Skip to main content
Log in

Pharmacokinetic Optimisation of Anticonvulsant Therapy

  • Review Article
  • Pharmacokinetics-Therapeutics
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Changing attitudes towards the use of antiepileptic drugs have led to an emphasis on monotherapy with serum concentration measurement coupled with standard, weight-adjusted starting and maintenance regimens to guide initial therapy and subsequent dosage titration. Currently, the established anticonvulsants are carbamazepine, valproic acid (sodium valproate) and phenytoin. Phenobarbital is now less commonly prescribed due to its propensity to produce sedation and impair cognitive function.

The value of pharmacokinetic optimisation with valproic acid is limited by its wide therapeutic index, large fluctuations in the concentration-time profile and concentration-dependent protein binding. Thus, although serum concentrations are often measured, they are rarely subjected to pharmacokinetic interpretation. Carbamazepine has a flatter concentration-time profile than valproic acid. Its target range is more clearly defined and it undergoes autoinduction of metabolism and interacts with other drugs. Pharmacokinetic principles can, therefore, be more readily applied to carbamazepine, although, in general, a simple clinical approach to its use is usually satisfactory.

Phenytoin has required the greatest pharmacokinetic input due to its nonlinear pharmacokinetics and narrow target range. Many different graphical methods, equations and computer programs have been reported, some of which demand 2 steady-state, dose-concentration pairs; others function satisfactorily with only 1. Recent attempts have been made to interpret non-steady-state data. In addition, a number of workers have demonstrated the value of altering the population parameter estimates to account for ethnic differences. A pharmacokinetic approach can also be used to tailor the use of phenytoin in the treatment of status epilepticus.

Dosage alterations may be needed for specific patient groups. In particular, children generally require higher dosages on a weight-for-weight basis than adults, while equivalently lower dosages should be given to neonates. Most anticonvulsants are principally cleared by hepatic mechanisms, so dosage adjustment is not usually required in renal disease, although care must be taken in interpreting serum concentrations because of changes in protein binding. Close monitoring is required in the elderly and patients with hepatic impairment, while increased dosages may be needed in critically ill patients and during pregnancy. Pharmacokinetic principles can be used in the treatment of treat self-poisoning with anticonvulsants.

There are few data available on the pharmacokinetics of vigabatrin, lamotrigine, oxcarbazepine and gabapentin in patients. Due to its mode of action in binding irreversibly to its target enzyme, serum concentration monitoring of vigabatrin plays no role in optimising therapy. The value of applying pharmacokinetic principles with the other 3 drugs remains to be investigated. Of these, lamotrigine seems the most likely candidate for a pharmacokinetic approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armijo JA, Cavada E. Graphic estimation of phenytoin dose in adults and children. Therapeutic Drug Monitoring 13: 507–510, 1991

    Article  PubMed  CAS  Google Scholar 

  • Bartosyk GD, Meyerson W, Reimann W, Satzinger G, Von Hodenborg A. Gabapentin. In Meldrum BS, Porter RJ (Eds) Current problems in epilepsy 4: new anticonvulsant drugs, pp. 147–168, John Libby, London, 1986

    Google Scholar 

  • Battino D, Bossi L, Croci D, Franceschetti S, Gomeni C, et al. Carbamazepine plasma levels in children and adults: influence of age, dose and associated therapy. Therapeutic Drug Monitoring 2: 315–322, 1980

    PubMed  CAS  Google Scholar 

  • Beghi E, Di Mascio R, Tognoni G. Drug treatment of epilepsy: outlines, criticism and perspectives. Drugs 31: 249–265, 1986

    Article  PubMed  CAS  Google Scholar 

  • Bertilsson L, Tomson T, Tybring G. Pharmacokinetics: time-dependent changes — autoinduction of carbamazepine epoxidation Journal of Clinical Pharmacology 26: 459–462, 1986

    PubMed  CAS  Google Scholar 

  • Bialer M. Pharmacokinetic evaluation of sustained release formulations of antiepileptic drugs. Clinical Pharmacokinetics 22: 11–21, 1992

    Article  PubMed  CAS  Google Scholar 

  • Binnie CD, Debets RMC, Engelsman M, Meijer JWA, Meinhardi H, et al. Double-blind crossover trial of lamotrigine (Lamictal) as add-on therapy in intractable epilepsy. Epilepsy Research 1989 4: 222–229, 1989

    Article  PubMed  CAS  Google Scholar 

  • Binnie CD, Van Emde-Boas W, Kasteleijn-Nolste-Trenite DGA, De Korta RA, Meijer JWA, et al. Acute effects of lamotrigine (BW430C) in persons with epilepsy. Epilepsia 27: 248–254, 1986

    Article  PubMed  CAS  Google Scholar 

  • Blaser KU, Vozeh S, Landolt H, Kaufmann G, Romppainen J, et al. Intravenous phenytoin: a loading scheme for desired concentrations. Annals of Internal Medicine 110: 1029–1031, 1989

    PubMed  CAS  Google Scholar 

  • Boucher BA, Rodman JH, Fabian TC, Cupit GC, Ludden TM, et al. Disposition of phenytoin in critically ill trauma patients. Clinical Pharmacy 6: 881–887, 1987

    PubMed  CAS  Google Scholar 

  • Boucher BA, Rodman JH, Jaresko GS, Rasmussen SN, Watridge CB, et al. Phenytoin pharmacokinetics in critically ill trauma patients. Clinical Pharmacology and Therapeutics 44: 675–683, 1988

    Article  PubMed  CAS  Google Scholar 

  • Bourgeois BFD. Valproate: clinical use. In Levy R et al. (Eds) Antiepileptic drugs, 3rd ed., pp. 633–642, Raven Press, New York, 1989

    Google Scholar 

  • Brodie MJ. Established anticonvulsants and treatment of refractory epilepsy. Lancet 336: 350–354, 1990a

    Article  PubMed  CAS  Google Scholar 

  • Brodie MJ. Management of epilepsy during pregnancy and lactation. Lancet 336: 426–427, 1990b

    Article  PubMed  CAS  Google Scholar 

  • Brodie MJ. Status epilepticus in adults. Lancet 336: 551–552, 1990c

    Article  PubMed  CAS  Google Scholar 

  • Brodie MJ. Drug interactions and epilepsy. Epilepsia, in press, 1992a

    Google Scholar 

  • Brodie MJ. Lamotrigine. Lancet, in press, 1992b

    Google Scholar 

  • Brodie MJ, Feely J. Practical clinical pharmacology. Therapeutic drug monitoring and clinical trials British Medical Journal 296: 1110–1114, 1988

    CAS  Google Scholar 

  • Brodie MJ, Forrest G, Rapeport WG. Carbamazepine 10,11-epoxide concentrations in epileptics on carbamazepine alone and in combination with other anticonvulsants. British Journal of Clinical Pharmacology 16: 747–750, 1983

    Article  PubMed  CAS  Google Scholar 

  • Brodie MJ, McPhail E, Macphee GJA, Larkin JG, Gray JMB. Psychomotor impairment and anticonvulsant therapy in adult epileptic patients. European Journal of Clinical Pharmacology 31: 655–660, 1987

    Article  PubMed  CAS  Google Scholar 

  • Brodie MJ, Porter RJ. New and potential anticonvulsants. Lancet 336: 425–426, 1990

    Article  PubMed  CAS  Google Scholar 

  • Browne T. The pharmacokinetics of agents used to treat status epilepticus. Neurology 40 (Suppl. 2): 29–42, 1990

    Google Scholar 

  • Bryson SM, Al-Lanqawi Y, Kelman AW, Whiting B. Comparison of a Bayesian forecasting technique with a new method for estimating phenytoin dose requirements. Therapeutic Drug Monitoring 10: 80–84, 1988

    PubMed  CAS  Google Scholar 

  • Chadwick DW. Diagnosis of epilepsy. Lancet 336: 291–295, 1990a

    Article  PubMed  CAS  Google Scholar 

  • Chadwick D. Gabapentin in partial epilepsy. Lancet 335: 1114–1117, 1990a

    Article  Google Scholar 

  • Chaikin P, Adir J. Unusual absorption profile of phenytoin in a massive overdose case. Journal of Clinical Pharmacology 27: 70–73, 1987

    Article  PubMed  CAS  Google Scholar 

  • Choonara IA, Rane A. Therapeutic drug monitoring of anticonvulsants: state of the art. Clinical Pharmacokinetics 18: 318–328, 1990

    Article  PubMed  CAS  Google Scholar 

  • Chrystyn H, Morgan DH. A comparison of graphical nomogram methods with a computerised Bayesian analysis method in the interpretation of serum phenytoin concentrations. Journal of Clinical and Hospital Pharmacy 11: 443–448, 1986

    PubMed  CAS  Google Scholar 

  • Crawford P, Ghadali E, Lane R, Bumhardt L, Chadwick D. Gabapentin as an antiepileptic drug in man. Journal of Neurology, Neurosurgery and Psychiatry 50: 682–686, 1987

    Article  CAS  Google Scholar 

  • Crawford TO, Mitchell WG, Fishman LS, Snodgrass SR. Very-high-dose phenobarbital for refractory status epilepticus in children. Neurology 38: 1035–1040, 1988

    Article  PubMed  CAS  Google Scholar 

  • Crowley JJ, Koup JR, Cusack BJ, Ludden TM, Vestal RE. Evaluation of a proposed method for phenytoin maintenance dose prediction following an intravenous loading dose. European Journal of Clinical Pharmacology 32: 141–148, 1987

    Article  PubMed  CAS  Google Scholar 

  • Dam M, Ekberg R, Loyning Y, Waltimo O, Jakobsen K. A double-blind study comparing oxcarbazepine and carbamazepine in patients with newly diagnosed, previously untreated epilepsy. Epilepsy Research 3: 70–76, 1989

    Article  PubMed  CAS  Google Scholar 

  • Duncan JS, Patsalos PN, Shorvon SD. Effects of discontinuation of phenytoin, carbamazepine and valproate on concomitant antiepileptic medication. Epilepsia 32: 101–115, 1991

    Article  PubMed  CAS  Google Scholar 

  • Durelli L, Massazza U, Cavallo R. Carbamazepine toxicity and poisoning. Incidence, clinical features and management. Medical Toxicology and Adverse Drug Experience 4: 95–107, 1989

    PubMed  CAS  Google Scholar 

  • Eadie MJ. Plasma monitoring of anticonvulsants. Clinical Pharmacokinetics 1: 52–66, 1976

    Article  PubMed  CAS  Google Scholar 

  • Eadie MJ, Lander CM, Hooper WD, Tyrer JH. Factors influencing plasma phenobarbitone levels in epileptic patients. British Journal of Clinical Pharmacology 4: 541–547, 1977

    Article  PubMed  CAS  Google Scholar 

  • Editorial. Sodium valproate. Lancet 2: 1229–1231, 1988

  • Editorial. Vigabatrin. Lancet 1: 532–533, 1989a

  • Editorial. Oxcarbazepine. Lancet 2: 196–198, 1989b

  • Eichelbaum M, Tomson T, Tybring G, Bertilsson L. Carbamazepine metabolism in man. Induction and pharmacogenetic aspects. Clinical Pharmacokinetics 10: 80–90, 1985

    Article  PubMed  CAS  Google Scholar 

  • Farrell K, Abbott FS, Orr JM, et al. Free and total valproate concentrations their relationship to seizure control, liver enzymes and plasma ammonia in children. Canadian Journal of Neurological Science 13: 252–255, 1986

    CAS  Google Scholar 

  • Flint N, Lopez LM, Robinson JD, Williams C, Salem RB. Comparison of eight phenytoin dosing methods in institutionalised patients. Therapeutic Drug Monitoring 7: 74–80, 1985

    Article  PubMed  CAS  Google Scholar 

  • Gabor AJ. Lorazepam versus phenobarbital: candidate for drug of choice for treatment of status epilepticus. Journal of Epilepsy 3: 3–6, 1990

    Article  Google Scholar 

  • Garcia MJ, Alonso AC, Maza A, Santos D, Matesanz C, et al. Comparison of methods of carbamazepine dosage individualisation in epileptic patients. Journal of Clinical Pharmacy and Therapeutics 13: 375–380, 1988

    Article  PubMed  CAS  Google Scholar 

  • Gillham RA, Williams M, Weidmann K, Butler E, Larkin JG, et al. Concentration-effect relationships with carbamazepine and its epoxide on psychomotor and cognitive function in epileptic patients. Journal of Neurology, Neurosurgery and Psychiatry 51: 929–933, 1988

    Article  CAS  Google Scholar 

  • Gillman ME, Toback JW, Gal P, Erikan NV. Individualising phenobarbital dosing in neonates. Clinical Pharmacy 2: 258–262, 1983

    Google Scholar 

  • Gillman JT, Gal P, Duchowny MS, Weaver RL, Ransom JL. Rapid sequential phenobarbital treatment of neonatal seizures. Paediatrics 83: 674–678, 1989

    Google Scholar 

  • Godley PJ, Ludden TM, Clemanti WA, Godley SE, Ramsay RR. Evaluation of a Bayesian regression-analysis computer program using non-steady-state phenytoin concentrations. Clinical Pharmacy 6: 634–639, 1987

    PubMed  CAS  Google Scholar 

  • Grant SM, Heel RC. Vigabatrin. Drugs 41: 889–926, 1991

    Article  PubMed  CAS  Google Scholar 

  • Graves NM, Leppik IE, Termond E, Taylor JW. Phenytoin clearances in a compliant population: description and application. Therapeutic Drug Monitoring 8: 427–433, 1986

    Article  PubMed  CAS  Google Scholar 

  • Haegele KD, Huebert ND, Erel M, Tell GP, Schechter PJ. Pharmacokinetics of vigabatrin: implications of creatinine clearance. Clinical Pharmacology and Therapeutics 44: 558–585, 1988

    Article  PubMed  CAS  Google Scholar 

  • Henriksen O, Johannessen SI. Clinical and pharmacokinetic observations on sodium valproate — a 5-year follow-up study of 100 children with epilepsy. Acta Neurologica Scandinavica 65: 504–523, 1982

    Article  PubMed  CAS  Google Scholar 

  • Howden CW, Birnie GG, Brodie MJ. Drug metabolism in liver disease. Pharmacology and Therapeutics 40: 439–474, 1989

    Article  PubMed  CAS  Google Scholar 

  • Hudson SA, Farquhar DL, Thompson D, Smith RG. Phenytoin dosage individualisation — five methods compared in the elderly. Journal of Clinical Pharmacy and Therapeutics 15: 25–34, 1990

    Article  PubMed  CAS  Google Scholar 

  • Jawad S, Richens A, Goodwin G, Yuen AWC. Controlled trial of lamotrigine for refractory partial seizures. Epilepsia 30: 356–363, 1989

    Article  PubMed  CAS  Google Scholar 

  • Jawad S, Yuen AWC, Peck AW, Hamilton MJ, Oxley JR, et al. Lamotrigine: single-dose pharmacokinetics and initial one-week experience in refractory seizures. Epilepsy Research 1: 194–201, 1987

    Article  PubMed  CAS  Google Scholar 

  • Johannessen SI. Antiepileptic drugs: pharmacokinetic and clinical aspects. Therapeutic Drug Monitoring 3: 17–37, 1981

    PubMed  CAS  Google Scholar 

  • Johnson FN, Brodie MJ. Pharmacokinetics of carbamazepine: implications for clinical use. Reviews in Contemporary Pharmacotherapy 1: 85–98, 1990

    Google Scholar 

  • Kelman AW, Whiting B, Bryson SM. OPT: a package of computer programs for parameter optimisation in clinical pharmacokinetics. British Journal of Clinical Pharmacology 14: 247–256, 1982

    Article  PubMed  CAS  Google Scholar 

  • Killilea T, Coleman R, Ludden T, Peck CC, Rose D. Bayesian regression analysis of non-steady-state phenytoin concentrations: evaluation of predictive performance. Therapeutic Drug Monitoring 11: 455–462, 1989

    PubMed  CAS  Google Scholar 

  • Larkin JG, Herrick AL, McGuire GM, Percy-Robb I, Brodie MJ. Antiepileptic drug monitoring at the epilepsy clinic: a prospective evaluation. Epilepsia 32: 89–95, 1991

    Article  PubMed  CAS  Google Scholar 

  • Larkin JG, McKee PJ, Brodie MJ. Rapid tolerance to acute psychomotor impairment with carbamazepine in epileptic patients. British Journal of Clinical Pharmacology 33: 1111–1114, 1992

    Article  Google Scholar 

  • Larkin JG, McKee PJ, Forrest G, Beastall GH, Park BK, et al. Lack of enzyme induction with oxcarbazepine (600mg daily) in healthy subjects. British Journal of Clinical Pharmacology 31: 65–71, 1991b

    Article  PubMed  CAS  Google Scholar 

  • Larkin JG, McLellan A, Munday A, Sutherland M, Butler E, et al. A double-blind comparison of conventional and controlled-release carbamazepine in healthy subjects. British Journal of Clinical Pharmacology 27: 313–322, 1989

    Article  PubMed  CAS  Google Scholar 

  • Levy RH, Kerr BM. Clinical pharmacokinetics of carbamazepine. Journal of Clinical Psychiatry 49 (Suppl. 4): 58–62, 1988

    PubMed  Google Scholar 

  • Loiseau P, Yuen AWC, Duche B, Menager T, Arne-Bes MC. A randomised double-blind, placebo-controlled, crossover addon trial of lamotrigine in patients with treatment-resistant partial seizures. Epilepsy Research 7: 136–145, 1990

    Article  PubMed  CAS  Google Scholar 

  • Ludden TM, Allen JP, Valutsky WA, Vicuna AV, Nappi JM, et al. Individualisation of phenytoin dosage regimens. Clinical Pharmacology and Therapeutics 21: 287–293, 1977

    PubMed  CAS  Google Scholar 

  • Ludden TM, Beal SL, Peck CC, Godley PJ. Evaluation of a Bayesian regression-analysis program for predicting phenytoin concentration. Clinical Pharmacy 5: 580–585, 1986

    PubMed  CAS  Google Scholar 

  • McInnes GT, Brodie MJ. Drug interactions that matter — a critical reappraisal. Drugs 36: 83–110, 1988

    Article  PubMed  CAS  Google Scholar 

  • McKee PJW, Blacklaw J, Butler E, Gillham RA, Brodie MJ. Monotherapy with conventional and controlled-release carbamazepine: a double-blind, double-dummy comparison in epileptic patients. British Journal of Clinical Pharmacology 32: 99–104, 1991

    Article  PubMed  CAS  Google Scholar 

  • Macphee GJA, Brodie MJ. Carbamazepine substitution in severe partial epilepsy: implication of autoinduction of metabolism. Postgraduate Medical Journal 61: 779–783, 1985

    Article  PubMed  CAS  Google Scholar 

  • Macphee GJA, Butler E, Brodie MJ. Intradose and circadian variation in circulating carbamazepine and its epoxide in epileptic patients: a consequence of autoinduction of metabolism. Epilepsia 28: 286–294, 1987

    Article  PubMed  CAS  Google Scholar 

  • Mattson RH, Cramer JA, Collins JF, Smith DB, Delgado-Escueta AV, et al. Comparison of carbamazepine, phenobarbital, phenytoin and primidone in partial and secondary tonic-clonic seizures. New England Journal of Medicine 313: 145–151, 1985

    Article  PubMed  CAS  Google Scholar 

  • May T, Rambeck B. Fluctuations of carbamazepine concentrations during the day for two slow-release preparations. Therapeutic Drug Monitoring 11: 21–24, 1989

    Article  PubMed  CAS  Google Scholar 

  • Miller R, Rheeders M. Effect of source of population data on phenytoin dosage predictions in black patients. Clinical Pharmacy 8: 56–59, 1989

    PubMed  CAS  Google Scholar 

  • Mullen PW. Optimal phenytoin therapy: a new technique for individualising dosage. Clinical Pharmacology and Therapeutics 23: 228–232, 1978

    PubMed  CAS  Google Scholar 

  • Nation RL, Evans AM, Milne RW. Pharmacokinetic drug interactions with phenytoin, Part I. Clinical Pharmacokinetics 18: 37–60, 1990

    Article  PubMed  CAS  Google Scholar 

  • Nation RL, Evans AM, Milne RW. Pharmacokinetic drug interactions with phenytoin, Part II. Clinical Pharmacokinetics 18: 131–150, 1990

    Article  PubMed  CAS  Google Scholar 

  • Neuvonen PJ, Olkkola KT. Oral activated charcoal in the treatment of intoxications: role of single and repeated doses. Medical Toxicology 3: 33–58, 1988

    Article  PubMed  CAS  Google Scholar 

  • Pisani F, Perucca E, Di Perri R. Clinically relevant antiepileptic drug interactions. Journal of International Medical Research 18: 1–15, 1990

    PubMed  CAS  Google Scholar 

  • Privitera MD, Homan RW, Ludden TM, Peck CC, Vasko MR. Clinical utility of a Bayesian dosing program for phenytoin. Therapeutic Drug Monitoring 11: 285–294, 1989

    Article  PubMed  CAS  Google Scholar 

  • Pryka RD, Rodvold KA, Erdman SM. An updated comparison of drug dosing methods. Clinical Pharmacokinetics 20: 209–217, 1991

    Article  PubMed  CAS  Google Scholar 

  • Pugh CB, Garnett WR. Current issues in the treatment of epilepsy. Clinical Pharmacy 10: 335–358, 1991

    PubMed  CAS  Google Scholar 

  • Rambeck B, Beonigk HE, Dunlop A, Mullen PW, Wadsworth J, et al. Predicting phenytoin dose — a revised nomogram. Therapeutic Drug Monitoring 1: 325–333, 1979

    Article  PubMed  CAS  Google Scholar 

  • Rapeport WG, McInnes GT, Thompson GG, Forrest G, Park BK, et al. Hepatic enzyme induction and leucocyte delta-aminolaevulinic acid synthase activity: studies with carbamazepine. British Journal of Clinical Pharmacology 16: 133–137, 1983

    Article  PubMed  CAS  Google Scholar 

  • Richens A, Dunlop A. Serum phenytoin levels in management of epilepsy. Lancet 2: 247–248, 1975

    Article  PubMed  CAS  Google Scholar 

  • Rowan AJ, Binnie CD, Warfield CA, Meinardi H, Meijer JWA. The delayed effect of sodium valproate on the photoconvulsive effect in man. Epilepsia 20: 61–68, 1979

    Article  PubMed  CAS  Google Scholar 

  • Ryan G, Lange IR, Naugler MA. Clinical experience with phenytoin prophylaxis in severe preeclampsia. American Journal of Obstetrics and Gynecology 161: 1297–1304, 1989

    PubMed  CAS  Google Scholar 

  • Rylance GW, Moreland TA, Butcher GM. Carbamazepine dose frequency requirements in children. Archives of Diseases of Childhood 54: 454–458, 1979

    Article  CAS  Google Scholar 

  • Sander JWAS, Patsalos PN, Oxley R, Hamilton MJ, Yuen AWC. A randomised double-blind, placebo-controlled, add-on trial of lamotrigine in patients with severe epilepsy. Epilepsy Research 6: 221–226, 1990

    Article  PubMed  CAS  Google Scholar 

  • Smith DB, Chandler MHH, Shedlofsky SI, Wedlund PJ, Blouin RA. Age-dependent stereoselective increase in oral clearance of hexobarbitone isomers caused by rifampicin. British Journal of Clinical Pharmacology 32: 735–739, 1991

    PubMed  CAS  Google Scholar 

  • Swanson PD. Treatment recommendations for anticonvulsant drug therapy in the older patient. Drugs & Aging 2: 92–102, 1992

    Article  Google Scholar 

  • Tomson T, Almkvist O, Nilsson BY, Svensson JO, Bertilsson L. Carbamazepine 10,11 epoxide in epilepsy: a pilot study. Archives of Neurology 47: 888–892, 1990

    Article  PubMed  CAS  Google Scholar 

  • Vajda FJE, Drummer OH, Morris PM, McNeil JJ, Bladin PF. Gas Chromatographic measurement of plasma levels of sodium valproate: tentative therapeutic range of a new anticonvulsant in the treatment of refractory epilepsy. Clinical and Experimental Pharmacology and Physiology 5: 67–73, 1978

    Article  PubMed  CAS  Google Scholar 

  • Vozeh S, Muir K, Sheiner LB, Follath F. Predicting individual phenytoin dosage. Journal of Pharmacokinetics and Biopharmaceutics 9: 131–146, 1981

    PubMed  CAS  Google Scholar 

  • Vozeh S, Uematsu T, Aarons L, Maitre P, Landolt H, Gratzl O. Intravenous phenytoin loading in patients after neurosurgery and in status epilepticus: a population pharmacokinetic study. Clinical Pharmacokinetics 14: 122–128, 1988

    Article  PubMed  CAS  Google Scholar 

  • Vree TB, Janssen TJ, Hekster Y A, Termond EFS, van de Dries ACP, et al. Clinical pharmacokinetics of carbamazepine and its epoxy and hydroxy metabolites in humans after an overdose. Therapeutic Drug Monitoring 8: 297–304, 1986

    Article  PubMed  CAS  Google Scholar 

  • Wagner JB. New and simple method to predict dosage of drugs obeying simple Michaelis-Menten elimination kinetics and to distinguish such kinetics from simple first order and from parallel Michaelis-Menten and first order kinetics. Therapeutic Drug Monitoring 7: 377–386, 1985

    Article  PubMed  CAS  Google Scholar 

  • Weidle PJ, Skiest DJ, Forrest A. Multiple-dose activated charcoal as adjunct therapy after chronic phenytoin intoxication. Clinical Pharmacy 10: 711–714, 1991

    PubMed  CAS  Google Scholar 

  • Welty TF, Robinson FC, Mayer PR. A comparison of phenytoin dosing methods in private practice seizure patients. Epilepsia 27: 76–80, 1986

    Article  PubMed  CAS  Google Scholar 

  • Winter ME. Ethosuximide. In Basic clinical pharmacokinetics, pp. 173–177, Applied Therapeutics Inc., Vancouver, 1988b

    Google Scholar 

  • Winter ME. Phenytoin. In Basic Clinical Pharmacokinetics, pp. 235–264, Applied Therapeutics Inc., Vancouver, 1988b

    Google Scholar 

  • Winter ME, Tozer TN. Phenytoin In Evans WE et al. (Eds) Applied pharmacokinetics, pp. 493–539, Applied Therapeutics Inc., Vancouver, 1986

    Google Scholar 

  • Woo E, Chan YM, Yu YL, Huang GY. If a well stabilised patient has a subtherapeutic antiepileptic drug level, should the dose be increased? A randomised prospective study. Epilepsia 29: 129–139, 1988

    Article  PubMed  CAS  Google Scholar 

  • Yuen GJ, Taylor JW, Ludden TM, Murphy MJ. Predicting phenytoin dosages using Bayesian feedback: a comparison with other methods. Therapeutic Drug Monitoring 5: 437–441, 1983

    Article  PubMed  CAS  Google Scholar 

  • Yuen GJ, Latimer PT, Littlefield LC, Mackey RW. Phenytoin dosage predictions in paediatric patients. Clinical Pharmacokinetics 16: 254–260, 1989

    Article  PubMed  CAS  Google Scholar 

  • Yukawa E, Higuchi S, Ohtsubo K, Aoyama T. Comparison of single point phenytoin dosage prediction techniques. Journal of Clinical Pharmacy and Therapeutics 13: 293–305, 1988

    Article  PubMed  CAS  Google Scholar 

  • Yukawa E, Higuchi S, Aoyama T. Clinical utility of a new and simple technique for individualising phenytoin dosage. Journal of Pharmacobiodynamics 12: 187–192, 1989a

    Article  CAS  Google Scholar 

  • Yukawa E, Higuchi S, Aoyama T. Clinical evaluation of population pharmacokinetic parameters in phenytoin dosage adjustment. Chemical and Pharmaceutical Bulletin 37: 3363–3366, 1989b

    Article  CAS  Google Scholar 

  • Zaccara G, Messori A, Moroni F. Clinical pharmacokinetics of valproic acid — 1988. Clinical Pharmacokinetics 15: 367–389, 1988

    Article  PubMed  CAS  Google Scholar 

  • Zaccara G, Messori A, Muscas GC, Albani F, Baruzzi A, et al. Predictive performance of pharmacokinetic methods for phenytoin dosing: a multi center evaluation in 282 patients

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, A.H., Brodie, M.J. Pharmacokinetic Optimisation of Anticonvulsant Therapy. Clin. Pharmacokinet. 23, 216–230 (1992). https://doi.org/10.2165/00003088-199223030-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199223030-00004

Keywords

Navigation