Skip to main content
Log in

Pharmacokinetic Studies in Paediatric Patients

Clinical and Ethical Considerations

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Important advances in paediatric clinical pharmacology have been made over the past 2 decades. However, there remains a reluctance to pursue pharmacodynamic and pharmacokinetic studies in children and, consequently, many important therapeutic agents have not been adequately studied in this population. Age-related pharmacokinetic/pharmacodynamic studies are not only essential to provide optimal drug therapy for children, but are quite feasible.

Usually, paediatric pharmacokinetic studies are conducted in children receiving treatment for a specific medical condition. The approach to soliciting participation of paediatric subjects requires special sensitivity to the fears and anxieties of the child and the parents. Factors influencing subject enrolment and suggestions to enhance enrolment into study protocols are discussed.

Pharmacokinetic/pharmacodynamic studies require repeated measurements over time and often entail obtaining multiple blood and urine samples. Techniques for reducing sample volume and number of necessary samples while minimising the discomfort and fear associated with obtaining multiple samples include the development of highly sensitive analytical methods to measure drug concentrations in small volume samples. The number of samples obtained from individual subjects can be minimised by using pharmacokinetic analytical approaches such as the nonlinear mixed effect model (NONMEM) which allows estimation of pharmacokinetic characteristics of a population using limited data from each subject. In addition, less invasive methods to measure drug metabolism/elimination such as salivary sampling, transcutaneous collection and breath analysis have been applied to the study of certain drugs.

Children are a particularly vulnerable population because of their limited cognitive abilitiesand dependence on adults. Thus, they must be afforded greater protection from exploitation as research subjects than that provided to adults.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • American Academy of Pediatrics Committee on Drugs. General guidelines for the evaluation of drugs to be approved for use during pregnancy and for treatment of infants and children: a report of the Committee on Drugs, American Academy of Pediatrics to the Food and Drug Administration, US Department of Health, Education and Welfare, pp. 1–40, American Academy of Pediatrics, Chicago, 1974

    Google Scholar 

  • American Academy of Pediatrics Committee on Drugs. Guidelines for the ethical conduct of studies to evaluate drugs in pediatric populations. Pediatrics 60: 91–101, 1977

    Google Scholar 

  • Assael B, Cavanna G, Jusko W, Marini A, Parini R, et al. Multiexponential elimination of gentamicin: a kinetic study during development. Developmental Pharmacology and Therapeutics 1: 171–181, 1980

    PubMed  CAS  Google Scholar 

  • Beecher HE. Ethics and clinical research. New England Journal of Medicine 274: 1354–1360, 1966

    Article  PubMed  CAS  Google Scholar 

  • Belmont Report. Ethical principles and guidelines for the protection of human subjects of research. OPRR Reports April 18, 1979

  • Benet LZ, Galeazzi RL. Noncompartmental determination of the steady-state volume of distribution. Journal of Pharmaceutical Sciences 68: 1071–1074, 1979

    Article  PubMed  CAS  Google Scholar 

  • Besunder JB, Reed MD, Blumer JL. Principles of drug biodisposition in the neonate: a critical evaluation of the pharmacokinetic-pharmacodynamic interface (Part I). Clinical Pharmacokinetics 14: 189–216, 1988a

    Article  PubMed  CAS  Google Scholar 

  • Besunder JB, Reed MD, Blumer JL. Principles of drug biodisposition in the neonate: a critical evaluation of the pharmacokinetic-pharmacodynamic interface (Part II). Clinical Pharmacokinetics 14: 261–286, 1988b

    Article  PubMed  CAS  Google Scholar 

  • Blumer JL, Aronoff SC, Myers CM, O’Brien CA, Klinger JD, et al. Pharmacokinetics and cerebrospinal fluid penetration of ceftazidime in children with meningitis. Developmental Pharmacology and Therapeutics 8: 219–231, 1985

    PubMed  CAS  Google Scholar 

  • Blumer JL, Stern RC, Yamashita TS, Myers CM, Reed MD. Cephalosporin therapeutics in cystic fibrosis. Journal of Pediatrics 108 (Suppl.): 854–860, 1986

    Article  PubMed  CAS  Google Scholar 

  • Boreus LO. Pharmacokinetics in children. In Boreus (Ed.) Principles of pediatric pharmacology, pp. 135–175, Churchill Livingstone, New York, 1982

    Google Scholar 

  • Brown RD, Manno JE. ESTRIP, a BASIC computer program for obtaining initial polyexponential parameter estimates. Journal of Pharmaceutical Sciences 67: 1687–1681, 1978

    Article  PubMed  CAS  Google Scholar 

  • Brown RD, Wilson JT, Kearns GL, Eichler VF, Johnson VA, et al. Single dose pharmacokinetics of ibuprofen and acetaminophen in febrile children. Journal of Clinical Pharmacology, in press, 1992

    Google Scholar 

  • Cheng H, Jusko WJ. Mean residence time of drugs showing simultaneous first-order and Michaelis-Menten elimination kinetics. Pharmaceutical Research 6: 258–261, 1989

    Article  PubMed  CAS  Google Scholar 

  • Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (Part I). Clinical Pharmacokinetics 17: 175–199, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (Part II). Clinical Pharmacokinetics 17: 275–290, 1989b

    Article  PubMed  CAS  Google Scholar 

  • Cook JA, Gwilt PR. Calculations and application of mean residence times for drugs which demonstrate one-compartment distribution and Michaelis-Menten elimination. Pharmaceutical Research 5: 196, 1988

    Article  PubMed  CAS  Google Scholar 

  • D’Argenio DZ, Schumitzky A. A program package for simulation and parameter estimation in pharmacokinetic systems. Computer Programs in Biomedicine 9: 115–134, 1979

    Article  PubMed  Google Scholar 

  • Danhof M, Breimer DD. Therapeutic drug monitoring in saliva. Clinical Pharmacokinetics 3: 39–57, 1978

    Article  PubMed  CAS  Google Scholar 

  • Dodge WF, Jelliffe RW, Richardson CJ, McCleery RA, Hokanson JA, et al. Gentamicin population pharmacokinetic models for low birth weight infants using a new nonparametric method. Clinical Pharmacology and Therapeutics 50: 25–31, 1991

    Article  PubMed  CAS  Google Scholar 

  • Drusano GJ, Forrest A, Snyder MJ, Reed MD, Blumer JL. An evaluation of optimal sampling strategy and adaptive study design. Clinical Pharmacology and Therapeutics 44: 232–238, 1988

    Article  PubMed  CAS  Google Scholar 

  • Ebling WF, Maitre PO, Stanski DR. A comparison of NONMEM versus two stage pharmacokinetic analysis. Clinical Pharmacology and Therapeutics 43: 132, 1988

    Google Scholar 

  • Federal Register 43(9): 2084–2109, 1978

    Google Scholar 

  • Federal Register 48(46): 9814–9820, 1983

    Google Scholar 

  • Friedman IM, Litt IF, Henson R, Holtzman D, Halverson D. Saliva phenobarbital and phenytoin concentrations in epileptic adolescents. Journal of Pediatrics 98: 645–647, 1981

    Article  PubMed  CAS  Google Scholar 

  • Franson TR. Aminoglycoside serum concentration sampling via central venous catheters: a potential source of clinical error. Journal of Parenteral and Enteral Nutrition 11: 77–79, 1987

    Article  PubMed  CAS  Google Scholar 

  • Gilman JT. Therapeutic drug monitoring in the neonate and paediatric age group: problems and clinical pharmacokinetic implications. Clinical Pharmacokinetics 19: 1–10, 1990

    Article  PubMed  CAS  Google Scholar 

  • Gilman JT, Gal P. Pharmacokinetic and pharmacodynamic data collection in children and neonates: a quiet frontier. Clinical Pharmacokinetics 23: 1–9, 1992

    Article  PubMed  CAS  Google Scholar 

  • Grasela Jr TH, Antal EJ, Townsend RJ, Smith RB. An evaluation of population pharmacokinetics in therapeutic trials part I: comparison of methodologies. Clinical Pharmacology and Therapeutics 39: 605–612, 1986

    Article  PubMed  Google Scholar 

  • Green TP, Mirkin BL. Clinical pharmacokinetics: pediatric considerations. In Benet et al. (Eds) Pharmacokinetic basis for drug treatment, pp. 269–282, Raven Press, New York, 1984

    Google Scholar 

  • Grodin MA, Alpert JJ. Children as participants in medical research. Pediatric Clinics of North America 35: 1389–1401, 1988

    PubMed  CAS  Google Scholar 

  • Jacobs RF, Trang JM, Kearns GL, Warren RH, Brown AL, et al. Ticarcillin/clavulanic acid pharmacokinetics in children and young adults with cystic fibrosis. Journal of Pediatrics 106: 1001–1007, 1985

    Article  PubMed  CAS  Google Scholar 

  • Janofsky J, Starfield B. Assessment of risk in research on children. Journal of Pediatrics 98: 842–846, 1981

    Article  PubMed  CAS  Google Scholar 

  • Jonsen AR. Research involving children: recommendations of the National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research. Pediatrics 62: 131–136, 1978

    PubMed  CAS  Google Scholar 

  • Jynge P, Skjetne T, Gribbestad I, Kleinbloesem CH, Hoogkamer HFW, et al. In vivo tissue pharmacokinetics by fluorine magnetic resonance spectroscopy: a study of liver and muscle disposition of fleroxacin in humans. Clinical Pharmacology and Therapeutics 48: 481–489, 1990

    Article  PubMed  CAS  Google Scholar 

  • Kauffman RE. The clinical interpretation and application of drug concentration data. Pediatric Clinics of North America 28: 35–45, 1981

    PubMed  CAS  Google Scholar 

  • Kauffman RE. Effective and efficient use of drug level measurements to guide medication dosing. Pediatric Annals 14: 332–339, 1985

    PubMed  CAS  Google Scholar 

  • Kauffman RE, Thirumoorthi MC, Buckley JA, Aravind MK, Dajani AS. Relative bioavailability of intravenous chloramphenicol succinate and oral chloramphenicol palmitate in infants and children. Journal of Pediatrics 99: 963–967, 1981

    Article  PubMed  CAS  Google Scholar 

  • Kearns GL, Bocchini JA Jr, Brown RD, Cotter DL, Wilson JT. Absence of a pharmacokinetic interaction between chloramphenicol and acetaminophen in children. Journal of Pediatrics 107: 134–139, 1985

    Article  PubMed  CAS  Google Scholar 

  • Kearns, Hilman BC, Wilson JT. Dosing implications of altered gentamicin disposition in patients with cystic fibrosis. Journal of Pediatrics 100: 312–318, 1982

    Article  PubMed  CAS  Google Scholar 

  • Kearns GL, Jacobs RF, Thomas BR, Darville TL, Trang JM. Cefotaxime and desacetylcefotaxime pharmacokinetics in very low birth weight neonates. Journal of Pediatrics 114: 461–467, 1989

    Article  PubMed  CAS  Google Scholar 

  • Kearns GL, Trang JM. Introduction to pharmacokinetics: aminoglycosides in cystic fibrosis as a prototype. Journal of Pediatrics 108: 847–853, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kearns GL, Butler HL, Lane JK, Carchman SH, Wright GJ. Metoclopramide pharmacokinetics and pharmacodynamics in infants with gastroesophageal reflux. Journal of Pediatric Gastroenterology and Nutrition 7: 823–829, 1988

    Article  PubMed  CAS  Google Scholar 

  • Kearns GL, Reed MD. Clinical pharmacokinetics in infants and children: a reappraisal. Clinical Pharmacokinetics 17 (Suppl. 1): 29–67, 1989

    Article  PubMed  Google Scholar 

  • Kearns GL, Reed MD, Jacobs RF, Ardite M, Yogev RD, et al. Single dose pharmacokinetics of ceftibuten (Sch 39720) in infants and children. Antimicrobial Agents and Chemotherapy, in press, 1992

    Google Scholar 

  • Kearns GL, Mallory Jr GB, Crom WR, Evans WE. Enhanced hepatic drug clearance in patients with cystic fibrosis. Journal of Pediatrics 117: 972–979, 1990

    Article  PubMed  CAS  Google Scholar 

  • Kong AN, Jusko WJ. Definitions and applications of mean transit and residence times in reference to the two compartment mammillary plasma clearance model. Journal of Pharmaceutical Sciences 77: 157–165, 1988

    Article  PubMed  CAS  Google Scholar 

  • Landers S, Berry PL, Kearns GL, Kaplan SL, Rudolph AJ. Gentamicin disposition and effect on development of renal function in the very low birth weight infant. Developmental Pharmacology and Therapeutics 7: 285–302, 1984

    PubMed  CAS  Google Scholar 

  • Lascari AD. Risks of research in children. Journal of Pediatrics 98: 759–760, 1981

    Article  PubMed  CAS  Google Scholar 

  • Levitsky LL, Schoeller DA, Lambert GH, Edidin DV. Effect of growth hormone therapy in growth hormone-deficient children on cytochrome P-450-dependent 3-N-demethylation of caffeine as measured by the caffeine 13CO2 breath test. Developmental Pharmacology and Therapeutics 12: 90–95, 1989

    PubMed  CAS  Google Scholar 

  • Levy J. Antibiotic activity in sputum. Journal of Pediatrics 108 (Suppl.): 841–846, 1986

    Article  PubMed  CAS  Google Scholar 

  • Lind SE. Finder’s fees for research subjects. New England Journal of Medicine 323: 192–195, 1990

    Article  PubMed  CAS  Google Scholar 

  • Long D, Koren G, James A. Ethics of drug studies in infants: how many samples are required for accurate estimation of pharmacokinetic parameters in neonates? Journal of Pediatrics 111: 918–921, 1987

    Article  PubMed  CAS  Google Scholar 

  • MacLeod SM. Clinical pharmacokinetics: a pediatric overview. In MacLeod & Radde (Eds) Textbook of pediatric clinical pharmacology, pp. 106–111, PSG Publishing, Littleton, 1985

    Google Scholar 

  • Mallet A, Mentre F, Steimer JL, Lookiec F. Nonparametric maximum likelihood estimation for population pharmacokinetics, with application to cyclosporine. Journal of Pharmacokinetics and Biopharmaceutics 16: 311–327, 1988

    PubMed  CAS  Google Scholar 

  • Matzke GR, St Peter WL. Clinical pharmacokinetics 1990. Clinical Pharmacokinetics 18: 1–19, 1990

    Article  PubMed  CAS  Google Scholar 

  • Metzler CM, Elfring GL, McEwen AJ. A user’s manual for NONLIN and associated programs. Upjohn Company, Inc., Kalamazoo, 1974

    Google Scholar 

  • Milsap RL, Szefler SJ. Special pharmacokinetic considerations in children. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, 2nd ed., pp. 294–330, Applied Therapeutics, Spokane, 1986

    Google Scholar 

  • Morselli PL. Development of physiological variables important for drug kinetics. In Morselli et al. (Eds), Antiepileptic drug therapy in pediatrics, pp. 1–12, Raven Press, New York, 1983

    Google Scholar 

  • Morselli PL. Clinical pharmacology of the perinatal period and early infancy. Clinical Pharmacokinetics 17 (Suppl. 1): 13–28, 1989

    Article  PubMed  Google Scholar 

  • Morselli PL, Franco-Morselli R, Bossi L. Clinical pharmacokinetics in newborns and infants: age related differences and therapeutic implications. Clinical Pharmacokinetics 5: 485–527, 1980

    Article  PubMed  CAS  Google Scholar 

  • Murphy JE, Peltier T, Anderson D, Ward ES. A comparison of venous versus capillary measurements of drug concentration. Therapeutic Drug Monitoring 12: 264–267, 1990

    Article  PubMed  CAS  Google Scholar 

  • Murphy JE, Ward ES. Elevated phenytoin concentration caused by sampling through the drug administration catheter. Pharmacotherapy 11: 348–350, 1991

    PubMed  CAS  Google Scholar 

  • Murphy MG, Peck CC, Conner DP, Zamani K, Merenstein GB, et al. Transcutaneous theophylline collection in preterm infants. Clinical Pharmacology and Therapeutics 47: 427–434, 1990

    Article  PubMed  CAS  Google Scholar 

  • Narang PK, Carliner NH, Fisher ML, Crouthamel WG. Quinidine saliva concentrations: absence of correlation with serum concentrations at steady state. Clinical Pharmacology and Therapeutics 34: 695–702, 1983

    Article  PubMed  CAS  Google Scholar 

  • Nicholson JK, Wilson ID. High resolution nuclear magnetic resonance spectroscopy of biological samples as an aid to drug development. Progress in Drug Research 31: 427–479, 1987

    PubMed  CAS  Google Scholar 

  • O’Sullivan TA, Bauer LA, Horn JR, Zierler BK, Strandness DE, et al. Disposition of drugs in cystic fibrosis II: hepatic blood flow. Clinical Pharmacology and Therapeutics 50: 450–455, 1991

    Article  PubMed  Google Scholar 

  • Peck CC, Collins JM. First time in man studies: a regulatory perspective. Art and science of phase I trials. Journal of Clinical Pharmacology 30: 218–222, 1990

    Google Scholar 

  • Pilla AM, Zarowitz BJ, Svensson CK, Peterson EL, Popovich Jr J. Bioimpedance assessment of antipyrine pharmacokinetics before and after enzyme induction. DICP: Annals of Pharmacotherapy 24: 575–580, 1990

    PubMed  CAS  Google Scholar 

  • Prandota J. Clinical pharmacokinetics of changes in drug elimination in children. Developmental Pharmacology and Therapeutics 8: 311–328, 1985

    PubMed  CAS  Google Scholar 

  • Rane A. Basic principles of drug disposition and action in infants and children. In Yaffe (Ed.) Pediatric pharmacology: therapeutic principles in practice, pp. 7–28, Grune and Stratton, New York, 1980

    Google Scholar 

  • Rane A. Changes in drug metabolism during child growth. In Lemberger & Reidenberg (Eds) Proceedings of the Second World Conference on Clinical Pharmacology and Therapeutics, pp. 861–867, American Society for Pharmacology and Experimental Therapeutics, Bethesda, 1984

    Google Scholar 

  • Rane A, Wilson JT. Clinical pharmacokinetics in infants and children. Clinical Pharmacokinetics 1: 2–24, 1976

    Article  PubMed  CAS  Google Scholar 

  • Relling MV, Cherrie J, Schell MJ, Petros WP, Meyer WH, et al. Lower prevalence of the debrisoquin oxidative poor metabolizer phenotype in American black versus white subjects. Clinical Pharmacology and Therapeutics 50: 308–313, 1991

    Article  PubMed  CAS  Google Scholar 

  • Relling MV, Crom WR, Pieper JA, Cupit GC, Rivera GK, et al. Hepatic drug clearance in children with leukemia: changes in clearance of model substrates during remission-induction therapy. Clinical Pharmacology and Therapeutics 41: 651–660, 1987

    Article  PubMed  CAS  Google Scholar 

  • Roberts RJ. Special considerations in drug therapy in infants. In Roberts (Ed.) Drug therapy in infants: pharmacologic principles and clinical experience, pp. 25–35, W.B. Saunders, Philadelphia, 1984

    Google Scholar 

  • Roddis LH. Edward Jenner and the discovery of smallpox vaccination. Military Surgery 65: 844–869, 1929

    Google Scholar 

  • Rozovsky FA. Minors as research subjects. In Rozovsky (Ed.) Consent to treatment: a practical guide, pp. 530–544, Little and Brown, Boston, 1984

    Google Scholar 

  • Saeed MA, Gatens PF. Anterior interosseous nerve syndrome: unusual etiologies. Archives of Physical Medicine and Rehabilitation 64: 182, 1983

    PubMed  CAS  Google Scholar 

  • Salonen M, Kanto J, Iasalo E, Himberg JJ. Midazolam as an induction agent in children: a pharmacokinetic and clinical study. Anesthesia and Analgesia 66: 625–628, 1987

    Article  PubMed  CAS  Google Scholar 

  • Schumitzky A. Nonparametric EM algorithms for estimating prior distributions. Technical report 90-2, Laboratory of Applied Pharmacokinetics, University of Southern California School of Medicine, April 1990

  • Segre G. Relevance, experiences, and trends in the use of compartmental models. Drug Metabolism Reviews 15: 7–53, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL. Evaluation of methods for estimating population characteristics of pharmacokinetic parameters III, monoexponential model: routine clinical pharmacokinetic data. Journal of Pharmacokinetics and Biopharmaceutics 11: 303–319, 1983

    PubMed  CAS  Google Scholar 

  • Shirkey H. Therapeutic orphans. Journal of Pediatrics 72: 119–120, 1968

    Article  PubMed  CAS  Google Scholar 

  • Siegel IA, Ben-Aryeh H, Gozal D, Colin AA, Szargel R, et al. Comparison of unbound and total serum theophylline concentrations with those of stimulated and unstimulated saliva in asthmatic children. Therapeutic Drug Monitoring 12: 460–464, 1990

    Article  PubMed  CAS  Google Scholar 

  • Somani P, Shapiro RS, Stockard H, Higgins JT. Unidirectional absorption of gentamicin from the peritoneum during continuous ambulatory peritoneal dialysis. Clinical Pharmacology and Therapeutics 32: 113–121, 1982

    Article  PubMed  CAS  Google Scholar 

  • Spilker B. Patient recruitment. In Spilker (Ed.) Guide to clinical trials, pp. 85–92, Raven Press, New York, 1991

    Google Scholar 

  • Spino M. Pharmacokinetics of drugs in cystic fibrosis. Clinical Reviews in Allergy 9: 169–210, 1991

    PubMed  CAS  Google Scholar 

  • Spino M, Chai RP, Isles AF, Balfe JW, Brown RG, et al. Assessment of glomerular filtration rate and effective renal plasma flow in cystic fibrosis. Journal of Pediatrics 107: 64–70, 1985

    Article  PubMed  CAS  Google Scholar 

  • Stewart CF, Hampton EM. Effect of maturation on drug disposition in pediatric patients. Clinical Pharmacy 6: 548–564, 1987

    PubMed  CAS  Google Scholar 

  • Stillwell PC, Kearns GL, Jacobs RF. Endotracheal tobramycin in gram-negative pneumonia. Drug Intelligence and Clinical Pharmacy 22: 577–581, 1988

    PubMed  CAS  Google Scholar 

  • Svensson CK. Is blood sampling for determination of antipyrine pharmacokinetics in healthy volunteers ethically justified? Clinical Pharmacology and Therapeutics 44: 365–368, 1988

    Article  PubMed  CAS  Google Scholar 

  • Svensson CK. Ethical considerations in the conduct of clinical pharmacokinetic studies. Clinical Pharmacokinetics 17: 217–222, 1989

    Article  PubMed  CAS  Google Scholar 

  • Tal A, Aviram M, Gorodischer R. Variations in theophylline concentrations detected by 24-hour saliva concentration profiles in ambulatory children with asthma. Journal of Allergy and Clinical Immunology 86: 238–243, 1990

    PubMed  CAS  Google Scholar 

  • Tolia V, Brennan S, Aravind MK, Kauffman RE. Pharmacokinetic and pharmacodynamic study of midazolam in children during esophagogastroduodenoscopy. Journal of Pediatrics 119: 467–471, 1991

    Article  PubMed  CAS  Google Scholar 

  • Trang JM, Jacobs RF, Kearns GL, Brown AL, Wells TG, et al. Cefotaxime and desacetylcefotaxime pharmacokinetics in infants and children with meningitis. Antimicrobial Agents and Chemotherapy 28: 791–795, 1985

    Article  PubMed  CAS  Google Scholar 

  • Triggs EJ, Hooper WD, Dickinson RG. The influence of age on drug metabolism. Medical Journal of Australia 22: 823–827, 1984

    Google Scholar 

  • Umstead GS. Tobramycin blood levels from an indwelling right atrial catheter. Drug Intelligence and Clinical Pharmacy 18: 815–817, 1984

    PubMed  CAS  Google Scholar 

  • Umstead GS. Tobramycin levels from Hickman catheters. Drug Intelligence and Clinical Pharmacy 19: 477–478, 1985

    PubMed  CAS  Google Scholar 

  • Vallery-Radot R. The life of Pasteur, pp. 405–417, Garden City, New York, 1926

    Google Scholar 

  • van Boxtel CJ, Wilson JT, Lindgren S, Sjoqvist F. Comparison of the half-life of antipyrine in plasma, whole blood and saliva of man. European Journal of Clinical Pharmacology 9: 327–332, 1976

    Article  PubMed  Google Scholar 

  • Veng-Pedersen P. Mean time parameters in pharmacokinetics: definition, computation and clinical implications. Clinical Pharmacokinetics 17: 424–440, 1989

    Article  PubMed  CAS  Google Scholar 

  • Vesell ES, Passananti GT, Glenwright PA, Dvorchik BH. Studies on the disposition of antipyrine, aminopyrine and phenacetin using plasma, saliva and urine. Clinical Pharmacology and Therapeutics 18: 259–272, 1975

    PubMed  CAS  Google Scholar 

  • Vree TB, Hekster YA, Oosterbaan MJM, Termond EFS. Some pitfalls in selecting descriptive pharmacokinetic models. Drug Intelligence and Clinical Pharmacy 18: 708–713, 1984

    PubMed  CAS  Google Scholar 

  • Wells TG, Ellis EN, Casteel HB, Hendry IR, Kearns GL. Pharmacokinetics of single dose midazolam in children. Abstract. Clinical Pharmacology and Therapeutics 49: 160, 1991

    Google Scholar 

  • Westlake WJ. Use of statistical methods in evaluation of in vivo performance of dosage forms. Journal of Pharmaceutical Sciences 62: 1479–1589, 1973

    Article  Google Scholar 

  • Wilkinson GR. Clinical pharmacokinetics in pediatrics. In Mirkin (Ed.) Clinical pharmacology and therapeutics, pp. 61–71, Year Book, Chicago, 1978

    Google Scholar 

  • Wilson JT. Developmental pharmacology: a review of its application to clinical and basic science. Annual Review of Pharmacology 12: 423–450, 1972

    Article  PubMed  CAS  Google Scholar 

  • Wilson JT, Brown RD, Bocchini Jr JA, Kearns GL. Efficacy, disposition and pharmacodynamics of aspirin, acetaminophen and choline salicylate in young febrile children. Therapeutic Drug Monitoring 4: 147–180, 1982

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka K, Nakagawa T, Uno T. Statistical moments in pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics 6: 547–558, 1978

    PubMed  CAS  Google Scholar 

  • Zarowitz BJ, Peterson E, Popovich Jr J. Relationship of bioelectrical impedance to pharmacokinetic parameters of theophylline in healthy males. Clinical Pharmacokinetics 17: 200–207, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Zarowitz BJ, Pilla AM, Peterson EL. Bioelectrical impedance modelling of gentamicin pharmacokinetic parameters. British Journal of Clinical Pharmacology 28: 471–478, 1989b

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauffman, R.E., Kearns, G.L. Pharmacokinetic Studies in Paediatric Patients. Clin. Pharmacokinet. 23, 10–29 (1992). https://doi.org/10.2165/00003088-199223010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199223010-00002

Keywords

Navigation