An Erratum to this article was published on 01 October 1996

Summary

This review updates and evaluates the currently available information regarding the pharmacokinetics, metabolism and interactions of the acid pump inhibitors omeprazole, lansoprazole and pantoprazole. Differences and similarities between the compounds are discussed.

Omeprazole, lansoprazole and pantoprazole are all mainly metabolised by the polymorphically expressed cytochrome P450 (CYP) isoform S-mephenytoin hydroxylase (CYP2C19), which means that within a population a few individuals (3% of Caucasians) metabolise the compounds slowly compared with the majority of the population. For all 3 compounds, the area under the plasma concentration-versus-time curve (AUC) for a slow metaboliser is, in general, approximately 5 times higher than that in an average patient. Since all 3 compounds are considered safe and well tolerated, and no dosage-related adverse drug reactions have been identified, this finding seems to be of no clinical relevance.

The acid pump inhibitors seem to be similarly handled in the elderly, where a somewhat slower elimination can be demonstrated compared with young individuals. In patients with renal insufficiency, omeprazole is eliminated as in healthy individuals, whereas the data on lansoprazole and pantoprazole are unresolved. In patients with hepatic insufficiency, as expected, the elimination rates of all 3 compounds are substantially decreased.

No clinically relevant effects on specific endogenous glandular functions, such as the adrenal (cortisol), the gonads or the thyroid, were demonstrated for omeprazole and pantoprazole, whereas a few minor concerns have been raised regarding lansoprazole.

The absorption of some compounds, e.g. digoxin, might be altered as a result of the increased gastric pH obtained during treatment with acid pump inhibitors, and, accordingly, similar effects are expected irrespective of which acid pump inhibitor is given.

The effect of the acid pump inhibitors on enzymes in the liver has been intensely debated, and some authors have claimed that lansoprazole and pantoprazole have less potential than omeprazole to interact with other drugs metabolised by CYP. However, after assessment of available data in this area, the conclusion is that all 3 acid pump inhibitors have a very limited potential for drug interactions at the CYP level. In addition, the small effects on CYP reported for these compounds are rarely of any clinical relevance, considering the normal intra- (and inter-)individual variations in metabolism observed for most drugs.

In conclusion, omeprazole, lansoprazole and pantoprazole are structurally very similar, and an evaluation of available data indicates that also with respect to pharmacokinetics, metabolism and interactions in general they demonstrate very similar properties, even though omeprazole has been more thoroughly studied with regard to different effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fellenius E, Berglindh T, Sachs G, et al. Substituted benzimidazoles inhibit gastric acid secretion by blocking (H++K+)ATPase. Nature 1981; 290: 159–61

    PubMed  CAS  Google Scholar 

  2. Lindberg P, Nordberg P, Alminger T, et al. The mechanism of action of the gastric acid secretion inhibitor omeprazole. J Med Chem 1986; 29: 1327–9

    PubMed  CAS  Google Scholar 

  3. Shin JM, Besancon M, Prinz C, et al. Continuing developments of acid pump inbitors: site of action of pantoprazole. Aliment Pharmacol Ther 1994; 8 Suppl. 1: 11–23

    PubMed  CAS  Google Scholar 

  4. Lind T, Cederberg C, Ekenved G, et al. Effect of omeprazole — a gastric proton pump inhibitor — on pentagastrin stimulated acid secretion in man. Gut 1983; 24: 270–6

    PubMed  CAS  Google Scholar 

  5. Verdú EF, Fraser R, Armstrong D, et al. Effects of omeprazole and lansoprazole on 24-hour intragastric pH in Helicobacter pylori-positive volunteers. Scand J Gastroenterol 1994; 29: 1065–9

    PubMed  Google Scholar 

  6. Brändström A, Lindberg P, Bergman NÅ, et al. Chemical reactions of omeprazole and omeprazole analogues. Acta Chem Scand 1989; 43: 536–611

    Google Scholar 

  7. Pilbrant Å, Cederberg C. Development of an oral formulation of omeprazole. Scand J Gastroenterol 1985; 20 Suppl. 108: 113–20

    Google Scholar 

  8. Andersson T, Andrén K, Cederberg C, et al. Bioavailability of omeprazole as enteric coated (EC) granules in conjunction with food on the first and seventh days of treatment. Drug Invest 1990; 2: 184–8

    Google Scholar 

  9. Benet LZ, Zech K. Pharmacokinetics: a relevant factor for the choice of a drug? Aliment Pharmacol Ther 1994; 8 Suppl. 1: 25–32

    PubMed  Google Scholar 

  10. Delhotal-Landes B, Cournot A, Vermerie N, et al. The effect of food and antacids on lansoprazole absorption and disposition. Eur J Drug Metab Dispos 1991; Spec Issue III: 315–20

    Google Scholar 

  11. Bergstrand R, Grind M, Nyberg G, et al. Decreased oral bioavailability of lansoprazole in healthy volunteers when given with a standardised breakfast. Clin Drug Invest 1995; 9: 67–71

    Google Scholar 

  12. Tuynman HARE, Festen HPM, Röhss K. Lack of effect of antacids on plasma concentrations of omeprazole given as enteric-coated granules. Br J Clin Pharmacol 1987; 24; 833–5

    Google Scholar 

  13. Hartmann M, Bliesath H, Huber R, et al. Lack of influence of antacids on the pharmacokinetics of the new gastric H+/K+-ATPase inhibitor pantoprazole [abstract]. Gastroenterology 1994; 106 Suppl.: A91

    Google Scholar 

  14. Gerloff J, Mignot A, Barth H, et al. The absolute bioavailability of lansoprazole [abstract]. Naunyn Schmeideberg’s Arch Pharmacol 1994; 349 Suppl.: R135

    Google Scholar 

  15. Regårdh CG, Gabrielsson M, Hoffmann KJ, et al. Pharmacokinetics and metabolism of omeprazole in animals and man: an overview. Scand J Gastroenterol 1985; 20 Suppl. 108: 79–94

    Google Scholar 

  16. Mitani M, Tsukamoto T, Yoshida S, et al. Metabolic fate of AG-1749, a new proton pump inhibitor, in rats, mice, and dogs. Jpn Pharmacol Ther 1990; 18: 3413–35

    Google Scholar 

  17. Regårdh CG, Andersson T, Lagerström PO, et al. The pharmacokinetics of omeprazole in humans: a study of single intravenous and oral doses. Ther Drug Monit 1990; 12: 163–72

    PubMed  Google Scholar 

  18. Tateno M, Nakamura N. Phase I study of lansoprazole (AG-1749) antiulcer agent: capsule form. Rinsho Iyaku 1991; 7: 51–62

    Google Scholar 

  19. Steinijans VW, Huber R, Hartmann M, et al. Lack of pantoprazole drug interactions in man. Int J Clin Pharmacol Ther 1994; 32: 385–99

    PubMed  CAS  Google Scholar 

  20. Küpfer A, Preisig R. Pharmacogenetics of mephenytoin: a new drug hydroxylation polymorphism in man. Eur J Clin Pharmacol 1984; 26: 753–9

    PubMed  Google Scholar 

  21. Nelson DR, Kamataki T, Waxman DJ, et al. The P450 super-family: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 1993; 12: 1–51

    PubMed  CAS  Google Scholar 

  22. Goldstein JA, Faletto MB, Romkes-Sparks M, et al. Evidence that CYP2C19 is the major (S)-mephenytoin 4′-hydroxylase in humans. Biochemistry 1994; 33: 1743–52

    PubMed  CAS  Google Scholar 

  23. Andersson T, Regårdh CG, Dahl-Puustinen ML, et al. Slow omeprazole metabolizers are also poor S-mephenytoin hydroxylators. Ther Drug Monit 1990; 12: 415–6

    PubMed  CAS  Google Scholar 

  24. Andersson T, Regårdh CG, Lou YC, et al. Polymorphic hydroxylation of S-mephenytoin and omeprazole metabolism in Caucasian and Chinese subjects. Pharmacogenetics 1992; 2: 25–31

    PubMed  CAS  Google Scholar 

  25. Sohn DR, Kobayashi K, Chiba K, et al. Disposition kinetics and metabolism of omeprazole in extensive and poor metabolisers of S-mephenytoin 4-hydroxylation recruited from an oriental population. J Pharmacol Exp Ther 1992; 262: 1195–202

    PubMed  CAS  Google Scholar 

  26. Ishizaki T, Sohn DR, Kobayashi K, et al. Interethnic differences in omeprazole metabolism in the two S-mephenytoin hydroxylation phenotypes studied in Caucasians and Orientals. Ther Drug Monit 1994; 16: 214–5

    PubMed  CAS  Google Scholar 

  27. Andersson T, Miners JO, Veronese ME, et al. Identification of human liver cytochrome P450 isoforms mediating omeprazole metabolism. Br J Clin Pharmacol 1993; 36: 521–30

    PubMed  CAS  Google Scholar 

  28. Chiba K, Kobayashi K, Manabe K, et al. Oxidative metabolism of omeprazole in human liver microsomes: co-segregation with S-mephenytoin 4′-hydroxylation. J Pharmacol Exp Ther 1993; 266: 52–9

    PubMed  CAS  Google Scholar 

  29. Andersson T, Miners JO, Veronese ME, et al. Identification of human liver cytochrome P450 isoforms mediating secondary omeprazole metabolism. Br J Clin Pharmacol 1994; 37: 597–604

    PubMed  CAS  Google Scholar 

  30. Andersson T, Cederberg C, Edvardsson G, et al. Effect of omeprazole treatment on diazepam plasma levels in slow versus normal rapid metabolizers of omeprazole. Clin Pharmacol Ther 1990; 47: 79–85

    PubMed  CAS  Google Scholar 

  31. Data on file. Astra Hässle AB

  32. Curi-Pedrosa R, Pichard L, Bonfils C, et al. Major implication of cytochrome P450 3A4 in the oxidative metabolism of the antisecretory drugs omeprazole and lansoprazole in human liver microsomes and hepatocytes [abstract]. Br J Clin Pharmacol 1993; 36; 156P

  33. Tucker GT. The interaction of proton pump inhibitors with cytochromes P450. Aliment Pharmacol Ther 1994; 8 Suppl. 1: 33–8

    PubMed  CAS  Google Scholar 

  34. Pichard L, Curi-Pedrosa R, Bonfils C, et al. Oxidative metabolism of lansoprazole by human liver microsomes. Mol Pharmacol 1995; 47: 410–8

    PubMed  CAS  Google Scholar 

  35. Huber R, Kohl B, Sachs G, et al. Review article: the continuing development of proton pump inhibitors with particular reference to pantoprazole. Aliment Pharmacol Ther 1995; 9: 363–78

    PubMed  CAS  Google Scholar 

  36. Schultz HU, Hartmann M, Steinijans VW, et al. Lack of influence of pantoprazole on the disposition kinetics of theophylline in man. Int J Clin Pharmacol Ther Toxicol 1991; 29: 369–75

    Google Scholar 

  37. Wynne HA, Goudevenos J, Rawlins MD, et al. Hepatic drug clearance: the effect of age using indocyanine green as a model compound. Br J Clin Pharmacol 1990; 30: 634–7

    PubMed  CAS  Google Scholar 

  38. Woodhouse K, Wynne HA. Age-related changes in hepatic function: implications for drug therapy. Drugs Aging 1992; 2: 243–55

    PubMed  CAS  Google Scholar 

  39. Larsson M, Jagenburg R, Landahl S. Renal function in an elderly population: a study of S-creatinine, 51Cr-EDTA clearance, endogenous creatinine clearance and maximal tubular water reabsorption. Scand J Clin Lab Invest 1986; 46: 593–8

    PubMed  CAS  Google Scholar 

  40. Mahony MS, Woodhouse KW. Age, environmental factors and drug metabolism. Pharmacol Ther 1994; 61: 279–87

    Google Scholar 

  41. Landahl S, Andersson T, Larsson ME, et al. Pharmacokinetic study of omeprazole in elderly healthy volunteers. Clin Pharmacokinet 1992; 23: 469–76

    PubMed  CAS  Google Scholar 

  42. Flouvat B, Delhotal-Landes B, Cournot A, et al. Single and multiple dose pharmacokinetics of lansoprazole in elderly subjects. Br J Clin Pharmacol 1993; 36: 467–9

    PubMed  CAS  Google Scholar 

  43. Hussein Z, Granneman GR, Mukherji D, et al. Age-related differences in the pharmacokinetics and pharmacodynamics of lansoprazole. Br J Clin Pharmacol 1993; 36: 391–8

    PubMed  CAS  Google Scholar 

  44. Breuel HP, Hartmann M, Bondy S, et al. Pantoprazole in the elderly: no dose-adjustment [abstract]. Gut 1994; 35 Suppl. 4: A77

    Google Scholar 

  45. Naesdal J, Andersson T, Bodemar G, et al. Pharmacokinetics of [14C]omeprazole in patients with impaired renal function. Clin Pharmacol Ther 1986; 40: 344–51

    PubMed  CAS  Google Scholar 

  46. Howden CW, Payton CD, Meredith PA, et al. Antisecretory effect and oral pharmacokinetics of omeprazole in patients with chronic renal failure. Eur J Clin Pharmacol 1985; 28: 637–40

    PubMed  CAS  Google Scholar 

  47. Karol MD, Mukherji D, Eason C, et al. The pharmacokinetics of lansoprazole following administration of single daily doses to subjects with various degrees of renal function [abstract]. Pharm Res 1993; 10 (10 Suppl.): S106

    Google Scholar 

  48. Delhotal-Landes B, Flouvat B, Duchier J, et al. Pharmacokinetics of lansoprazole in patients with renal or liver disease of varying severity. Eur J Clin Pharmacol 1993; 45: 367–71

    PubMed  CAS  Google Scholar 

  49. Karol MD, Mukherji D, Eason C, et al. The pharmacokinetics of lansoprazole following administration of single daily doses to dialysis dependent subjects [abstract]. Pharm Res 1993; 10 (10 Suppl.): S106

    Google Scholar 

  50. Lins RL, De Clercq I, Hartmann M, et al. Pharmacokinetics of the proton pump inhibitor pantoprazole in patients with severe renal impairment [abstract]. Gastroenterology 1994; 106 (4 Suppl.): A126

    Google Scholar 

  51. Kliem V, Hartmann M, Huber R, et al. The pharmacokinetics of pantoprazole are not influenced by hemodialysis [abstract]. Naunyn Schmiedeberg’s Arch Pharmacol 1994; 349 Suppl.: R2

    Google Scholar 

  52. Guengerich FP, Turvy CG. Comparison of levels of several human microsomal cytochrome P-450 enzymes and epoxide hydrolase in normal and disease states using immunochemical analysis of surgical liver samples. J Pharmacol Exp Ther 1991; 256; 1189–94

    Google Scholar 

  53. Andersson T, Olsson R, Regårdh CG, et al. Pharmacokinetics of [14C]omeprazole in patients with liver cirrhosis. Clin Pharmacokinet 1993; 24: 71–8

    PubMed  CAS  Google Scholar 

  54. Rinetti M, Regazzi MB, Villani P, et al. Pharmacokinetics of omeprazole in cirrhotic patients. Arzneimittel Forschung 1991; 41: 420–2

    PubMed  CAS  Google Scholar 

  55. McKee RF, MacGilchrist AJ, Garden OJ, et al. The anti-secretory effect and pharmacokinetics of omeprazole in chronic liver disease. Aliment Pharmacol Ther 1988; 2: 429–37

    PubMed  CAS  Google Scholar 

  56. Caulin C, Gouérou H, Bretagne JF, et al. Tolérance de l’oméprazole chez l’insuffisant hépatique: étude ouverte chez 24 cirrhotiques [abstract]. Gastroenterol Biol Clin 1987; 11: 42A

    Google Scholar 

  57. Coste T, Logeais C, Delhotal-Landes B, et al. Pharmacokinetics of lansoprazole after repeated administration in cirrhosis patients [abstract]. Gastroenterology 1993; 104 Suppl.: A59

    Google Scholar 

  58. Brunner G, Chang J, Hartmann M, et al. Pharmakokinetik von pantoprazol bei patienten mit leberzirrhose. Med Klin 1994; 89 Suppl. 1: 189

    Google Scholar 

  59. Kenyon CJ, Young Y, Gray CE, et al. Inhibition by etomidate of steroidogenesis in isolated bovine adrenal cells. J Clin Endocrinol Metab 1984; 58: 947–9

    PubMed  CAS  Google Scholar 

  60. Pont A, Williams PL, Loose DS, et al. Ketoconazole blocks adrenal steroid synthesis. Ann Intern Med 1982; 97: 370–2

    PubMed  CAS  Google Scholar 

  61. Kenyon CJ, Fraser R, Birnie GG, et al. Dose-related in vitro effects of ranitidine and cimetidine on basal and ACTH-stimulated steroidogenesis. Gut 1986; 27: 1143–5

    PubMed  CAS  Google Scholar 

  62. Howden CW, Kenyon CJ, Beastall GH, et al. Inhibition by omeprazole of adrenocortical response to ACTH: clinical studies and experiments on bovine adrenal cortex in vitro. Clin Sci 1986; 70: 99–102

    PubMed  CAS  Google Scholar 

  63. Dowie LJ, Smith JE, MacGilchrist AJ, et al. In vivo and in vitro studies of the site of inhibitory action of omeprazole on adrenocortical steroidogenesis. Eur J Clin Pharmacol 1988; 35: 625–9

    PubMed  CAS  Google Scholar 

  64. MacGilchrist AJ, Howden CW, Kenyon CJ, et al. The effects of omeprazole on endocrine function in man. Eur J Clin Pharmacol 1987; 32: 423–5

    PubMed  CAS  Google Scholar 

  65. Röhss K, Bergstrand R, Cederberg C, et al. Effect of intravenous omeprazole on basal and stimulated cortisol and 11-deoxycortisol levels in healthy subjects [abstract]. Gastroenterology 1990; 98 Suppl.: A114

    Google Scholar 

  66. Damman HG, Bethke TH, Burkhardt F, et al. Effects of pantoprazole on endocrine function in healthy male volunteers. Aliment Pharmacol Ther 1994; 8: 549–54

    Google Scholar 

  67. Damman HG, von zur Mühlen A, Balks HJ, et al. The effects of lansoprazole, 30 or 60mg daily, on intragastric pH and on endocrine function in healthy volunteers. Aliment Pharmacol Ther 1993; 7: 191–6

    Google Scholar 

  68. Meikle AW, Sanders SW, Tolman KG, et al. Effect of lansoprazole on male hormone function. Drug Invest 1994; 8: 191–202

    CAS  Google Scholar 

  69. Sachs G, Berglindh T. Physiology of the parietal cell. In: Johnson LR, ChristensenZ J, Grossman MI, et al., editors. Physiology of the alimentary tract. New York: Raven Press, 1981: 567–602

    Google Scholar 

  70. Van Thiel DH, Gavaler JS, Smith WI, et al. Hypothalamic-pituitary-gonadal dysfunction in men using cimetidine. N Engl JMed 1979; 300: 1012–5

    Google Scholar 

  71. Allen JM, Adrian TE, Webster J, et al. Effect of single dose omeprazole on the gastrointestinal peptide response to food. Hepatogastroenterology 1984; 31: 44–6

    PubMed  CAS  Google Scholar 

  72. Lee H, Håkansson R, Karlsson A, et al. Lansoprazole and omeprazole have similar effects on plasma gastrin levels, enterochromaffin-like cells, gastrin cells and somatostatin cells in the rat stomach. Digestion 1992; 51: 125–32

    PubMed  CAS  Google Scholar 

  73. Londong W. Effect of pantoprazole on 24-h intragastric pH and serum gastrin in humans. Aliment Pharmacol Ther 1994; 8 Suppl. 1: 39–46

    PubMed  Google Scholar 

  74. Lanzon-Miller S, Pounder RE, Hamilton MR, et al. Twenty four hour intragastric acidity and plasma gastrin concentration before and during treatment with either ranitidine or omeprazole. Aliment Pharmacol Ther 1987; 1: 239–51

    PubMed  CAS  Google Scholar 

  75. Ekenved G, Elofsson R, Sölvell L. Bioavailability studies on a buffered acetylsalicylic acid preparation. Acta Pharmacol Suecia 1975; 12: 323–32

    CAS  Google Scholar 

  76. Mayersohn M. Physiological factors that modify systemic drug availability and pharmacologic response in clinical practice. In: Blanchard et al., editors. Principles and perspectives in drug bioavailability. Basel: Karger, 1979: 211–73

    Google Scholar 

  77. Oosterhuis B, Jonkman JHG, Andersson T, et al. Minor effect of multiple dose omeprazole on the pharmacokinetics of digoxin after a single oral dose. Br J Clin Pharmacol 1991; 32: 569–72

    PubMed  CAS  Google Scholar 

  78. Soons PA, van den Berg G, Danhof M, et al. Influence of single-and multiple-dose omeprazole treatment on nifedipine pharmacokinetics and effects in healthy subjects. Eur J Clin Pharmacol 1992; 42: 319–24

    PubMed  CAS  Google Scholar 

  79. Cohen AF, Kroon R, Schoemaker R, et al. Influence of gastric acidity on the bioavailability of digoxin. Ann Intern Med 1991; 115: 540–5

    PubMed  CAS  Google Scholar 

  80. Paulsen O, Höglund P, Walder M. No effect of omeprazole-induced hypoacidity on the bioavailability of amoxycillin or bacampicillin. Scand J Infect Disease 1989; 21: 219–23

    CAS  Google Scholar 

  81. Piscitelli SC, Goss TF, Wilton JH, et al. Effects of ranitidine and sucralfate on ketoconazole bioavailability. Antimicrob Agents Chemother 1991; 35: 1765–71

    PubMed  CAS  Google Scholar 

  82. Haraguchi Y, Kitani M, Morisako K, et al. Effect of lansoprazole on the iron absorption. Jpn Pharmacol Ther 1994; 22: 469–72

    Google Scholar 

  83. Hartmann M, Huber R, Bliesath H, et al. Lack of interaction between pantoprazole and digoxin at therapeutic doses in man. In: Management of acid-related diseases: focus on pantoprazole. Congress abstracts, Berlin: Charité, 1993: 34–5

    Google Scholar 

  84. Bliesath H, Huber R, Hartmann M, et al. Pantoprazole does not influence the steady-state pharmacokinetics of nifedipine [abstract]. Gastroenterology 1994; 106 Suppl.: A55

    Google Scholar 

  85. Charbon GA, Brouwers HAA, Sala A. Histamine H1- and H2-receptors in the gastrointestinal circulation. Naunyn Schmiedebergs Arch Pharmacol 1980; 312: 123–9

    PubMed  CAS  Google Scholar 

  86. Pawlik W, Tague LL, Teppermann BL, et al. Histamine H1- and H2-receptor vasodilation of canine intestinal circulation. Am J Physiol 1977; 233: E219–24

    PubMed  CAS  Google Scholar 

  87. Mertz Nielsen A, Trap-Jensen J, Bonnevie O, et al. Immediate effect of omeprazole and cimetidine on apparent liver blood flow in man. Scand J Gastroenterol 1986; 21 Suppl. 118: 166–8

    Google Scholar 

  88. Noble DW, Bannister J, Lamont M, et al. The effect of oral omeprazole on the disposition of lignocaine. Anaesthesia 1994; 49; 497–500

    PubMed  CAS  Google Scholar 

  89. Cavanaugh JH, Park YK, Awni WM, et al. Effect of lansoprazole on antipyrine and ICG pharmacokinetics [abstract]. Gastroenterology 1991; 100 Suppl.: A40

    Google Scholar 

  90. Nebert DW, McKinnon RA. Cytochrome P450: Evolution and functional diversity. Progr Liver Dis 1994; 12: 63–97

    PubMed  CAS  Google Scholar 

  91. Andersson T. Drug interactions with omeprazole. Clin Pharmacokinet 1991;21: 195–212

    PubMed  CAS  Google Scholar 

  92. Brockmöller J, Roots I. Assessment of liver metabolic function: clinical implications. Clin Pharmacokinet 1994; 27: 216–48

    PubMed  Google Scholar 

  93. de Morais SMF, Wilkinson GR, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem 1994; 269: 15419–22

    PubMed  Google Scholar 

  94. Nielsen MD, Brösen K, Gram LF. A dose-effect study of the in vivo inhibitory effect of quinidine on sparteine oxidation in man. Br J Clin Pharmacol 1990; 29: 299–304

    PubMed  CAS  Google Scholar 

  95. Pantuck EJ, Hsiao KC, Maggio A, et al. Effect of cigarette smoking on phenacetin metabolism. Clin Pharmacol Ther 1974; 15: 9–17

    PubMed  CAS  Google Scholar 

  96. Conney AH, Pantuck EJ, Hsiao KC, et al. Enhanced phenacetin metabolism in human subjects fed charcoal-broiled beef. Clin Pharmacol Ther 1976; 20: 633–42

    PubMed  CAS  Google Scholar 

  97. Pantuck EJ, Pantuck CB, Garland WA, et al. Stimulatory effect of brussel sprouts and cabbage on human drug metabolism. Clin Pharmacol Ther 1979; 25: 88–95

    PubMed  CAS  Google Scholar 

  98. Parkinson A, Hurwitz A. Omeprazole and the induction of human cytochrome P-450: a response to concerns about potential adverse effects. Gastroenterology 1991; 100: 1157–64

    PubMed  CAS  Google Scholar 

  99. Grant DM, Campbell ME, Tang BK, et al. Biotransformation of caffeine by microsomes from human liver. Biochem Pharmacol 1987; 36: 1251–60

    PubMed  CAS  Google Scholar 

  100. Sesardic D, Boobis AR, Edwards RJ, et al. A form of cytochrome P450 in man, orthologous to form d in the rat, catalyses the O-deethylation of phenacetin and is inducible by cigarette smoking. Br J Clin Pharmacol 1988; 26: 363–72

    PubMed  CAS  Google Scholar 

  101. Robson RA, Miners JO, Matthews AP, et al. Characterisation of theophylline metabolism by human liver microsomes. Biochem Pharmacol 1988; 37: 1651–9

    PubMed  CAS  Google Scholar 

  102. Sarkar MA, Hunt C, Guzelian PS, et al. Characterisation of human liver cytochromes P450 involved in theophylline metabolism. Drug Metab Dispos 1992; 20: 31–7

    PubMed  CAS  Google Scholar 

  103. Zhang ZY, Kaminsky LS. Characterisation of human cytochromes P450 involved in theophylline 8-hydroxylation. Biochem Pharmacol 1995; 50: 205–11

    PubMed  CAS  Google Scholar 

  104. Andersson T, Bergstrand R, Cederberg C, et al. Omeprazole treatment does not affect the metabolism of caffeine. Gastroenterology 1991; 101: 943–7

    PubMed  CAS  Google Scholar 

  105. Rost KL, Brösicke H, Brockmöller J, et al. Increase of cytochrome P4501A2 activity by omeprazole: evidence by the 13C-(N-3-methyl)-caffeine breath test in poor and extensive metabolizers of S-mephenytoin. Clin Pharmacol Ther 1992; 52: 170–80

    PubMed  CAS  Google Scholar 

  106. Xiaodong S, Gatti G, Bartoli A, et al. Omeprazole does not enhance the metabolism of phenacetin, a marker of CYP1A2 activity, in healthy volunteers. Ther Drug Monit 1994; 16: 248–50

    PubMed  CAS  Google Scholar 

  107. Gugler R, Jensen JC. Drugs other than H2-receptor antagonists as clinically important inhibitors of drug metabolism in vivo. Pharmacol Ther 1987; 33: 133–7

    PubMed  CAS  Google Scholar 

  108. Oosterhuis B, Jonkman JHG, Andersson T, et al. No influence of single intravenous doses of omeprazole on theophylline elimination kinetics. J Clin Pharmacol 1992; 32: 470–5

    PubMed  CAS  Google Scholar 

  109. Taburet AM, Geneve J, Bocquentin M, et al. Theophylline steady state pharmacokinetics is not altered by omeprazole. Eur J Clin Pharmacol 1992; 42: 343–5

    PubMed  CAS  Google Scholar 

  110. Granneman G, Winters EP, Locke CS, et al. Lack of effect of concomitant lansoprazole on steady-state theophylline pharmacokinetics [abstract]. Gastroenterology 1991; 100: A75

    Google Scholar 

  111. Doecke CJ, Veronese ME, Pond SM, et al. Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes. Br J Clin Pharmacol 1991; 31: 125–30

    PubMed  CAS  Google Scholar 

  112. Yasumori T, Chen. LS, Li QH, et al. Regio- and stereo-selective metabolism of phenytoin by cytochrome P450s in human livers [abstract]. Proceedings of the 10th International Symposium on Microsomes and Drug Oxidations: 1994 Jul 18–21; Toronto, 588

  113. Relling MV, Aoyama T, Gonzales FJ, et al. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther 1990; 252: 442–7

    PubMed  CAS  Google Scholar 

  114. Tassaneeyakul W, Veronese ME, Birkett DJ, et al. Co-regulation of phenytoin and tolbutamide metabolism in humans. Br J Clin Pharmacol 1992; 34: 494–8

    PubMed  CAS  Google Scholar 

  115. Kaminsky LS, de Morais SM, Faletto MB, et al. Correlation of human cytochrome P450C substrate specificities with primary structure: warfarin as a probe. Mol Pharmacol 1993; 43: 234–9

    PubMed  CAS  Google Scholar 

  116. Hall SD, Hamman MA, Rettie AE, et al. Relationships between the levels of cytochrome P4502C9 and its prototypic catalytic activities in human liver microsomes. Drug Metab Dispos 1994; 22: 975–8

    PubMed  CAS  Google Scholar 

  117. Chen LS, Yasumori T, Yamazoe Y, et al. Hepatic microsomal tolbutamide hydroxylation in Japanese: in vitro evidence for rapid and slow metabolisers. Pharmacogenetics 1993; 3: 77–85

    PubMed  CAS  Google Scholar 

  118. Gugler R, Jensen JC. Omeprazole inhibits oxidative drug metabolism studies with diazepam and phenytoin in vivo and 7-ethoxycoumarin in vitro. Gastroenterology 1985; 89: 1235–41

    PubMed  CAS  Google Scholar 

  119. Prichard PJ, Walt RP, Kitchingman GK, et al. Oral phenytoin pharmacokinetics during omeprazole therapy. Br J Clin Pharmacol 1987; 24: 543–5

    PubMed  CAS  Google Scholar 

  120. Bachmann KA, Sullivan TJ, Jauregui L, et al. Absence of an inhibitory effect of omeprazole and nizatidine on phenytoin disposition, a marker of CYP2C activity. Br J Clin Pharmacol 1993; 36: 380–2

    PubMed  CAS  Google Scholar 

  121. Andersson T, Lagerström PO, Unge P. A study of the interaction between omeprazole and phenytoin in epileptic patients. Ther Drug Monit 1990; 12: 329–33

    PubMed  CAS  Google Scholar 

  122. Sutfin T, Balmér K, Boström H, et al. Stereoselective interaction of omeprazole with warfarin in healthy men. Ther Drug Monit 1989; 11: 176–84

    PubMed  CAS  Google Scholar 

  123. Unge P, Svedberg LE, Nordgren A, et al. A study of the interaction of omeprazole and warfarin in anticoagulated patients. Br J Clin Pharmacol 1992; 34: 509–12

    PubMed  CAS  Google Scholar 

  124. Toon S, Holt BL, Mullins FGP, et al. Effects of cimetidine, ranitidine and omeprazole on tolbutamide metabolism. J Pharm Pharmacol 1995; 47: 85–8

    CAS  Google Scholar 

  125. Karol MD, Mukherji D, Cavanaugh JH. Lack of effect of concomitant multi-dose lansoprazole on single-dose phenytoin pharmacokinetics in subjects [abstract]. Gastroenterology 1994; 106 Suppl.: A103

    Google Scholar 

  126. Cavanaugh JH, Winters EP, Cohen A, et al. Lack of effect of lansoprazole on steady state warfarin metabolism [abstract]. Gastroenterology 1991; 100 Suppl.: A40

    Google Scholar 

  127. Middle MV, Müller FO, Schall R, et al. No influence of pantoprazole on the pharmacokinetics of phenytoin. Int J Clin Pharmacol Ther 1995; 33: 304–7

    PubMed  CAS  Google Scholar 

  128. Duursema L, Müller FO, Schall R, et al. Lack of effect of pantoprazole on the pharmacodynamics and pharmacokinetics of warfarin. Br J Clin Pharmacol 1995; 39: 700–3

    PubMed  CAS  Google Scholar 

  129. Bertilsson L, Henthorn TK, Sanz E, et al. Importance of genetic factors in the regulation of diazepam metabolism: relationship to S-mephenytoin, but not debrisoquine, hydroxylation phenotype. Clin Pharmacol Ther 1989; 45: 348–55

    PubMed  CAS  Google Scholar 

  130. Andersson T, Miners JO, Veronese ME, et al. Diazepam metabolism by human liver microsomes is mediated by both S-mephenytoin hydroxylase and CYP3A isoforms. Br J Clin Pharmacol 1994; 38: 131–7

    PubMed  CAS  Google Scholar 

  131. Funck-Brentano C, Bosco O, Jacqz-Aigrain E, et al. Relation between chloroguanide bioactivation to cycloguanil and the genetically determined metabolism of mephenytoin in humans. Clin Pharmacol Ther 1992; 51: 507–12

    PubMed  CAS  Google Scholar 

  132. Birkett DJ, Rees D, Andersson T, et al. In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by S-mephenytoin hydroxylase. Br J Clin Pharmacol 1994; 37: 413–20

    PubMed  CAS  Google Scholar 

  133. Andersson T, Andrén K, Cederberg C, et al. Effect of omeprazole and cimetidine on plasma diazepam levels. Eur J Clin Pharmacol 1990; 39: 51–4

    PubMed  CAS  Google Scholar 

  134. Lefebvre RA, Flouvat B, Karolac-Tamisier S, et al. Influence of lansoprazole treatment on diazepam plasma concentrations. Clin Pharmacol Ther 1992; 52: 458–63

    PubMed  CAS  Google Scholar 

  135. Gugler R, Hartmann M, Rudi J, et al. Lack of interaction of pantoprazole and diazepam in man [abstract]. Gastroenterology 1992; 102 Suppl.: A77

    Google Scholar 

  136. Wang SL, Huang JD, Lai MD, et al. Molecular basis of genetic variation in debrisoquine hydroxylation in Chinese subjects: polymorphism in RFLP and DNA sequence of CYP2D6. Clin Pharmacol Ther 1993; 53: 410–8

    PubMed  CAS  Google Scholar 

  137. Lennard MS, Silas JH, Freestone S, et al. Defective metabolism of metoprolol in poor hydroxylators of debrisoquine. Br J Clin Pharmacol 1982; 14: 301–3

    PubMed  CAS  Google Scholar 

  138. Andersson T, Lundborg P, Regårdh CG. Lack of effect of omeprazole treatment on steady-state plasma levels of metoprolol. Eur J Clin Pharmacol 1991; 40: 61–5

    PubMed  CAS  Google Scholar 

  139. Henry D, Brent P, Whyte I, et al. Propranolol steady-state pharmacokinetics are unaltered by omeprazole. Eur J Clin Pharmacol 1987; 33: 369–73

    PubMed  CAS  Google Scholar 

  140. Ward SA, Walle UK, Wilkinson GR, et al. Propranolol’s metabolism is determined by both mephenytoin and debrisoquine hydroxylase activities. Clin Pharmacol Ther 1989; 45: 72–9

    PubMed  CAS  Google Scholar 

  141. Cavanaugh JH, Schneck DW, Mukherji D, et al. Lack of effect of concomitant lansoprazole on single-dose propranolol pharmacokinetics and pharmacodynamics [abstract]. Gastroenterology 1994; 106 Suppl.: A4

    Google Scholar 

  142. Guengerich FP, Kim DH, Iwasaki M. Role of human cytochrome P-450 IIE1 in the oxidation of many low molecular weight cancer suspects. Chem Res Toxicol 1991; 4: 168–79

    PubMed  CAS  Google Scholar 

  143. Jönsson KÅ, Jones AW, Boström H, et al. Lack of effect of omeprazole, cimetidine, and ranitidine on the pharmacokinetics of ethanol in fasting male volunteers. Eur J Clin Pharmacol 1992; 42: 209–12

    PubMed  Google Scholar 

  144. Girre C, Coutelle C, David P, et al. Lack of effect of lansoprazole on the pharmacokinetics of ethanol in male volunteers [abstract]. Gastroenterology 1994; 106 Suppl.: A504

    Google Scholar 

  145. Kolars JC, Schmiedlin-Ren P, Schuetz JD, et al. Identification of rifampicin-inducible P450IIIA4 (CYP3A4) in human small bowel enterocytes. J Clin Invest 1992; 90; 1871–8

    PubMed  CAS  Google Scholar 

  146. Schuetz JD, Beach DL, Guzelian PS. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics 1994; 4: 11–20

    PubMed  CAS  Google Scholar 

  147. Lown KE, Kolars JC, Thummel KE, et al. Interpatient heterogeneity in expression of CYP3A4 and CYP3A5 in small bowel: lack of prediction by the erythromycin breath test. Drug Metab Disp 1994; 22: 947–55

    CAS  Google Scholar 

  148. Gomez DY, Wacher VJ, Tomlanovich SJ, et al. The effects of ketoconazole on the intestinal metabolism and bioavailability of cyclosporine. Clin Pharmacol Ther 1995; 58: 15–9

    PubMed  CAS  Google Scholar 

  149. Kronbach T, Fischer V, Meyer UA. Cyclosporine metabolism in human liver: identification of a cytochrome P-450III gene family as the major cyclosporine-metabolizing enzyme explains interactions of cyclosporine with other drugs. Clin Pharmacol Ther 1988; 43: 630–5

    PubMed  CAS  Google Scholar 

  150. Kerlan V, Dreano Y, Bercovici JP, et al. Nature of cytochromes P450 involved in the 2-/4-hydroxylations of estradiol in human liver microsomes. Biochem Pharmacol 1992; 44: 1745–56

    PubMed  CAS  Google Scholar 

  151. Bargetzi MJ, Aoyama T, Gonzales FJ, et al. Lidocaine metabolism in human liver microsomes by cytochrome P450IIIA4. Clin Pharmacol Ther 1989; 46: 521–7

    PubMed  CAS  Google Scholar 

  152. Gonzalez FJ, Schmid BJ, Umeno M, et al. Human P450PCN1: sequence, chromosome localization, and direct evidence through cDNA expression that P450PCN1 is nifedipine oxidase. DNA 1988; 7: 79–86

    PubMed  CAS  Google Scholar 

  153. Guengerich FP, Müller-Enoch D, Blair IA. Oxidation of quinidine by human liver cytochrome P-450. Mol Pharmacol 1986; 30: 287–95

    PubMed  CAS  Google Scholar 

  154. Ged C, Rouillon JM, Pichard L, et al. The increase in urinary excretion of 6-hydroxycortisol as a marker of human hepatic cytochrome P450IIIA induction. Br J Clin Pharmacol 1989; 28: 373–87

    PubMed  CAS  Google Scholar 

  155. Blohmé I, Idström JP, Andersson T. A study of the interaction between omeprazole and cyclosporine in renal transplant patients. Br J Clin Pharmacol 1993; 35: 156–60

    PubMed  Google Scholar 

  156. Galbraith RA, Michnovicz JJ. Omeprazole fails to alter the cytochrome P450-dependent 2-hydroxylation of estradiol in male volunteers. Pharmacol 1993; 47: 8–12

    CAS  Google Scholar 

  157. Ching MS, Elliott SL, Stead CK, et al. Quinidine single dose pharmacokinetics and pharmacodynamics are unaltered by omeprazole. Aliment Pharmacol Ther 1991; 5: 523–31

    PubMed  CAS  Google Scholar 

  158. Cavanaugh JH, Locke C, Karol M. Lack of interaction of lansoprazole or omeprazole with prednisone [abstract 431]. Am J Gastroenterol 1993; 88: 1589

    Google Scholar 

  159. Ball SE, Forrester LM, Wolf CR, et al. Differences in the cytochrome P-450 isoenzymes involved in the 2-hydroxylation of oestradiol and 17-ethinylestradiol. Biochem J 1990; 267: 221–6

    PubMed  CAS  Google Scholar 

  160. Meyer BH, Maree JS, Müller FO, et al. Lack of interaction between an oral contraceptive and lansoprazole or omeprazole [abstract]. African Pharmaceutical Society Congress: 1993 Sep 21–24

  161. Naidu MUR, Shobha JC, Dixit VK, et al. Effect of multiple dose omeprazole on the pharmacokinetics of carbamazepine. Drug Invest 1994; 7: 8–12

    Google Scholar 

  162. Kerr BM, Thummel KE, Wurden CJ, et al. Human liver carbamazepine metabolism, role of CYP3A4 and CYP2C8 in 10,11-epoxide formation. Biochem Pharmacol 1994; 47: 1969–79

    PubMed  CAS  Google Scholar 

  163. Böttiger Y, Bertilsson L. No effect on plasma carbamazepine concentration with concomitant omeprazole treatment. Clin Drug Invest 1995; 9: 180–1

    Google Scholar 

  164. Rost KL, Brösicke H, Heinemeyer G, et al. Specific and dose-dependent enzyme induction by omeprazole in human beings. Hepatology 1994; 20: 1204–12

    PubMed  CAS  Google Scholar 

  165. Colin-Jones DG. Safety of lansoprazole. Aliment Pharmacol Ther 1993; 7: 56–60

    PubMed  Google Scholar 

  166. Fuchs W, Sennewald R, Klotz U. Lansoprazole does not affect the bioavailability of oral contraceptives. Br J Clin Pharmacol 1994; 38: 376–80

    PubMed  CAS  Google Scholar 

  167. Middle MV, Müller FO, Schall R, et al. Effect of pantoprazole on ovulation suppression by a low-dose hormonal contraceptive. Clin Drug Invest 1995; 9: 54–6

    Google Scholar 

  168. Reill L, Erhardt F, Fischer R, et al. Effect of oral pantoprazole on 24-h intragastric pH, serum gastrin profile and drug metabolizing enzyme activity in man: a placebo-controlled comparison with ranitidine. Gut 1993; 34 Suppl.: 63

    Google Scholar 

  169. Clark DWJ. Genetically determined variability in acetylation and oxidation. Drugs 1985; 29: 342–75

    PubMed  CAS  Google Scholar 

  170. Lind T, Cederberg C, Olausson M, et al. Omeprazole in elderly duodenal ulcer patients: relationship between reduction in gastric acid secretion and fasting plasma gastrin. Eur J Clin Pharmacol 1991; 40(6): 557–60

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/BF03257497.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andersson, T. Pharmacokinetics, Metabolism and Interactions of Acid Pump Inhibitors. Clin-Pharmacokinet 31, 9–28 (1996). https://doi.org/10.2165/00003088-199631010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199631010-00002

Keywords

Navigation