Skip to main content
Log in

A Population Pharmacokinetic Model of Valproic Acid in Pediatric Patients with Epilepsy: A Non-Linear Pharmacokinetic Model Based on Protein-Binding Saturation

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objective

Valproic acid (VPA) follows a non-linear pharmacokinetic profile in terms of protein-binding saturation. The total daily dose regarding VPA clearance is a simple power function, which may partially explain the non-linearity of the pharmacokinetic profile; however, it may be confounded by the therapeutic drug monitoring effect. The aim of this study was to develop a population pharmacokinetic model for VPA based on protein-binding saturation in pediatric patients with epilepsy.

Methods

A total of 1,107 VPA serum trough concentrations at steady state were collected from 902 epileptic pediatric patients aged from 3 weeks to 14 years at three hospitals. The population pharmacokinetic model was developed using NONMEM® software. The ability of three candidate models (the simple power exponent model, the dose-dependent maximum effect [DDE] model, and the protein-binding model) to describe the non-linear pharmacokinetic profile of VPA was investigated, and potential covariates were screened using a stepwise approach. Bootstrap, normalized prediction distribution errors and external evaluations from two independent studies were performed to determine the stability and predictive performance of the candidate models.

Results

The age-dependent exponent model described the effects of body weight and age on the clearance well. Co-medication with carbamazepine was identified as a significant covariate. The DDE model best fitted the aim of this study, although there were no obvious differences in the predictive performances. The condition number was less than 500, and the precision of the parameter estimates was less than 30 %, indicating stability and validity of the final model.

Conclusion

The DDE model successfully described the non-linear pharmacokinetics of VPA. Furthermore, the proposed population pharmacokinetic model of VPA can be used to design rational dosage regimens to achieve desirable serum concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mac TL, Tran DS, Quet F, Odermatt P, Preux PM, Tan CT. Epidemiology, aetiology, and clinical management of epilepsy in Asia: a systematic review. Lancet Neurol. 2007;6:533–43.

    Article  PubMed  Google Scholar 

  2. Kwong KL, Tsui KW, Wu SP, Yung A, Yau E, Eva F, et al. Utilization of antiepileptic drugs in Hong Kong children. Pediatr Neurol. 2012;46:281–6.

    Article  PubMed  Google Scholar 

  3. Nicholas JM, Ridsdale L, Richardson MP, Ashworth M, Gulliford MC. Trends in antiepileptic drug utilisation in UK primary care 1993-2008: cohort study using the General Practice Research Database. Seizure. 2012;21:466–70.

    Article  PubMed  Google Scholar 

  4. Alehan FK, Morton LD, Pellock JM. Treatment of absence status with intravenous valproate. Neurology. 1999;52:889–90.

    Article  CAS  PubMed  Google Scholar 

  5. Brodie MJ, Dichter MA. Antiepileptic drugs. N Engl J Med. 1996;334:168–75.

    Article  CAS  PubMed  Google Scholar 

  6. Ito M, Ikeda Y, Arnez JG, Finocchiaro G, Tanaka K. The enzymatic basis for the metabolism and inhibitory effects of valproic acid: dehydrogenation of valproyl-CoA by 2-methyl-branched-chain acyl-CoA dehydrogenase. Biochim Biophys Acta. 1990;1034:213–8.

    Article  CAS  PubMed  Google Scholar 

  7. Argikar UA, Remmel RP. Effect of aging on glucuronidation of valproic acid in human liver microsomes and the role of UDP-glucuronosyltransferase UGT1A4, UGT1A8, and UGT1A10. Drug Metab Dispos. 2009;37:229–36.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Tan L, Yu JT, Sun YP, Ou JR, Song JH, Yu Y. The influence of cytochrome oxidase CYP2A6, CYP2B6, and CYP2C9 polymorphisms on the plasma concentrations of valproic acid in epileptic patients. Clin Neurol Neurosurg. 2010;112:320–3.

    Article  PubMed  Google Scholar 

  9. Kodama Y, Koike Y, Kimoto H, Yasunaga F, Takeyama M, Teraoka I, et al. Binding parameters of valproic acid to serum protein in healthy adults at steady state. Ther Drug Monit. 1992;14:55–60.

    Article  CAS  PubMed  Google Scholar 

  10. Bauer LA, Davis R, Wilensky A, Raisys V, Levy RH. Valproic acid clearance: unbound fraction and diurnal variation in young and elderly adults. Clin Pharmacol Ther. 1985;37:697–700.

    Article  CAS  PubMed  Google Scholar 

  11. Zaccara G, Messori A, Moroni F. Clinical pharmacokinetics of valproic acid. Clin Pharmacokinet. 1988;15:367–89.

    Article  CAS  PubMed  Google Scholar 

  12. Patsalos PN, Berry DJ, Bourgeois BF, Cloyd JC, Glauser TA, Johannessen SI, et al. Antiepileptic drugs–best practice guidelines for therapeutic drug monitoring: a position paper by the subcommission on therapeutic drug monitoring, ILAE Commission on Therapeutic Strategies. Epilepsia. 2008;49:1239–76.

    Article  CAS  PubMed  Google Scholar 

  13. Williams JH, Jayaraman B, Swoboda KJ, Barrett JS. Population pharmacokinetics of valproic acid in pediatric patients with epilepsy: considerations for dosing spinal muscular atrophy patients. J Clin Pharmacol. 2012;52:1676–88.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Jiang DC, Wang L, Wang YQ, Li L, Lu W, Bai XR. Population pharmacokinetics of valproate in Chinese children with epilepsy. Acta Pharmacol Sin. 2007;28:1677–84.

    Article  CAS  PubMed  Google Scholar 

  15. Sanchez-Alcaraz A, Quintana MB, Lopez E, Rodriguez I. Valproic acid clearance in children with epilepsy. J Clin Pharm Ther. 1998;23:31–4.

    CAS  PubMed  Google Scholar 

  16. Yu L, Ding J, Shi H, Li Z, Jiao Z, Wang Y. Establishment of population pharmacokinetic model of valproic acid in Chinese epileptic children. Chin J Evid Based Pediatr. 2009;6:509–13. [in Chinese]

    Google Scholar 

  17. Yukawa E, To H, Ohdo S, Higuchi S, Aoyama T. Population-based investigation of valproic acid relative clearance using nonlinear mixed effects modeling: influence of drug-drug interaction and patient characteristics. J Clin Pharmacol. 1997;37:1160–7.

    Article  CAS  PubMed  Google Scholar 

  18. Serrano BB, Garcia SM, Otero MJ, Buelga DS, Serrano J, Dominguez-Gil A. Valproate population pharmacokinetics in children. J Clin Pharm Ther. 1999;24:73–80.

    Article  CAS  PubMed  Google Scholar 

  19. Correa T, Rodriguez I, Romano S. Population pharmacokinetics of valproate in Mexican children with epilepsy. Biopharm Drug Dispos. 2008;29:511–20.

    Article  CAS  PubMed  Google Scholar 

  20. Ahn JE, Birnbaum AK, Brundage RC. Inherent correlation between dose and clearance in therapeutic drug monitoring settings: possible misinterpretation in population pharmacokinetic analyses. J Pharmacokinet Pharmacodyn. 2005;32:703–18.

    Article  PubMed  Google Scholar 

  21. Jiao Z, Zhong M, Hu M, Shi X, Li Z, Zhang J, et al. Population pharmacokinetic modeling of valproic acid clearance. Chin Hosp Pharm J. 2004;9:515–8 [in Chinese].

    Google Scholar 

  22. Bano G, Gupta S, Gupta KL, Raina RK. Pharmacokinetics of valproic acid after administration of three oral formulations in healthy adults. J Assoc Phys India. 1990;38:629–30.

    CAS  Google Scholar 

  23. Hou Q, Qu Z, Yu L, Zhang J. Comparison of pharmacokinetics, plasma concentration and efficacy between valproic acid sustained released and enteric-coated tablets. Chin J Neurol Psychiatry. 1993;26:165 [in Chinese].

    Google Scholar 

  24. Holford N, Heo YA, Anderson B. A pharmacokinetic standard for babies and adults. J Pharm Sci. 2013;102:2941–52.

    Article  CAS  PubMed  Google Scholar 

  25. Anderson BJ, McKee AD, Holford NH. Size, myths and the clinical pharmacokinetics of analgesia in paediatric patients. Clin Pharmacokinet. 1997;33:313–27.

    Article  CAS  PubMed  Google Scholar 

  26. Mahmood I. Prediction of drug clearance in children from adults: a comparison of several allometric methods. Br J Clin Pharmacol. 2006;61:545–57.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Peeters MY, Allegaert K, Blusse VOH, Cella M, Tibboel D, Danhof M, et al. Prediction of propofol clearance in children from an allometric model developed in rats, children and adults versus a 0.75 fixed-exponent allometric model. Clin Pharmacokinet. 2010;49:269–75.

    Article  CAS  PubMed  Google Scholar 

  28. Kodama Y, Kodama H, Kuranari M, Tsutsumi K, Ono S, Fujimura A. No effect of gender or age on binding characteristics of valproic acid to serum proteins in pediatric patients with epilepsy. J Clin Pharmacol. 1999;39:1070–6.

    Article  CAS  PubMed  Google Scholar 

  29. Wang C, Peeters MY, Allegaert K, Blusse VOH, Krekels EH, Tibboel D, et al. A bodyweight-dependent allometric exponent for scaling clearance across the human life-span. Pharm Res. 2012;29:1570–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Cloyd JC, Dutta S, Cao G, Walch JK, Collins SD, Granneman GR. Valproate unbound fraction and distribution volume following rapid infusions in patients with epilepsy. Epilepsy Res. 2003;53:19–27.

    Article  CAS  PubMed  Google Scholar 

  31. Ueshima S, Aiba T, Makita T, Nishihara S, Kitamura Y, Kurosaki Y, et al. Characterization of non-linear relationship between total and unbound serum concentrations of valproic acid in epileptic children. J Clin Pharm Ther. 2008;33:31–8.

    Article  CAS  PubMed  Google Scholar 

  32. Ueshima S, Aiba T, Sato T, Matsunaga H, Kurosaki Y, Ohtsuka Y, et al. Empirical approach for improved estimation of unbound serum concentrations of valproic acid in epileptic infants by considering their physical development. Biol Pharm Bull. 2011;31:108–13.

    Article  Google Scholar 

  33. Holford N. Protein binding model. http://www.cognigencorp.com/nonmem/current/2011-May/2497.html. Accessed 15 Jun 2014.

  34. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11:558–69.

    Article  PubMed Central  PubMed  Google Scholar 

  35. Keizer RJ, van Benten M, Beijnen JH, Schellens JH, Huitema AD. Pirana and PCluster: a modeling environment and cluster infrastructure for NONMEM. Comput Methods Progr Biomed. 2011;101:72–9.

    Article  Google Scholar 

  36. Byon W, Smith MK, Chan P, Tortorici MA, Riley S, Dai H, et al. Establishing best practices and guidance in population modeling: an experience with an internal population pharmacokinetic analysis guidance. CPT Pharmacometr Syst Pharmacol. 2013;2:e51.

    Article  CAS  Google Scholar 

  37. Tunblad K, Lindbom L, McFadyen L, Jonsson EN, Marshall S, Karlsson MO. The use of clinical irrelevance criteria in covariate model building with application to dofetilide pharmacokinetic data. J Pharmacokinet Pharmacodyn. 2008;35:503–26.

    Article  CAS  PubMed  Google Scholar 

  38. Staatz CE, Duffull SB, Kiberd B, Fraser AD, Tett SE. Population pharmacokinetics of mycophenolic acid during the first week after renal transplantation. Eur J Clin Pharmacol. 2005;61:507–16.

    Article  CAS  PubMed  Google Scholar 

  39. Gotta V, Buclin T, Csajka C, Widmer N. Systematic review of population pharmacokinetic analyses of imatinib and relationships with treatment outcomes. Ther Drug Monit. 2013;35:150–67.

    Article  CAS  PubMed  Google Scholar 

  40. Guo Y, Hu C, He X, Qiu F, Zhao L. Effects of UGT1A6, UGT2B7, and CYP2C9 genotypes on plasma concentrations of valproic acid in Chinese children with epilepsy. Drug Metab Pharmacokinet. 2012;27:536–42.

    Article  CAS  PubMed  Google Scholar 

  41. van der Meer AF, Marcus MA, Touw DJ, Proost JH, Neef C. Optimal sampling strategy development methodology using maximum a posteriori Bayesian estimation. Ther Drug Monit. 2011;33:133–46.

    PubMed  Google Scholar 

  42. Ette EI, Williams PJ, Kim YH, Lane JR, Liu MJ, Capparelli EV. Model appropriateness and population pharmacokinetic modeling. J Clin Pharmacol. 2003;43:610–23.

    Article  CAS  PubMed  Google Scholar 

  43. Comets E, Brendel K, Mentre F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90:154–66.

    Article  PubMed  Google Scholar 

  44. Li H, Ji CY, Zong XN, Zhang YQ. Height and weight standardized growth charts for Chinese children and adolescents aged 0 to 18 years [in Chinese]. Chin J Pediatr. 2009;47:487–92.

    Google Scholar 

  45. Wade JR, Kelman AW, Howie CA, Whiting B. Effect of misspecification of the absorption process on subsequent parameter estimation in population analysis. J Pharmacokinet Biopharm. 1993;21:209–22.

    Article  CAS  PubMed  Google Scholar 

  46. Anand KJ, Anderson BJ, Holford NH, Hall RW, Young T, Shephard B, et al. Morphine pharmacokinetics and pharmacodynamics in preterm and term neonates: secondary results from the NEOPAIN trial. Br J Anaesth. 2008;101:680–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Anderson BJ, Allegaert K, Van den Anker JN, Cossey V, Holford NH. Vancomycin pharmacokinetics in preterm neonates and the prediction of adult clearance. Br J Clin Pharmacol. 2007;63:75–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Bjorkman S. Prediction of cytochrome p450-mediated hepatic drug clearance in neonates, infants and children: how accurate are available scaling methods? Clin Pharmacokinet. 2006;45:1–11.

    Article  PubMed  Google Scholar 

  49. Bartelink IH, Boelens JJ, Bredius RG, Egberts AC, Wang C, Bierings MB, et al. Body weight-dependent pharmacokinetics of busulfan in paediatric haematopoietic stem cell transplantation patients: towards individualized dosing. Clin Pharmacokinet. 2012;51:331–45.

    Article  CAS  PubMed  Google Scholar 

  50. Choonara IA, McKay P, Hain R, Rane A. Morphine metabolism in children. Br J Clin Pharmacol. 1989;28:599–604.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Miyagi SJ, Collier AC. The development of UDP-glucuronosyltransferases 1A1 and 1A6 in the pediatric liver. Drug Metab Dispos. 2011;39:912–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Ethell BT, Anderson GD, Burchell B. The effect of valproic acid on drug and steroid glucuronidation by expressed human UDP-glucuronosyltransferases. Biochem Pharmacol. 2003;65:1441–9.

    Article  CAS  PubMed  Google Scholar 

  53. Ebner T, Burchell B. Substrate specificities of two stably expressed human liver UDP-glucuronosyltransferases of the UGT1 gene family. Drug Metab Dispos. 1993;21:50–5.

    CAS  PubMed  Google Scholar 

  54. Blanco-Serrano B, Otero MJ, Santos-Buelga D, Garcia-Sanchez MJ, Serrano J, Dominguez-Gil A. Population estimation of valproic acid clearance in adult patients using routine clinical pharmacokinetic data. Biopharm Drug Dispos. 1999;20:233–40.

    Article  CAS  PubMed  Google Scholar 

  55. Lheureux PE, Hantson P. Carnitine in the treatment of valproic acid-induced toxicity. Clin Toxicol (Phila). 2009;47:101–11.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially presented at the 2013 International Symposium of Quantitative Pharmacology, Beijing, China. The authors would like to thank Professor Nick Holford of the University of Auckland, New Zealand for his invaluable advice.

This project was partly supported by the National Natural Science Foundation of China (No. 81072702) and the Major Research and Development Project of Innovative Drugs, China Ministry of Science and Technology (2012ZX09303004-001).

Conflicts of interest

All authors declare no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Jiao.

Additional information

J. Ding and Y. Wang contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, J., Wang, Y., Lin, W. et al. A Population Pharmacokinetic Model of Valproic Acid in Pediatric Patients with Epilepsy: A Non-Linear Pharmacokinetic Model Based on Protein-Binding Saturation. Clin Pharmacokinet 54, 305–317 (2015). https://doi.org/10.1007/s40262-014-0212-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-014-0212-8

Keywords

Navigation