Skip to main content
Log in

Measurement and Analysis of Unbound Drug Concentrations

  • Review Article
  • Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The plasma protein binding of drugs has been shown to have significant effects on numerous aspects of clinical pharmacokinetics and pharmacodynamics. In many clinical situations, measurement of the total drug concentration does not provide the needed information concerning the unbound fraction of drug in plasma which is available for distribution, elimination, and pharmacodynamic action. Thus, accurate determination of unbound plasma drug concentrations is essential in the therapeutic monitoring of drugs.

Many methodologies are available for determining the extent of plasma protein binding of drugs, however, in the clinical evaluation of drug therapy, equilibrium dialysis and ultrafiltration are the most routinely utilised methods. Both of these methods have been proven to be experimentally sound and to yield adequate protein binding data. Furthermore, the characterisation of the interactions between drug and protein molecules is essential for the assessment of the pharmacokinetic implications of drug-protein binding. Protein binding parameters which characterise the affinity of the drug-protein association, the number of classes of binding sites, the number of binding sites per class or protein and the binding capacity are useful for predicting unbound drug concentrations.

Simple graphical methods have often been used to obtain protein binding parameters, but these methods have limitations and are not useful for drugs with more than 1 class of binding site. Therefore, the fitting of protein binding models which characterise the drug-protein binding interaction for experimental data is the prefered method of calculating binding parameters. Using the appropriate model, values for binding parameters are typically estimated by using nonlinear least-squares regression analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benet LZ, Massoud N. Pharmacokinetics. In: Benet LZ, Massoud N, Gambertoglio JG, editors. Pharmacokinetic basis for drug treatment. New York:Z Raven Press, 1984: 1–28

    Google Scholar 

  2. Wilkinson GR. Clearance approaches in pharmacology. Pharmacol Rev 1987; 39: 1–47

    PubMed  CAS  Google Scholar 

  3. Ujhelyi MR, Colucci RD, Cummings DM, et al. Monitoring Serum digoxin concentrations during digoxin FAB therapy. DICP 1991; 25: 1047–9

    PubMed  CAS  Google Scholar 

  4. Ujhelyi MR, Robert S, Cummings DM, et al. Influences of digoxin fab antibody therapy and renal dysfunction on the disposition of total and unbound digoxin. Ann Intern Med 1993; 119: 273–7

    PubMed  CAS  Google Scholar 

  5. Blum MR, Riegelman S, Becker CE. Altered protein binding of diphenylhydantoin in uremic plasma. New Engl J Med 1972; 286: 109

    PubMed  CAS  Google Scholar 

  6. Odar-Cederlof I, Lunde P, Sjogvist F. Abnormal pharmacokinetics of phenytoin in a patient with uremia. Lancet 1970; II: 831–2

    Google Scholar 

  7. Gibaldi M, Koup JR. Pharmacokinetic concepts-drug binding, apparent volume of distribution and clearance. Eur J Clin Pharmacol 1981; 20: 299–305

    PubMed  CAS  Google Scholar 

  8. Kunin CM, Craig WA, Kornguth M, et al. Influence of protein binding on the pharmacologic activity of antibiotics. Ann N Y Acad Sci 1973; 296: 214–34

    Google Scholar 

  9. Perucca E. Free level monitoring of antiepileptic drugs: clinical usefulness and case studies. Clin Pharmacokinet 1984; 9 Suppl. 1: 71–8

    PubMed  Google Scholar 

  10. Perucca E, Grimaldi R, Crema A. Interpretation of drug levels in acute and chronic disease states. Clin Pharmacokinet 1985; 10: 498–513

    PubMed  CAS  Google Scholar 

  11. Rowland M, Tozer TN. Clinical pharmacokinetics, concepts and applications. Pennsylvania: Williams & Wilkins, 1995: 142–3

    Google Scholar 

  12. Jusko WJ, Gretch M. Plasma and tissue protein binding of drugs in pharmacokinetics. Drug Metab Rev 1976; 5: 43–140

    CAS  Google Scholar 

  13. Peters Jr T. Serum albumin. In: Putman F, editor. The plasma proteins. Vol. 1. New York: Academic Press, 1975: 133–81

    Google Scholar 

  14. Kragh-Hansen U. Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 1981; 33: 17–53

    PubMed  CAS  Google Scholar 

  15. Kremer JMH, Wilting J, Janssen LHM. Drug binding of human alpha-1-acid glycoprotein in health and disease. Pharmacol Rev 1988; 40: 1–47

    PubMed  CAS  Google Scholar 

  16. Lemaire M, Urien S, Albengres E, et al. Lipoprotein binding of drugs. In: Reidenberg MM, Erill S, editors. Drug-protein binding. New York: Praeger Publishers, 1986: 36–45

    Google Scholar 

  17. Shargel L, Yu ABC. Applied biopharmaceutics and pharmacokinetics. Connecticut: Appleton & Lange, 1993: 92–4

    Google Scholar 

  18. Woo J, Chan HS, Or KH, et al. Effect of age and disease on two drug binding proteins: albumin and alpha-1-acid glycoprotein. Clin Biochem 1994; 27: 289–92

    PubMed  CAS  Google Scholar 

  19. Caswell M, Pike LA, Bull BS, et al. Effect of patient age on tests of acute-phase response. Arch Pathol Lab Med 1993; 117: 906–10

    PubMed  CAS  Google Scholar 

  20. Crook MA, Treloar A, Haq M, et al. Serum total sialic acid and other acute phase proteins in elderly subjects. Eur J Clin Chem Clin Biochem 1994; 32: 745–7

    PubMed  CAS  Google Scholar 

  21. Lalonde RL, Tenero DM, Burlew BS, et al. Effects of age on the protein binding and disposition of propranolol stereoisomers. Clin Pharmacol Ther 1990; 47: 447–55

    PubMed  CAS  Google Scholar 

  22. Veering BT, Burm AG, Souverijn JH, et al. The effect of age on serum concentrations of albumin and alpha 1-acid glycoprotein. Br J Clin Pharmacol 1990; 29: 201–6

    PubMed  CAS  Google Scholar 

  23. Ecoffey C. Pharmacokinetics of local anesthetics in children. Cah Anesthesiol 1992; 40: 533–6

    PubMed  CAS  Google Scholar 

  24. Seta N, Tissot B, Forestier F, et al. Changes in alpha 1-acid glycoprotein serum concentrations and glycoforms in the developing human fetus. Clin Chim Acta 1994; 203: 167–75

    Google Scholar 

  25. Meistelman C, Benhamou D, Barre J, et al. Effects of age on plasma protein binding of sufentanil. Anesthesiology 1990; 72: 470–3

    PubMed  CAS  Google Scholar 

  26. Bardy AH, Hiilesmaa VK, Teramo K, et al. Protein binding of antiepileptic drugs during pregnancy, labor and puerperium. Ther Drug Monit 1990; 12: 40–6

    PubMed  CAS  Google Scholar 

  27. Notarianni LJ. Plasma protein binding of drugs in pregnancy and in neonates. Clin Pharmacokinet 1990; 18: 20–36

    PubMed  CAS  Google Scholar 

  28. Maher JE, Goldenberg RL, Tamura T, et al. Albumin levels in pregnancy: a hypothesis-decreased levels of albumin are related to increased levels of alpha-fetoprotein. Early Hum Dev 1993; 34: 209–15

    PubMed  CAS  Google Scholar 

  29. Gleichmann W, Backmann GW, Dengler HJ, et al. Effect of hormonal contraceptives and pregnancy on serum protein pattern. Eur J Clin Pharmacol 1973; 5: 218–25

    CAS  Google Scholar 

  30. Routledge PA, Stargel WW, Kithell BB, et al. Sex-related differences in the plasma protein binding of lidocaine and diazepam. Br J Clin Pharmacol 1981; 11: 245–50

    PubMed  CAS  Google Scholar 

  31. Song CS, Merkatz IR, Rifkind AB, et al. The influence of pregnancy and oral contraceptive steroids on the concentration of plasma proteins. Amer J Obstet Gynec 1970; 108: 227–31

    PubMed  CAS  Google Scholar 

  32. Benedek IH, Blouin RA, McNamara PJ. Serum protein and the role of increased α1-acid glycoprotein in moderately obese male subjects. Br J Clin Pharmacol 1984; 18: 941–6

    PubMed  CAS  Google Scholar 

  33. Benedek IH, Fiske WO, Griffen WD, et al. Serum α1-acid glycoprotein and the binding of drugs in obesity. Br J Clin Pharmacol 1983; 16: 751–4

    PubMed  CAS  Google Scholar 

  34. DeVore PA. Assessment of nutritional status and obesity in elderly patients as seen in general medical practice. South Med J 1993; 86: 1008–10

    PubMed  CAS  Google Scholar 

  35. Girardin E, Bruguerolle B. Pharmacokinetic changes in obesity. Therapie 1993; 48: 397–402

    PubMed  CAS  Google Scholar 

  36. Le Devehat C, Khodabandehlou T, Dougny M. Hemorheological parameters in isolated obesity. Diabete Metab 1992; 18: 43–7

    PubMed  Google Scholar 

  37. Ziolkowski M, Korzybska D, Rybakowski J. Plasma proteins as biochemical markers of alcohol abuse. Psychiatr Pol 1994; 28: 51–9

    PubMed  CAS  Google Scholar 

  38. Lippi G, Fedi S, Grassi M, et al. Acute phase proteins in alcoholics with or without liver injury. Ital J Gastroenterol 1992; 24: 383–5

    PubMed  CAS  Google Scholar 

  39. Dales LG, Friedman GD, Siegelaub AB, et al. Cigarette smoking and serum chemistry tests. J Chronic Dis 1974; 27: 293–307

    PubMed  CAS  Google Scholar 

  40. Moszczynski P, Moszczynski Jr P, Slowinski S. Indicators of humoral immunity and acute phase reaction in cigarette smokers. Pol Arch Med Wewn 1990; 83: 194–9

    PubMed  CAS  Google Scholar 

  41. Macuie AG, Magides AD, Reilly CS. Disposition of alfentanil in burns patients. Br J Anaesth 1992; 69: 447–50

    Google Scholar 

  42. Pos O, van der Stelt ME, Wolbink GJ, et al. Changes in the serum concentration and the glycosylation of human alpha 1-acid glycoprotein and alpha 1-protease inhibitor in severely burned persons: relation to interleukin-6 levels. Clin Exp Immunol 1990; 82: 579–82

    PubMed  CAS  Google Scholar 

  43. Bonate PL. Pathophysiology and pharmacokinetics following burn injury. Clin Pharmacokinet 1990; 18: 118–30

    PubMed  CAS  Google Scholar 

  44. Niwa Y, Iio A, Niwa G, et al. Serum albumin metabolism in rheumatic diseases: relationship to corticosteroids and peptic ulcer. J Clin Lab Immunol 1990; 31: 11–6

    PubMed  CAS  Google Scholar 

  45. Nahaczewska W, Kudrewicz Hubicka Z, Owzarek H, et al. Concentration of acute phase proteins in serum of children with rheumatoid arthritis. Wiad Lek 1993; 46: 906–11

    PubMed  CAS  Google Scholar 

  46. Lacki JK, Porawska W, Mackiewicz SH, et al. Acute-phase response in early refractory theumatoid arthritis: long-term follow-up study. J Investig Allergol Clin Immunol 1994; 4: 168–71

    PubMed  CAS  Google Scholar 

  47. Majewski W, Zielinski A, Laciak M, et al. C-reactive protein and alpha-1-acid glycoprotein in monitoring of patients with chronic arterial occlusion of the lower limbs. Eur J Vasc Surg 1993; 7: 628–32

    PubMed  CAS  Google Scholar 

  48. Majewski W, Laciak M, Staniszewski R, et al. C-reactive protein and alpha 1-acid glycoprotein in monitoring of patients with acute arterial occlusion. Eur J Vasc Surg 1991; 5: 641–5

    PubMed  CAS  Google Scholar 

  49. Mori T, Sasaki J, Kawaguchi H, et al. Serum glycoproteins and severity of coronary atherosclerosis. Am Heart J 1995; 129: 234–8

    PubMed  CAS  Google Scholar 

  50. Kwan T, Pintea M, Garcia-Morino F, et al. Transcapillary oncotic pressure in the edema of congestive heart failure. Nephron 1990; 54: 21–5

    PubMed  CAS  Google Scholar 

  51. Nomura A, Yasuda H, Kobayashi T, et al. Serum alpha-1-acid glycoprotein and protein binding of disopyramide in patients with congestive heart failure. Eur J Clin Pharmacol 1992; 42: 115–6

    PubMed  CAS  Google Scholar 

  52. David BM, Ilett KF, Witford EG, et al. Prolonged variability in plasma protein binding of disopyramide after acute myocardial infarction. Br J Clin Pharmacol 1983; 15: 435–41

    PubMed  CAS  Google Scholar 

  53. Andreassen AK, Berg K, Torsvik H. Changes in Lp(a) lipoprotein and other plasma proteins during acute myocardial infarction. Clin Genet 1994; 46: 410–6

    PubMed  CAS  Google Scholar 

  54. Crook M, Haq M, Haq S, et al. Plasma sialic acid and acute-phase proteins in patients with myocardial infarction. Angiology 1994; 45: 709–15

    PubMed  CAS  Google Scholar 

  55. Birke G, Liljedahl SO, Plantin LO, et al. Albumin catabolism in burns and following surgical procedures. Acta Chir Scand 1959–1960; 118: 353–66

    Google Scholar 

  56. Eap CB, Fischer JF, Baumann P. Variations in relative concentrations of variants of human alpha 1-acid glycoprotein after acute phase conditions. Clin Chim Acta 1991; 203: 379–85

    PubMed  CAS  Google Scholar 

  57. Kushner I, Mackiewicz A. Acute phase proteins as disease markers. Dis Markers 1987; 5: 1–11

    PubMed  CAS  Google Scholar 

  58. Boosalis MG, Gray D, Walker S, et al. The acute phase response in autologous bone marrow transplantation. J Med 1992; 23: 175–93

    PubMed  CAS  Google Scholar 

  59. Gurlich R, Maruna P, Cermak J, et al. Early diagnosis of septic complications in the postoperative period by determination of acute phase proteins. Rozhl Chir 1993; 72: 235–8

    PubMed  CAS  Google Scholar 

  60. Petermann ML. Alterations in plasma protein patterns in disease. In: Putman F, editor. The plasma proteins. Vol. 2. Biosynthesis, metabolism, alterations in disease. New York: Academic Press, 1960: 309–43

    Google Scholar 

  61. Filteau SM, Morris SS, Tomkins AM, et al. Lack of association between vitamin A status and measures of conjunctival epithelial integrity in young children in northern Ghana. Eur J Clin Nutr 1994; 48: 669–77

    PubMed  CAS  Google Scholar 

  62. Takaishi M, Sadamoto K, Takami S, et al. Change in various serum protein levels between acute and convalescent phases in patients with respiratory infections. Nippon Kyobu Shikkan Gakkai Zasshi 1990; 28: 315–9

    PubMed  CAS  Google Scholar 

  63. Odelowo EO. Mantoux test tuberculin reaction in Nigerians. Afr J Med Med Sci 1994; 23: 91–8

    PubMed  CAS  Google Scholar 

  64. Suzuki K, Takashima Y, Yamada T, et al. The sequential changes of serum acute phase reactants in response to antituberculosis chemotherapy. Kekkaku 1992; 67: 303–11

    PubMed  CAS  Google Scholar 

  65. Immanuel C, Acharyulu GS, Kannapiran M, et al. Acute phase proteins in tuberculous patients. Indian J Chest Dis Allied Sci 1990; 32: 15–23

    PubMed  CAS  Google Scholar 

  66. Graninger W, Thalhammer F, Hollenstein U, et al. Serum protein concentrations in plasmodium falciparum malaria. Acta Trop 1992; 52: 121–8

    PubMed  CAS  Google Scholar 

  67. Wanwimolruk S, Denton JR. Plasma protein binding of quinine: binding to human serum albumin, alpha 1-acid glycoprotein and plasma from patients with malaria. J Pharm Pharmacol 1992; 44: 806–11

    PubMed  CAS  Google Scholar 

  68. Mansor SM, Molyneux ME, Taylor TE, et al. Effect of Plasmodium falciparum malaria infection on the plasma concentration of alpha 1-acid glycoprotein and the binding of quinine in Malawian children. Br J Clin Pharmacol 1991; 32: 317–21

    PubMed  CAS  Google Scholar 

  69. Onizuka K, Migita S, Yamada H, et al. Studies on serum protein fractions of patients with uterine cervical cancer undergoing radiotherapy: relationship between changes in serum protein fractions and prognosis. Nippon Igaku Hoshasen Gakkai Zasshi 1994; 54: 1007–17

    PubMed  CAS  Google Scholar 

  70. Raveendran R, Heybroek WM, Caulfield M, et al. Protein binding of indomethacin, methotrexate and morphine in patients with cancer. Int J Clin Pharmacol Res 1992; 12: 117–22

    PubMed  CAS  Google Scholar 

  71. Pelliniemi TT, Irjala K, Mattila K, et al. Immunoreactive interleukin-6 and acute phase proteins as prognostic factors in multiple myeloma. Finnish Leukemia Group. Blood 1995; 85: 765–71

    PubMed  CAS  Google Scholar 

  72. Xie JF. Clinical significance of serum ferritin and acute phase reactant proteins levels in patients with cervical cancer. Chung Hua Fu Chan Ko Tsa Chih 1991; 26: 92–4

    PubMed  CAS  Google Scholar 

  73. Putzki H, Hagner O. Sensitivity and specificity of alpha-1-anti-trypsin and acid alpha-1-glycoprotein in colorectal carcinoma. Gastroenterol J 1991; 51: 104–7

    PubMed  CAS  Google Scholar 

  74. Jensen H, Rossing N, Andersen SB, et al. Albumin metabolism in the nephrotic syndrome in adults. Clin Sci 1967; 33: 445–57

    PubMed  CAS  Google Scholar 

  75. Arredondo G, Martinez-Jorda R, Calvo R, et al. Protein binding of itraconazole and fluconazole in patients with chronic renal failure. Int J Clin Pharmacol Ther 1994; 32: 361–4

    PubMed  CAS  Google Scholar 

  76. Vasson MP, Baguet JC, Arveiller MR, et al. Serum and urinary alpha-1 acid glycoprotein in chronic renal failure. Nephron 1993; 65: 299–303

    PubMed  CAS  Google Scholar 

  77. Movin OG, Boelaert J, Hammarlund Udenaes M, et al. The pharmacokinetics of remoxipride and metabolites in patients with various degrees of renal function. Br J Clin Pharmacol 1993; 35: 615–22

    Google Scholar 

  78. Vasson MP, Paul JL, Couderc R, et al. Serum alpha-1 acid glycoprotein in chronic renal failure and hemodialysis. Int J Artif Organs 1991; 14:92–6

    PubMed  CAS  Google Scholar 

  79. Sunderman FW. Recent advances in clinical interpretation of electrophoretic fractionations of the serum proteins. In: Sunderman FW, Sunderman FW Jr, editors. Serum proteins and the dysproteinemias. Philadelphia: Lippincott, 1964: 323–45

    Google Scholar 

  80. Godl I, Muller C, Wolf H, et al. Acute phase reaction in acute viral hepatitis. Padiatr Padol 1990; 25: 147–55

    PubMed  CAS  Google Scholar 

  81. Pacifici GM, Viani A, Taddeuci-Brunelli G, et al. Effects of development, aging, and renal and hepatic insufficiency as well as hemodialysis on the plasma concentrations of albumin and α1-acid glycoprotein: implications for binding of drugs. Ther Drug Monit 1986; 8: 259–63

    PubMed  CAS  Google Scholar 

  82. Garcia-Morillas M, Gil-Extremera B, Caracuel-Ruiz MD. Differential effects of hepatic cirrhosis on the plasma protein binding of drugs. Int J Clin Pharm Res 1984; 4: 327–33

    CAS  Google Scholar 

  83. Hallen J, Laurell CB. Plasma protein pattern in cirrhosis of the liver. Scand J Clin Lab Invest 1972; 20: 97–103

    Google Scholar 

  84. Kindmark CO, Laurell CB. Sequential changes of the plasma protein pattern in inoculation hepatitis. Scand J Clin Lab Invest 1972; 20: 105–15

    Google Scholar 

  85. Joelsson B, Alwmark A, Gullstrand P, et al. Serum proteins in liver cirrhosis: effects of shunt surgery. J Clin Chem Clin Biochem 1987; 25: 865–8

    PubMed  CAS  Google Scholar 

  86. Biou D, Chanton P, Konan D, et al. Microheterogeneity of the carbohydrate moiety of human α1-acid glycoprotein in two benign liver diseases: alcoholic cirrhosis and acute hepatitis. Clin Chim Acta 1989; 186: 59–66

    PubMed  CAS  Google Scholar 

  87. Falleti E, Pirisi M, Fabris C, et al. Increase of serum alpha 1-acid glycoprotein despite the decline of liver synthetic function in cirrhotics with hepatocellular carcinoma. Eur J Clin Chem Clin Biochem 1993; 31: 407–11

    PubMed  CAS  Google Scholar 

  88. Viani A, Rizzo G, Carrai M, et al. Interindividual variability in the concentrations of albumin and alpha-1-acid glycoprotein in patients with renal or liver disease, newborns and healthy subjects: implications for binding of drugs. Int J Clin Pharmacol Ther Toxicol 1992; 30: 128–33

    PubMed  CAS  Google Scholar 

  89. Fukazawa H, Sakurada T, Tamura K, et al. The influence of immunosupressive acidic protein on the activity of peripheral K-lymphocytes in subacute thyroiditis. J Clin Endocrinol Metab 1990; 71: 193–8

    PubMed  CAS  Google Scholar 

  90. Jira L, Banovac K, Petek M, et al. Competitive ligand-binding assay for thyroxine binding globulin. Ann Endocrinol (Paris) 1979; 40: 487–94

    CAS  Google Scholar 

  91. Gwilt PR, Nahhas RR, Tracewell WG. The effects of diabetes mellitus on pharmacokinetics and pharmacodynamics in humans. Clin Pharmacokinet 1991; 20: 477–90

    PubMed  CAS  Google Scholar 

  92. O’Byrne S, Barry MG, Collins WC, et al. Plasma protein binding of lidocaine and warfarin in insulin-dependent and non-insulin-dependent diabetes mellitus. Clin Pharmacokinet 1993; 24: 183–6

    PubMed  Google Scholar 

  93. Song C, Dinan T, Leonard BE. Changes in immunoglobulin, complement and acute phase protein levels in the depressed patients and normal controls. J Affect Disord 1994; 30: 283–8

    PubMed  CAS  Google Scholar 

  94. Maes M, Scharpe S, Bosmans E, et al. Disturbances in acute phase plasma proteins during melancholia: additional evidence for the presence of an inflammatory process during that illness. Prog Neuropsychopharmacol Biol Psychiatry 1992; 16: 501–15

    PubMed  CAS  Google Scholar 

  95. Maes M, Scharpe S, Van Grootel L, et al. Higher alpha 1-anti-trypsin, haptoglobin, ceruloplasmin and lower retinol binding protein plasma levels during depression: further evidence for the existence of an inflammatory response during that illness. J Affect Disord 1992; 24: 183–92

    PubMed  CAS  Google Scholar 

  96. Healy D, Calvin J, Whitehouse AM, et al. Alpha-1-acid glycoprotein in major depressive and eating disorders. J Affect Disord 1991; 22: 13–20

    PubMed  CAS  Google Scholar 

  97. Kehoe WA, Kwentus JA, Sheffel WB, et al. Increased alpha-1-acid glycoprotein in depression lowers free fraction of imipramine. Biol Psychiatry 1991; 29: 489–93

    PubMed  CAS  Google Scholar 

  98. Nemeroff CB, Krishnan KR, Blazer DG, et al. Elevated plasma concentrations of alpha 1-acid glycoprotein, a putative endogenous inhibitor of the tritiated imipramine binding site, in depressed patients. Arch Gen Psychiatry 1990; 47: 337–40

    PubMed  CAS  Google Scholar 

  99. Casey EA, Gilbert FE, Gravice JF, et al. Low urea-nitrogen and elevated serum albumin in anxiety neuroses and psychoses. Ala J Med Sci 1971; 8: 168–77

    PubMed  CAS  Google Scholar 

  100. Sen DK, Sarin GS, Ghosh B, et al. Serum alpha-1 acid glycoprotein levels in patients with idiopathic peripheral retinal vasculitis (Eales’ disease). Acta Ophthalmol (Copenh) 1992; 70: 515–7

    CAS  Google Scholar 

  101. Gupta AK, Sarin GS, Rastogi A, et al. Serum alpha-1 acid glycoprotein levels in acute idiopathic anterior uveitis. Ann Ophthalmol 1991; 23: 406–9

    PubMed  CAS  Google Scholar 

  102. Steffes C, Fromm D. Is preoperative parenteral nutrition necessary for patients with predominantly ileal Crohn’s disease? Arch Surg 1992; 127: 1210–2

    PubMed  CAS  Google Scholar 

  103. Novacek G, Vogelsang H, Schmidt B, et al. Are single measurements of pseudocholinesterase and albumin markers for inflammatory activity or nutritional status in Crohn’s disease? Wien Klin Wochenschr 1993; 105: 111–5

    PubMed  CAS  Google Scholar 

  104. Gesink van der Veer BJ, Burm AG, Vletter AA, et al. Influence of Crohn’s disease on the pharmacokinetics and pharmacodynamics of alfentanil. Br J Anaesth 1993; 71: 827–34

    Google Scholar 

  105. Vucelic B, Milicic D, Krznaric Z, et al. Serum acute phase proteins for determining disease activity of ulcerative colitis and Crohn disease. Acta Med Austriaca 1991; 18: 100–5

    PubMed  CAS  Google Scholar 

  106. Domschke S, Malfertheiner P, Uhl W, et al. Free fatty acids in serum of patients with acute necrotizing or edematous pancreatitis. Int J Pancreatol 1993; 13: 105–10

    PubMed  CAS  Google Scholar 

  107. McKay C, Beastall GH, Imrie CW, et al. Circulating intact para-thyroid hormone levels in acute pancreatitis. Br J Surg 1994; 81: 357–60

    PubMed  CAS  Google Scholar 

  108. De la Pena J, De las Heras G, Galo Peralta F, et al. Prospective study of the prognostic value of C reactive protein, alpha 1-antitrypsin and alpha 1-acid glycoprotein in acute pancreatitis. Rev Esp Enferm Dig 1991; 79: 337–40

    PubMed  Google Scholar 

  109. Hestnes A, Stovner LJ, Husoy O, et al. Hormonal and biochemical disturbances in Down’s syndrome. J Ment Defic Res 1991; 35: 179–93

    PubMed  Google Scholar 

  110. Oda M, Hakamada R, Ono K, et al. A seroimmunological analysis of Down syndrome. Gerontology 1993; 39 Suppl. 1: 16–23

    PubMed  Google Scholar 

  111. Bartelik S. Concentration of serum proteins in children with down syndrome. Wiad Lek 1992; 45: 682–5

    PubMed  CAS  Google Scholar 

  112. Adeodu OO, Adekile AD. Clinical and laboratory features associated with persistent gross splenomegaly in Nigerian children with sickle cell anaemia. Acta Paediatr Scand 1990; 79: 686–90

    PubMed  CAS  Google Scholar 

  113. Rivero RA, Macias C, del Valle L, et al. Immunologic changes in sickle-cell anemia. Sangre (Barc) 1991; 36: 15–20

    CAS  Google Scholar 

  114. Warrier RP, Kubividila S, Gordon L, et al. Transport proteins and acute phase reactant proteins in children with sickle cell anemia. J Natl Med Assoc 1994; 86: 33–9

    PubMed  CAS  Google Scholar 

  115. Hedo CC, Aken’ova YA, Okpala IE, et al. Acute phase reactants and severity of homozygous sickle cell disease. J Intern Med 1993; 233: 467–70

    PubMed  CAS  Google Scholar 

  116. Monnet D, Diallo I, Sangare A, et al. Clinical value of C-reactive protein, alpha 1-glycoprotein acid and transferrin assay in homozygous sickle cell disease. Bull Soc Pathol Exot 1993; 86: 282–5

    PubMed  CAS  Google Scholar 

  117. Mohammed SS, Christopher MM, Mehta P, et al. Increased erythrocyte and protein binding of codeine in patients with sickle cell disease. J Pharm Sci 1993; 82: 1112–7

    PubMed  CAS  Google Scholar 

  118. Morita K, Yamaji A. Changes in the concentration of serum alpha 1-acid glycoprotein in epileptic patients. Eur J Clin Pharmacol 1994; 46: 137–42

    PubMed  CAS  Google Scholar 

  119. Meijer C, Huysen V, Smeenk RT, et al. Profiles of cytokines (TNF alpha and IL-6) and acute phase proteins (CRP and alpha 1AG) related to the disease course in patients with systemic lupus erythematosus. Lupus 1993; 2: 359–65

    PubMed  CAS  Google Scholar 

  120. Cirasino L, Landonio G, Imbriani M. Hypoalbuminemia in human immunodeficiency virus infection: causes and possible prognostic value. J Parent Enter Nutr 1993; 17: 101–2

    CAS  Google Scholar 

  121. Suttmann U, Ockenga J, Selberg O, et al. Incidence and prognostic value of malnutrition and wasting in human immunodeficiency virus-infected outpatients. J Acquir Immune Defic Syndr Hum Retrovirol 1995; 8: 239–46

    PubMed  CAS  Google Scholar 

  122. Cordiali FP, Massa A, Prignano G, et al. Behaviour of several ‘progession markers’ during the HIV-Ab seroconversion period. Comparison with later stages. J Biol Regul Homeost Agents 1992; 6: 57–64

    Google Scholar 

  123. Monnet D, Kacou E, Gershy Damet GM, et al. Inflammatory reaction markers and nutritional markers in HIV infection. Ann Biol Clin (Paris) 1991; 49: 428–32

    CAS  Google Scholar 

  124. Hayes MJ, Torzillo PJ, Sheil AG, et al. Pneumocystis carinii pneumonia after liver transplantation in adults. Clin Transplant 1994; 8: 499–503

    PubMed  CAS  Google Scholar 

  125. Mackiewicz A, Khan MA, Gorny A, et al. Glycoforms of alpha 1-acid glycoprotein in sera of human immunodeficiency virus-infected persons. J Infect Dis 1994; 169: 1360–3

    PubMed  CAS  Google Scholar 

  126. Kurz H, Trunk H, Wertz B. Evaluation of methods to determine protein binding of drugs. Arzneimittelforschung 1977; 27: 1373–80

    PubMed  CAS  Google Scholar 

  127. Chignell CU. Protein binding. In: Garnett ER, Hirtz JL, editors. Drug fate and metabolism. Vol 1. New York: Marcel Dekker, 1977: 187–228

    Google Scholar 

  128. Bowers WF, Fulton S, Thompson J. Ultrafiltration vs equilibrium dialysis for determination of free fraction. Clin Pharmacokinet 1984; 9: 49–60

    PubMed  CAS  Google Scholar 

  129. Pacifici GM, Viani A. Methods of determining plasma and tissue binding of drugs: pharmacokinetic consequences. Clin Pharmacokinet 1992; 23: 449–68

    PubMed  CAS  Google Scholar 

  130. Muller M, Schmid R, Georgopoulos A, et al. Application of microdialysis to clinical pharmacokinetics in humans. Clin Pharmacol Ther 1995; 57: 371–80

    PubMed  CAS  Google Scholar 

  131. Schentag JJ, Ballow CH. Tissue-directed pharmacokinetics. Am J Med 1991; 91 Suppl. 3A: 5–11

    Google Scholar 

  132. Craig WA, Welling PG. Protein binding of antimicrobials: clinical pharmacokinetic and therapeutic implications. Clin Pharmacokinet 1977; 2: 252–68

    PubMed  CAS  Google Scholar 

  133. Riva R, Albani F, Baruzzi A, et al. Determination of unbound valproic acid concentration in plasma by equilibrium dialysis and gas-liquid chromatography: methodological aspects in epileptic patients. Ther Drug Monit 1982; 4: 341–52

    PubMed  CAS  Google Scholar 

  134. Boudinot FD, Jusko WJ. Fluid shifts and other factors affecting plasma protein binding of prednisolone by equilibrium dialysis. J Pharm Sci 1984; 73: 774–80

    PubMed  CAS  Google Scholar 

  135. Oppenheimer JH, Surks MI. Determination of free thyroxine in human serum: a theoretical and experimental analysis. J Clin Endocrinol Metab 1964; 24: 785–93

    PubMed  CAS  Google Scholar 

  136. Lima JJ, McKichan JJ, Libertin N, et al. Influence of volume shifts on drug binding during equilibrium dialysis: correlation and attenuation. J Pharmacokinet Biopharm 1983; 11: 483–98

    PubMed  CAS  Google Scholar 

  137. Judd RL, Pesce AJ. Free drug concentrations are constant in serial fractions of plasma ultrafiltrate. Clin Chem 1982; 28: 1726–7

    PubMed  CAS  Google Scholar 

  138. Whitlam JB, Brown KF. Ultrafiltration in serum protein binding determinations. J Pharm Sci 1981; 70: 146–50

    PubMed  CAS  Google Scholar 

  139. Fan C, Tisdale JE, Ujhelyi MR, et al. Underprediction of unbound quinidine concentration as determined by ultrafiltration. Clin Pharm 1993; 12: 917–21

    PubMed  CAS  Google Scholar 

  140. Rose JQ, Yurchak AM, Jusko WJ. Dose dependent pharmacokinetics of prednisone and prednisolone in man. J Pharmacokinet Biopharm 1981; 9: 389–417

    PubMed  CAS  Google Scholar 

  141. Boxenbaum HG, Riegelman S, Elashoff RM. Statistical estimations in pharmacokinetics. J Pharmacokinet Biopharm 1974; 2: 123–48

    PubMed  CAS  Google Scholar 

  142. Yamaoka K, Nakagawa T, Uno T. Application of Akaike’s information criterion (AIC) in the evaluation of linear pharmacokinetic equations. J Pharmacokinet Biopharm 1978; 6: 165–75

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, J.D., Boudinot, F.D. & Ujhelyi, M.R. Measurement and Analysis of Unbound Drug Concentrations. Clin-Pharmacokinet 30, 445–462 (1996). https://doi.org/10.2165/00003088-199630060-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199630060-00003

Keywords

Navigation