Skip to main content

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

  • 3786 Accesses

Abstract

Incorporation of pharmacokinetic information of anticancer drugs into routine patient care can contribute to drug dosage individualization and account for differences among patients in rates of drug metabolism and/or excretion. The standard analytical methods for measuring concentrations of drugs in plasma determine drug bound to plasma proteins as well as free drug dissolved in plasma water. For this reason, the relationship between total drug concentration in plasma and treatment outcome (i.e., toxicity and efficacy) will only be good if the degree of plasma protein binding of the agent is constant, or if so little drug is protein bound that changes in binding make insignificant changes in unbound concentration. A review of available literature data indicates that, in general, protein binding of anticancer drugs is not of principal clinical relevance. However, there are several instances in which monitoring of unbound concentrations might be useful: (1) agents demonstrating protein concentration-dependent binding, (2) agents that bind irreversible or near covalently, (3) when formulation excipients modulate unbound drug levels, and (4) metabolically interconversible agents. While available evidence suggests that for these agents unbound drug levels correlate better with clinical effects than total plasma concentrations, there are insufficient data to justify the recommendation of the routine use of unbound drug concentration monitoring for most of these agents at present.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. van den Bongard HJ, Mathot RA, Beijnen JH et al (2000) Pharmacokinetically guided administration of chemotherapeutic agents. Clin Pharmacokinet 39:345–67

    PubMed  Google Scholar 

  2. Donelli MG, Zucchetti M, Munzone E et al (1998) Pharmacokinetics of anticancer agents in patients with impaired liver function. Eur J Cancer 34:33–46

    CAS  PubMed  Google Scholar 

  3. Kintzel PE, Dorr RT (1995) Anticancer drug renal toxicity and elimination: dosing guidelines for altered renal function. Cancer Treat Rev 21:33–64

    CAS  PubMed  Google Scholar 

  4. Rowland M (1984) Protein binding and drug clearance. Clin Pharmacokinet 9(Suppl 1):10–7

    CAS  PubMed  Google Scholar 

  5. Monot C, Lapicque F, Benamghar L et al (1994) Representation of affinity in the case of co-operativity in protein-ligand binding. Fundam Clin Pharmacol 8:18–25

    CAS  PubMed  Google Scholar 

  6. Kermode JC (1989) The curvilinear Scatchard plot. Experimental artifact or receptor heterogeneity? Biochem Pharmacol 38:2053–60

    CAS  PubMed  Google Scholar 

  7. Pedersen JB, Lindup WE (1994) Interpretation and analysis of receptor binding experiments which yield non-linear Scatchard plots and binding constants dependent upon receptor concentration. Biochem Pharmacol 47:179–85

    CAS  PubMed  Google Scholar 

  8. Klotz IM (1982) Numbers of receptor sites from Scatchard graphs: facts and fantasies. Science 217:1247–9

    CAS  PubMed  Google Scholar 

  9. Munson PJ, Rodbard D (1983) Number of receptor sites from Scatchard and Klotz graphs: a constructive critique. Science 220:979–81

    CAS  PubMed  Google Scholar 

  10. Klotz IM (1973) Physiochemical aspects of drug-protein interactions: a general perspective. Ann N Y Acad Sci 226:18–35

    CAS  PubMed  Google Scholar 

  11. Oravcova J, Bohs B, Lindner W (1996) Drug-protein binding sites. New trends in analytical and experimental methodology. J Chromatogr B Biomed Appl 677:1–28

    PubMed  Google Scholar 

  12. Bowers WF, Fulton S, Thompson J (1984) Ultrafiltration vs equilibrium dialysis for determination of free fraction. Clin Pharmacokinet 9(Suppl 1):49–60

    CAS  PubMed  Google Scholar 

  13. Kurz H, Trunk H, Weitz B (1977) Evaluation of methods to determine protein-binding of drugs. Equilibrium dialysis, ultrafiltration, ultracentrifugation, gel filtration. Arzneimittelforschung 27:1373–80

    CAS  PubMed  Google Scholar 

  14. Huang JD (1983) Errors in estimating the unbound fraction of drugs due to the volume shift in equilibrium dialysis. J Pharm Sci 72:1368–9

    CAS  PubMed  Google Scholar 

  15. Mapleson WW (1987) Computation of the effect of Donnan equilibrium on pH in equilibrium dialysis. J Pharmacol Methods 17:231–42

    CAS  PubMed  Google Scholar 

  16. Reinard T, Jacobsen HJ (1989) An inexpensive small volume equilibrium dialysis system for protein-ligand binding assays. Anal Biochem 176:157–60

    CAS  PubMed  Google Scholar 

  17. Parsons DL, Fan HF (1986) Loss of propranolol during ultrafiltration in plasma protein binding studies. Res Commun Chem Pathol Pharmacol 54:405–8

    CAS  PubMed  Google Scholar 

  18. Barre J, Chamouard JM, Houin G et al (1985) Equilibrium dialysis, ultrafiltration, and ultracentrifugation compared for determining the plasma-protein-binding characteristics of valproic acid. Clin Chem 31:60–4

    CAS  PubMed  Google Scholar 

  19. Oellerich M, Muller-Vahl H (1984) The EMIT FreeLevel ultrafiltration technique compared with equilibrium dialysis and ultracentrifugation to determine protein binding of phenytoin. Clin Pharmacokinet 9(Suppl 1):61–70

    CAS  PubMed  Google Scholar 

  20. Hage DS (2002) High-performance affinity chromatography: a powerful tool for studying serum protein binding. J Chromatogr B Analyt Technol Biomed Life Sci 768:3–30

    CAS  PubMed  Google Scholar 

  21. Garcia Alvarez-Coque MC, Carda Broch S (1999) Direct injection of physiological fluids in micellar liquid chromatography. J Chromatogr B Biomed Sci Appl 736:1–18

    CAS  PubMed  Google Scholar 

  22. Heegaard NH (1998) Capillary electrophoresis for the study of affinity interactions. J Mol Recognit 11:141–8

    CAS  PubMed  Google Scholar 

  23. Hage DS, Tweed SA (1997) Recent advances in chromatographic and electrophoretic methods for the study of drug-protein interactions. J Chromatogr B Biomed Sci Appl 699:499–525

    CAS  PubMed  Google Scholar 

  24. Gomez FA, Avila LZ, Chu YH et al (1994) Determination of binding constants of ligands to proteins by affinity capillary electrophoresis: compensation for electroosmotic flow. Anal Chem 66:1785–91

    CAS  PubMed  Google Scholar 

  25. Morin D, Zini R, Ledewyn S et al (1986) Inhibition of binedaline binding to human alpha 1-acid glycoprotein and other serum proteins by chlorpromazine, imipramine, and propranolol. J Pharm Sci 75:883–5

    CAS  PubMed  Google Scholar 

  26. Sugiyama Y, Suzuki Y, Sawada Y et al (1985) Auramine O as a fluorescent probe for the binding of basic drugs to human alpha 1-acid glycoprotein (alpha 1-AG). The development of a simple fluorometric method for the determination of alpha 1-AG in human serum. Biochem Pharmacol 34:821–9

    CAS  PubMed  Google Scholar 

  27. Chen A, Shapiro MJ (1999) Affinity NMR. Anal Chem 71:669A–675A

    CAS  PubMed  Google Scholar 

  28. Chignell CF (1969) Optical studies of drug-protein complexes. II. Interaction of phenylbutazone and its analogues with human serum albumin. Mol Pharmacol 5:244–52

    CAS  PubMed  Google Scholar 

  29. Chignell CF (1969) Optical studies of drug-protein complexes. 3. Interaction of flufenamic acid and other N-arylanthranilates with serum albumin. Mol Pharmacol 5:455–62

    CAS  PubMed  Google Scholar 

  30. Squella JA, Becerra R, Nunez-Vergara LJ (1987) Polarography: a new tool in the elucidation of drug-albumin interactions. Biochem Pharmacol 36:3531–3

    CAS  PubMed  Google Scholar 

  31. Aki H, Yamamoto M (1989) Thermodynamics of the binding of phenothiazines to human plasma, human serum albumin and alpha 1-acid glycoprotein: a calorimetric study. J Pharm Pharmacol 41:674–9

    CAS  PubMed  Google Scholar 

  32. Shaklai N, Garlick RL, Bunn HF (1984) Nonenzymatic glycosylation of human serum albumin alters its conformation and function. J Biol Chem 259:3812–7

    CAS  PubMed  Google Scholar 

  33. Chen BH, Taylor EH, Pappas AA (1987) Total and free disopyramide by fluorescence polarization immunoassay and relationship between free fraction and alpha-1 acid glycoprotein. Clin Chim Acta 163:75–80

    CAS  PubMed  Google Scholar 

  34. Nelson RW, Krone JR (1999) Advances in surface plasmon resonance biomolecular interaction analysis mass spectrometry (BIA/MS). J Mol Recognit 12:77–93

    CAS  PubMed  Google Scholar 

  35. Sablonniere B, Dallery N, Grillier I et al (1994) Physicochemical parameters affecting the charcoal adsorption assay for quantitative retinoid-binding measurement. Anal Biochem 217:110–8

    CAS  PubMed  Google Scholar 

  36. Yuan J, Yang DC, Birkmeier J et al (1995) Determination of protein binding by in vitro charcoal adsorption. J Pharmacokinet Biopharm 23:41–55

    CAS  PubMed  Google Scholar 

  37. Svensson CK, Woodruff MN, Baxter JG et al (1986) Free drug concentration monitoring in clinical practice. Rationale and current status. Clin Pharmacokinet 11:450–69

    CAS  PubMed  Google Scholar 

  38. Drobitch RK, Svensson CK (1992) Therapeutic drug monitoring in saliva. An update. Clin Pharmacokinet 23:365–79

    CAS  PubMed  Google Scholar 

  39. Highley MS, De Bruijn EA (1996) Erythrocytes and the transport of drugs and endogenous compounds. Pharm Res 13:186–95

    CAS  PubMed  Google Scholar 

  40. Hinderling PH (1997) Red blood cells: a neglected compartment in pharmacokinetics and pharmacodynamics. Pharmacol Rev 49:279–95

    CAS  PubMed  Google Scholar 

  41. Linhares MC, Kissinger PT (1992) Capillary ultrafiltration: in vivo sampling probes for small molecules. Anal Chem 64:2831–5

    CAS  PubMed  Google Scholar 

  42. Muller M (2002) Science, medicine, and the future: microdialysis. BMJ 324:588–91

    PubMed  Google Scholar 

  43. Scott DO, Sorenson LR, Steele KL et al (1991) In vivo microdialysis sampling for pharmacokinetic investigations. Pharm Res 8:389–92

    CAS  PubMed  Google Scholar 

  44. Kitzen JJ, Verweij J, Wiemer EA et al (2006) The relevance of microdialysis for clinical oncology. Curr Clin Pharmacol 1:255–63

    CAS  PubMed  Google Scholar 

  45. Konings IR, Engels FK, Sleijfer S et al (2009) Application of prolonged microdialysis sampling in carboplatin-treated cancer patients. Cancer Chemother Pharmacol 64:509–16

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Meijer DK, van der Sluijs P (1989) Covalent and noncovalent protein binding of drugs: implications for hepatic clearance, storage, and cell-specific drug delivery. Pharm Res 6:105–18

    CAS  PubMed  Google Scholar 

  47. Wilkinson GR (1983) Plasma and tissue binding considerations in drug disposition. Drug Metab Rev 14:427–65

    CAS  PubMed  Google Scholar 

  48. Lind MJ, Ardiet C (1993) Pharmacokinetics of alkylating agents. Cancer Surv 17:157–88

    CAS  PubMed  Google Scholar 

  49. Reidenberg MM, Odar-Cederlof I, von Bahr C et al (1971) Protein binding of diphenylhydantoin and desmethylimipramine in plasma from patients with poor renal function. N Engl J Med 285:264–7

    CAS  PubMed  Google Scholar 

  50. Grandison MK, Boudinot FD (2000) Age-related changes in protein binding of drugs: implications for therapy. Clin Pharmacokinet 38:271–90

    CAS  PubMed  Google Scholar 

  51. Kragh-Hansen U (1990) Structure and ligand binding properties of human serum albumin. Dan Med Bull 37:57–84

    CAS  PubMed  Google Scholar 

  52. Fremstad D, Bergerud K, Haffner JF et al (1976) Increased plasma binding of quinidine after surgery: a preliminary report. Eur J Clin Pharmacol 10:441–4

    CAS  PubMed  Google Scholar 

  53. Zini R, Riant P, Barre J et al (1990) Disease-induced variations in plasma protein levels. Implications for drug dosage regimens (Part I). Clin Pharmacokinet 19:147–59

    CAS  PubMed  Google Scholar 

  54. Zini R, Riant P, Barre J et al (1990) Disease-induced variations in plasma protein levels. Implications for drug dosage regimens (Part II). Clin Pharmacokinet 19:218–29

    CAS  PubMed  Google Scholar 

  55. Bacchus H (1975) Serum glycoproteins in cancer. Prog Clin Pathol 6:111–35

    CAS  PubMed  Google Scholar 

  56. Bacchus H (1977) Serum glycoproteins and malignant neoplastic disorders. CRC Crit Rev Clin Lab Sci 8:333–62

    CAS  PubMed  Google Scholar 

  57. Rossing N (1968) Albumin metabolism in neoplastic diseases. Scand J Clin Lab Invest 22:211–6

    CAS  PubMed  Google Scholar 

  58. Rudman D, Treadwell PE, Vogler WR et al (1972) An abnormal orosomucoid in the plasma of patients with neoplastic disease. Cancer Res 32:1951–9

    CAS  PubMed  Google Scholar 

  59. Wallace SM, Verbeeck RK (1987) Plasma protein binding of drugs in the elderly. Clin Pharmacokinet 12:41–72

    CAS  PubMed  Google Scholar 

  60. Tinguely D, Baumann P, Conti M et al (1985) Interindividual differences in the binding of antidepressives to plasma proteins: the role of the variants of alpha 1-acid glycoprotein. Eur J Clin Pharmacol 27:661–6

    CAS  PubMed  Google Scholar 

  61. Li JH, Xu JQ, Cao XM et al (2002) Influence of the ORM1 phenotypes on serum unbound concentration and protein binding of quinidine. Clin Chim Acta 317:85–92

    CAS  PubMed  Google Scholar 

  62. Yost RL, Devane CL (1985) Diurnal-variation of alpha-1-acid glycoprotein concentration in normal volunteers. J Pharm Sci 74:777–779

    CAS  PubMed  Google Scholar 

  63. Van Breemen RB, Fenselau C, Mogilevsky W et al (1986) Reaction of bilirubin glucuronides with serum albumin. J Chromatogr 383:387–92

    PubMed  Google Scholar 

  64. Tozer TN (1981) Concepts basic to pharmacokinetics. Pharmacol Ther 12:109–31

    CAS  PubMed  Google Scholar 

  65. Galliano M, Minchiotti L, Porta F et al (1990) Mutations in genetic variants of human serum albumin found in Italy. Proc Natl Acad Sci U S A 87:8721–5

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Takahashi N, Takahashi Y, Isobe T et al (1987) Amino acid substitutions in inherited albumin variants from Amerindian and Japanese populations. Proc Natl Acad Sci U S A 84:8001–5

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Reed RG (1988) Ligand-binding properties of albumin Parklands: Asp365––His. Biochim Biophys Acta 965:114–7

    CAS  PubMed  Google Scholar 

  68. Vestberg K, Galliano M, Minchiotti L et al (1992) High-affinity binding of warfarin, salicylate and diazepam to natural mutants of human serum albumin modified in the C-terminal end. Biochem Pharmacol 44:1515–21

    CAS  PubMed  Google Scholar 

  69. Paxton JW, Jurlina JL, Foote SE (1986) The binding of amsacrine to human plasma proteins. J Pharm Pharmacol 38:432–8

    CAS  PubMed  Google Scholar 

  70. Crooke ST, Luft F, Broughton A et al (1977) Bleomycin serum pharmacokinetics as determined by a radioimmunoassay and a microbiologic assay in a patient with compromised renal function. Cancer 39:1430–4

    CAS  PubMed  Google Scholar 

  71. Moreau P, Coiteux V, Hulin C et al (2008) Prospective comparison of subcutaneous versus intravenous administration of bortezomib in patients with multiple myeloma. Haematologica 93:1908–11

    CAS  PubMed  Google Scholar 

  72. King SY, Agra AM, Shen HS et al (1994) Protein binding of brequinar in the plasma of healthy donors and cancer patients and analysis of the relationship between protein binding and pharmacokinetics in cancer patients. Cancer Chemother Pharmacol 35:101–8

    CAS  PubMed  Google Scholar 

  73. Ehrsson H, Hassan M (1984) Binding of busulfan to plasma proteins and blood cells. J Pharm Pharmacol 36:694–6

    CAS  PubMed  Google Scholar 

  74. Go RS, Adjei AA (1999) Review of the comparative pharmacology and clinical activity of cisplatin and carboplatin. J Clin Oncol 17:409–22

    CAS  PubMed  Google Scholar 

  75. Newell DR, Calvert AH, Harrap KR et al (1983) Studies on the pharmacokinetics of chlorambucil and prednimustine in man. Br J Clin Pharmacol 15:253–8

    CAS  PubMed  Google Scholar 

  76. Ivanov AI, Christodoulou J, Parkinson JA et al (1998) Cisplatin binding sites on human albumin. J Biol Chem 273:14721–30

    CAS  PubMed  Google Scholar 

  77. Boddy AV, Yule SM (2000) Metabolism and pharmacokinetics of oxazaphosphorines. Clin Pharmacokinet 38:291–304

    CAS  PubMed  Google Scholar 

  78. Slevin ML, Johnston A, Woollard RC et al (1983) Relationship between protein binding and extravascular drug concentrations of a water-soluble drug, cytosine arabinoside. J R Soc Med 76:365–8

    CAS  PubMed Central  PubMed  Google Scholar 

  79. van Prroijen HC, Vierwinden G, Wessels J et al (1977) Cytosine arabinoside binding to human plasma proteins. Arch Int Pharmacodyn Ther 229:199–205

    PubMed  Google Scholar 

  80. Baker SD, Hu S (2009) Pharmacokinetic considerations for new targeted therapies. Clin Pharmacol Ther 85:208–11

    CAS  PubMed Central  PubMed  Google Scholar 

  81. van Erp NP, Gelderblom H, Guchelaar HJ (2009) Clinical pharmacokinetics of tyrosine kinase inhibitors. Cancer Treat Rev 35(8):692–706

    PubMed  Google Scholar 

  82. Urien S, Barre J, Morin C et al (1996) Docetaxel serum protein binding with high affinity to alpha 1-acid glycoprotein. Invest New Drugs 14:147–51

    CAS  PubMed  Google Scholar 

  83. Demant EJ, Friche E (1998) Equilibrium binding of anthracycline cytostatics to serum albumin and small unilamellar phospholipid vesicles as measured by gel filtration. Biochem Pharmacol 55:27–32

    CAS  PubMed  Google Scholar 

  84. Eksborg S, Ehrsson H, Ekqvist B (1982) Protein binding of anthraquinone glycosides, with special reference to adriamycin. Cancer Chemother Pharmacol 10:7–10

    CAS  PubMed  Google Scholar 

  85. Stewart CF, Pieper JA, Arbuck SG et al (1989) Altered protein binding of etoposide in patients with cancer. Clin Pharmacol Ther 45:49–55

    CAS  PubMed  Google Scholar 

  86. Kirchner GI, Meier-Wiedenbach I, Manns MP (2004) Clinical pharmacokinetics of everolimus. Clin Pharmacokinet 43:83–95

    CAS  PubMed  Google Scholar 

  87. Kovarik JM, Hsu CH, McMahon L et al (2001) Population pharmacokinetics of everolimus in de novo renal transplant patients: impact of ethnicity and comedications. Clin Pharmacol Ther 70:247–54

    CAS  PubMed  Google Scholar 

  88. Czejka M, Schuller J (1992) The binding of 5-fluorouracil to serum protein fractions, erythrocytes and ghosts under in vitro conditions. Arch Pharm (Weinheim) 325:69–71

    CAS  Google Scholar 

  89. Zheng JJ, Chan KK, Muggia F (1994) Preclinical pharmacokinetics and stability of isophosphoramide mustard. Cancer Chemother Pharmacol 33:391–8

    CAS  PubMed  Google Scholar 

  90. Combes O, Barre J, Duche JC et al (2000) In vitro binding and partitioning of irinotecan (CPT-11) and its metabolite, SN-38, in human blood. Invest New Drugs 18:1–5

    CAS  PubMed  Google Scholar 

  91. Gera S, Musch E, Osterheld HK et al (1989) Relevance of the hydrolysis and protein binding of melphalan to the treatment of multiple myeloma. Cancer Chemother Pharmacol 23:76–80

    CAS  PubMed  Google Scholar 

  92. Reece PA, Hill HS, Green RM et al (1988) Renal clearance and protein binding of melphalan in patients with cancer. Cancer Chemother Pharmacol 22:348–52

    CAS  PubMed  Google Scholar 

  93. Sjoholm I, Stjerna B (1981) Binding of drugs to human serum albumin XVII: Irreversible binding of mercaptopurine to human serum proteins. J Pharm Sci 70:1290–1

    CAS  PubMed  Google Scholar 

  94. Maia MB, Saivin S, Chatelut E et al (1996) In vitro and in vivo protein binding of methotrexate assessed by microdialysis. Int J Clin Pharmacol Ther 34:335–41

    CAS  PubMed  Google Scholar 

  95. Skibinska L, Ramlau C, Zaluski J et al (1990) Methotrexate binding to human plasma proteins. Pol J Pharmacol Pharm 42:151–7

    CAS  PubMed  Google Scholar 

  96. Graham MA, Lockwood GF, Greenslade D et al (2000) Clinical pharmacokinetics of oxaliplatin: a critical review. Clin Cancer Res 6:1205–18

    CAS  PubMed  Google Scholar 

  97. Kumar GN, Walle UK, Bhalla KN et al (1993) Binding of taxol to human plasma, albumin and alpha 1-acid glycoprotein. Res Commun Chem Pathol Pharmacol 80:337–44

    CAS  PubMed  Google Scholar 

  98. Sparreboom A, van Zuylen L, Brouwer E et al (1999) Cremophor EL-mediated alteration of paclitaxel distribution in human blood: clinical pharmacokinetic implications. Cancer Res 59:1454–7

    CAS  PubMed  Google Scholar 

  99. Hurwitz HI, Dowlati A, Saini S et al (2009) Phase I trial of pazopanib in patients with advanced cancer. Clin Cancer Res 15:4220–7

    CAS  PubMed  Google Scholar 

  100. Kumar R, Knick VB, Rudolph SK et al (2007) Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol Cancer Ther 6:2012–21

    CAS  PubMed  Google Scholar 

  101. Mita AC, Sweeney CJ, Baker SD et al (2006) Phase I and pharmacokinetic study of pemetrexed administered every 3 weeks to advanced cancer patients with normal and impaired renal function. J Clin Oncol 24:552–62

    CAS  PubMed  Google Scholar 

  102. Burke TG, Mi Z (1994) The structural basis of camptothecin interactions with human serum albumin: impact on drug stability. J Med Chem 37:40–6

    CAS  PubMed  Google Scholar 

  103. Ma MK, Zamboni WC, Radomski KM et al (2000) Pharmacokinetics of irinotecan and its metabolites SN-38 and APC in children with recurrent solid tumors after protracted low-dose irinotecan. Clin Cancer Res 6:813–9

    CAS  PubMed  Google Scholar 

  104. Shah IG, Parsons DL (1991) Human albumin binding of tamoxifen in the presence of a perfluorochemical erythrocyte substitute. J Pharm Pharmacol 43:790–3

    CAS  PubMed  Google Scholar 

  105. Sipila H, Nanto V, Kangas L et al (1988) Binding of toremifene to human serum proteins. Pharmacol Toxicol 63:62–4

    CAS  PubMed  Google Scholar 

  106. Petros WP, Rodman JH, Relling MV et al (1992) Variability in teniposide plasma protein binding is correlated with serum albumin concentrations. Pharmacotherapy 12:273–7

    CAS  PubMed  Google Scholar 

  107. Hagen B, Nilsen OG (1987) The binding of thio-TEPA in human serum and to isolated serum protein fractions. Cancer Chemother Pharmacol 20:319–23

    CAS  PubMed  Google Scholar 

  108. Wall JG, Burris HA 3rd, Von Hoff DD et al (1992) A phase I clinical and pharmacokinetic study of the topoisomerase I inhibitor topotecan (SK&F 104864) given as an intravenous bolus every 21 days. Anticancer Drugs 3:337–45

    CAS  PubMed  Google Scholar 

  109. Fanucchi MP, Walsh TD, Fleisher M et al (1987) Phase I and clinical pharmacology study of trimetrexate administered weekly for three weeks. Cancer Res 47:3303–8

    CAS  PubMed  Google Scholar 

  110. Fuse E, Tanii H, Kurata N et al (1998) Unpredicted clinical pharmacology of UCN-01 caused by specific binding to human alpha1-acid glycoprotein. Cancer Res 58:3248–53

    CAS  PubMed  Google Scholar 

  111. Fuse E, Tanii H, Takai K et al (1999) Altered pharmacokinetics of a novel anticancer drug, UCN-01, caused by specific high affinity binding to alpha1-acid glycoprotein in humans. Cancer Res 59:1054–60

    CAS  PubMed  Google Scholar 

  112. Steele WH, Haughton DJ, Barber HE (1982) Binding of vinblastine to recrystallized human alpha 1-acid glycoprotein. Cancer Chemother Pharmacol 10:40–2

    CAS  PubMed  Google Scholar 

  113. Steele WH, King DJ, Barber HE et al (1983) The protein binding of vinblastine in the serum of normal subjects and patients with Hodgkin's disease. Eur J Clin Pharmacol 24:683–7

    CAS  PubMed  Google Scholar 

  114. Urien S, Bree F, Breillout F et al (1993) Vinorelbine high-affinity binding to human platelets and lymphocytes: distribution in human blood. Cancer Chemother Pharmacol 32:231–4

    CAS  PubMed  Google Scholar 

  115. Rolan PE (1994) Plasma protein binding displacement interactions–why are they still regarded as clinically important? Br J Clin Pharmacol 37:125–8

    CAS  PubMed  Google Scholar 

  116. Sansom LN, Evans AM (1995) What is the true clinical significance of plasma protein binding displacement interactions? Drug Saf 12:227–33

    CAS  PubMed  Google Scholar 

  117. Schwinghammer TL, Fleming RA, Rosenfeld CS et al (1993) Disposition of total and unbound etoposide following high-dose therapy. Cancer Chemother Pharmacol 32:273–8

    CAS  PubMed  Google Scholar 

  118. Stewart CF, Arbuck SG, Fleming RA et al (1990) Changes in the clearance of total and unbound etoposide in patients with liver dysfunction. J Clin Oncol 8:1874–9

    CAS  PubMed  Google Scholar 

  119. Fleming RA, Evans WE, Arbuck SG et al (1992) Factors affecting in vitro protein binding of etoposide in humans. J Pharm Sci 81:259–64

    CAS  PubMed  Google Scholar 

  120. Stewart CF, Fleming RA, Arbuck SG et al (1990) Prospective evaluation of a model for predicting etoposide plasma protein binding in cancer patients. Cancer Res 50:6854–6

    CAS  PubMed  Google Scholar 

  121. Stewart CF, Arbuck SG, Fleming RA et al (1991) Relation of systemic exposure to unbound etoposide and hematologic toxicity. Clin Pharmacol Ther 50:385–93

    CAS  PubMed  Google Scholar 

  122. Joel SP, Shah R, Slevin ML (1994) Etoposide dosage and pharmacodynamics. Cancer Chemother Pharmacol 34(Suppl):S69–75

    PubMed  Google Scholar 

  123. Evans WE, Rodman JH, Relling MV et al (1992) Differences in teniposide disposition and pharmacodynamics in patients with newly diagnosed and relapsed acute lymphocytic leukemia. J Pharmacol Exp Ther 260:71–7

    CAS  PubMed  Google Scholar 

  124. DeConti RC, Toftness BR, Lange RC et al (1973) Clinical and pharmacological studies with cis-diamminedichloroplatinum (II). Cancer Res 33:1310–5

    CAS  PubMed  Google Scholar 

  125. Gullo JJ, Litterst CL, Maguire PJ et al (1980) Pharmacokinetics and protein binding of cis-dichlorodiammine platinum (II) administered as a one hour or as a twenty hour infusion. Cancer Chemother Pharmacol 5:21–6

    CAS  PubMed  Google Scholar 

  126. Perera F, Fischman HK, Hemminki K et al (1990) Protein binding, sister chromatid exchange and expression of oncogene proteins in patients treated with cisplatinum (cisDDP)-based chemotherapy. Arch Toxicol 64:401–6

    CAS  PubMed  Google Scholar 

  127. Gelmon KA, Tolcher A, Diab AR et al (1999) Phase I study of liposomal vincristine. J Clin Oncol 17:697–705

    CAS  PubMed  Google Scholar 

  128. Rahman A, Treat J, Roh JK et al (1990) A phase I clinical trial and pharmacokinetic evaluation of liposome-encapsulated doxorubicin. J Clin Oncol 8:1093–100

    CAS  PubMed  Google Scholar 

  129. Druckmann S, Gabizon A, Barenholz Y (1989) Separation of liposome-associated doxorubicin from non-liposome-associated doxorubicin in human plasma: implications for pharmacokinetic studies. Biochim Biophys Acta 980:381–4

    CAS  PubMed  Google Scholar 

  130. Gabizon A, Catane R, Uziely B et al (1994) Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res 54:987–92

    CAS  PubMed  Google Scholar 

  131. Dipali SR, Kulkarni SB, Betageri GV (1996) Comparative study of separation of non-encapsulated drug from unilamellar liposomes by various methods. J Pharm Pharmacol 48:1112–5

    CAS  PubMed  Google Scholar 

  132. Thies RL, Cowens DW, Cullis PR et al (1990) Method for rapid separation of liposome-associated doxorubicin from free doxorubicin in plasma. Anal Biochem 188:65–71

    CAS  PubMed  Google Scholar 

  133. van Zuylen L, Karlsson MO, Verweij J et al (2001) Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemother Pharmacol 47:309–18

    PubMed  Google Scholar 

  134. van Zuylen L, Gianni L, Verweij J et al (2000) Inter-relationships of paclitaxel disposition, infusion duration and cremophor EL kinetics in cancer patients. Anticancer Drugs 11:331–7

    PubMed  Google Scholar 

  135. Brouwer E, Verweij J, De Bruijn P et al (2000) Measurement of fraction unbound paclitaxel in human plasma. Drug Metab Dispos 28:1141–5

    CAS  PubMed  Google Scholar 

  136. Henningsson A, Karlsson MO, Vigano L et al (2001) Mechanism-based pharmacokinetic model for paclitaxel. J Clin Oncol 19:4065–73

    CAS  PubMed  Google Scholar 

  137. Kehrer DF, Soepenberg O, Loos WJ et al (2001) Modulation of camptothecin analogs in the treatment of cancer: a review. Anticancer Drugs 12:89–105

    CAS  PubMed  Google Scholar 

  138. Mi Z, Burke TG (1994) Differential interactions of camptothecin lactone and carboxylate forms with human blood components. Biochemistry 33:10325–36

    CAS  PubMed  Google Scholar 

  139. Mi Z, Malak H, Burke TG (1995) Reduced albumin binding promotes the stability and activity of topotecan in human blood. Biochemistry 34:13722–8

    CAS  PubMed  Google Scholar 

  140. Mi Z, Burke TG (1994) Marked interspecies variations concerning the interactions of camptothecin with serum albumins: a frequency-domain fluorescence spectroscopic study. Biochemistry 33:12540–5

    CAS  PubMed  Google Scholar 

  141. de Jonge MJ, Verweij J, Loos WJ et al (1999) Clinical pharmacokinetics of encapsulated oral 9-aminocamptothecin in plasma and saliva. Clin Pharmacol Ther 65:491–9

    PubMed  Google Scholar 

  142. Loos WJ, Verweij J, Gelderblom HJ et al (1999) Role of erythrocytes and serum proteins in the kinetic profile of total 9-amino-20(S)-camptothecin in humans. Anticancer Drugs 10:705–10

    CAS  PubMed  Google Scholar 

  143. Loos WJ, de Bruijn P, Verweij J et al (2000) Determination of camptothecin analogs in biological matrices by high-performance liquid chromatography. Anticancer Drugs 11:315–24

    CAS  PubMed  Google Scholar 

  144. Herve F, Urien S, Albengres E et al (1994) Drug binding in plasma. A summary of recent trends in the study of drug and hormone binding. Clin Pharmacokinet 26:44–58

    CAS  PubMed  Google Scholar 

  145. Roberts SA (2001) High-throughput screening approaches for investigating drug metabolism and pharmacokinetics. Xenobiotica 31:557–89

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Sparreboom Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sparreboom, A., Loos, W.J. (2014). Protein Binding. In: Rudek, M., Chau, C., Figg, W., McLeod, H. (eds) Handbook of Anticancer Pharmacokinetics and Pharmacodynamics. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-9135-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9135-4_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-9134-7

  • Online ISBN: 978-1-4614-9135-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics