Skip to main content
Log in

Practical Optimisation of Antiarrhythmic Drug Therapy Using Pharmacokinetic Principles

  • Pharmacokinetics-Therapeutics
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The optimisation of antiarrhythmic drug therapy is dependent on the definitions and methods of short term efficacy testing and the characteristics of those drugs used for rhythm disturbances. The choice of an initial antiarrhythmic drug dosage is highly empirical, and will remain so until the measurement of free concentrations, enantiomeric fractions and genetic phenotyping becomes routine. However, the clinician can devise an efficient initial dosage for efficacy testing procedures based on pharmacokinetic principles and disposition variables in the literature. In this regard, a nomogram for commonly used agents and dosages was constructed and is offered as a guide to accomplish this goal. Verification of the accuracy and usefulness of this nomogram in a prospective manner in patients with symptomatic tachyarrhythmias is still required. On a long term basis, dosage regimens can be modified by the use of pharmacokinetic principles and patient-specific target concentrations, in accordance with the methods used to monitor arrhythmia recurrence and drug-related side effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bauman JL, Bauernfiend RA, Hoff JV, Slrasberg VM, Swiryn S, et al. Torsades de pointes due to quinidine: observations in 31 patients. American Heart Journal 107: 425–430, 1984

    PubMed  CAS  Google Scholar 

  • Berry NS, Bauman JL, Gallastegui JL, Bauma W, Beckman KJ. et al. Analysis of antiarrhythmic drug concentrations determined during electrophysiologic drug testing in patients with inducible tachycardias. American Journal of Cardiology 61: 922–924, 1988

    PubMed  CAS  Google Scholar 

  • Cardiac Arrhythmia Suppression Trial (CAST) Investigators. Preliminary report: effect of encainide and flecainide on mortality in a randomized trial of arrhythmia suppression after myocardial infarction. New England Journal of Medicine 321: 406–412, 1989

    Google Scholar 

  • Grasela TH, Sheiner LB. Population pharmacokinetics of procainamide from routine clinical data. Clinical Pharmacokinetics 9: 545–554, 1984

    PubMed  CAS  Google Scholar 

  • Greenspan AM, Horowitz LN, Spielman SR, Josephson ME. Large dose procainamide therapy for ventricular tachyarrhythmia. American Journal of Cardiology 46: 453–462, 1980

    PubMed  CAS  Google Scholar 

  • Hoon TJ, Bauman JL, Rodvold KA, Gallastegui J. Hartman RJ, The pharmacokinetic and pharmacodynamic differences of the D- and L-isomers of verapamil: implications in the treatment of paroxysmal supraventricular tachycardia. American Heart Journal 112: 396–403, 1986

    PubMed  CAS  Google Scholar 

  • Horowitz LN, Josephson ME, Farshidi A, Spielman SR, Mich-elson EL, et al. Recurrent sustained ventricular tachycardia: 3. Role of the electrophysiologic study in selection of antiarrhythmic regimens. Circulation 58: 986–997, 1978

    PubMed  CAS  Google Scholar 

  • Jusko WJ, Koup JR, Vance JW, Schentag JJ, Duritzky P. Intravenous theophylline therapy: nomogram guidelines. Annals of Internal Medicine 86: 400–404, 1977

    PubMed  CAS  Google Scholar 

  • Koch-Weser J, Klein SW. Procainamide dosage schedules, plasma concentrations, and clinical effects. Journal of the American Medical Association 215: 1454–1460, 1971

    PubMed  CAS  Google Scholar 

  • Latini R, Maggioni AP, Cavalli A. Therapeutic drug monitoring of antiarrhythmic drugs: rationale and current status. Clinical Pharmacokinetics 18: 91–103, 1990

    PubMed  CAS  Google Scholar 

  • Lie KI, Wellens HJ, van Capelle FJ, Dürrer D. Lidocaine in the prevention of primary ventricular fibrillation. New England Journal of Medicine 291: 1324–1326, 1974

    PubMed  CAS  Google Scholar 

  • Lima JJ, Boudoulas H, Shields BJ. Stereoselective pharmacokinetics of disopyramide enantiomers in man. Drug Metabolism and Disposition 13: 572–577, 1985

    PubMed  CAS  Google Scholar 

  • Ludden TM, Hawkins DW, Allen JP, Hoffman SF. Optimum Phenytoin dosage regimens. Lancet 1: 307–308, 1976

    PubMed  CAS  Google Scholar 

  • Mason JW, Winkle RA. Accuracy of the ventricular tachycardia-induction study for predicting long-term efficacy and inefficacy of antiarrhythmic drugs. New England Journal of Medicine 303: 1073–1077, 1980

    PubMed  CAS  Google Scholar 

  • McCollam PL, Bauman JL. New concepts in antiarrhythmic drug monitoring. Journal of Pharmacy Practice 2: 393–402, 1989

    Google Scholar 

  • McCollam PL, Bauman JL, Beckman KJ, Hartman RJ. A simple method of monitoring antiarrhythmic drugs during short- and long-term therapy. American Journal of Cardiology 63: 1273–1274, 1989

    PubMed  CAS  Google Scholar 

  • Meffin PJ, Robert EW, Winkle RA, Harapat S, Peters FA, et al. Role of concentration-dependent plasma protein binding in disopyramide disposition. Journal of Pharmacokinetic Biophar-maceutics 7: 29–46, 1979

    CAS  Google Scholar 

  • Mitchell LB, DufT HJ, Manyari DE, Wyse DG. A randomized clinical trial of the noninvasive and invasive approaches to drug therapy in ventricular tachycardia. New England Journal of Medicine 317: 1681–1687, 1987

    PubMed  CAS  Google Scholar 

  • Moellering RC, Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Annals of Internal Medicine 94: 343–346, 1981

    PubMed  Google Scholar 

  • Morganroth J, Michelson EL, Horowitz LN. Limitation of routine long-term electrocardiographic monitoring to assess ventricular ectopic frequency. Circulation 58: 408–414, 1978

    PubMed  CAS  Google Scholar 

  • Platia EV, Reid PR. Comparison of programmed electrical stimulation and ambulatory electrocardiographic (Holter) monitoring in the management of ventricular tachycardia and ventricular fibrillation. American Journal of Cardiology 58: 113–119, 1986

    Google Scholar 

  • Powell JR, Vozeh S, Hopewell P, Costello J, Sheiner LB, et al. Theophylline disposition in acutely ill hospitalized patients. The effect of smoking, heart failure, severe airway obstruction and pneumonia. American Review of Respiratory Disease 118: 229–238, 1978

    PubMed  CAS  Google Scholar 

  • Prystowsky EN. Antiarrhythmic therapy for asymptomatic ventricular arrhythmias. American Journal of Cardiology 61: 102A–I07A, 1988

    PubMed  CAS  Google Scholar 

  • Richens A. Clinical pharmacokinetics of Phenytoin. Clinical Pharmacokinetics 4: 153–169, 1979

    PubMed  CAS  Google Scholar 

  • Roden DM, Reele SB, Higgins SB, Wilkinson GR, Smith RF, et al. Antiarrhythmic efficacy, pharmacokinetics and safety of N-acetylprocainamide in human subjects: comparison with procainamide. American Journal of Cardiology 46: 463–468, 1980

    PubMed  CAS  Google Scholar 

  • Roulledge PA, Stargel WW, Wagner GS, Shand DG. Increased alpha-1-acid glycoprotein and lidocaine disposition in myocardial infarction. Annals of Internal Medicine 93: 701–704, 1980

    Google Scholar 

  • Ruberman W, Weinblatt E, Goldberg JD, Frank CW, Shapiro S. Ventricular premature beats and mortality after myocardial infarction. New England Journal of Medicine 297: 750–757, 1977

    PubMed  CAS  Google Scholar 

  • Sarrubi FA, Hull JH. Amikacin serum concentrations: prediction of levels and dosage guidelines. Annals of Internal Medicine 89: 612–618, 1978

    Google Scholar 

  • Siddoway LA, McAllister CB, Wilkinson GR, Roden DM, Woos-ley RL. Amiodarone dosing: a proposal based on its pharmacokinetics. American Heart Journal 106: 951–956, 1983

    PubMed  CAS  Google Scholar 

  • Siddoway LA, Thompson KA, McAllister CB, Wang T, Wilkinson GR. et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 75: 785–791, 1987

    PubMed  CAS  Google Scholar 

  • Swerdlow CD, Winkle RA, Mason JW. Prognostic significance of the number of induced ventricular complexes during assessment of therapy for ventricular tachyarrhythmias. Circulation 68: 400–405, 1983

    PubMed  CAS  Google Scholar 

  • Swiryn S, Bauernfiend RA, Strasberg B, Palileo E, Inverson N. et al. Prediction of response to class I antiarrhythmic drugs during electrophysiologic study of ventricular tachycardia. American Heart Journal 104: 43–50, 1982

    PubMed  CAS  Google Scholar 

  • Vlay SC. How the university cardiologist treats ventricular premature beats: a nationwide survey of 65 university medical centers. American Heart Journal 110: 904–911, 1985

    PubMed  CAS  Google Scholar 

  • Vozeh S, Muir KT, Sheiner LB, Follath F. Predicting individual Phenytoin dosage. Journal of Pharmacokinetics and Biophar-maceutics 9: 131–146, 1981

    CAS  Google Scholar 

  • Waxman H, Buxton AE, Sadowski LM, Josephson ME. The response to procainamide during electrophysiologic study for sustained ventricular tachyarrhythmias predicts the response to other medications. Circulation 67: 30–37, 1983

    PubMed  CAS  Google Scholar 

  • Winkle RA. Antiarrhythmic drug effect mimicked by spontaneous variability of ventricular ectopy. Circulation 57: 1116–1121, 1978

    PubMed  CAS  Google Scholar 

  • Winkle RA, Peters F, Kates RE, Tucker C, Harrison DC. Clinical pharmacology and antiarrhythmic efficacy of encainide in patients with chronic ventricular arrhythmias. Circulation 64: 290–296, 1981

    PubMed  CAS  Google Scholar 

  • Woosley RL, Roden DM. Importance of metabolites in antiarrhythmic therapy. American Journal of Cardiology 52: 3C–7C, 1983

    PubMed  CAS  Google Scholar 

  • Wyse DG, Mitchell B, Duff HJ. Procainamide, disopyramide and quinidine. Discordant antiarrhythmic effects during crossover comparison in patients with inducible tachycardia. Journal of the American College of Cardiology 9: 882–889, 1987

    PubMed  CAS  Google Scholar 

Bibliography Disopyramide

  • Bonde J, Graudal NA, Pedersen LE, Balsfov S, Angelo HR. et al. Kinetics of disopyramide in decreased hepatic function. European Journal of Clinical Pharmacology 31: 73–77, 1986

    PubMed  CAS  Google Scholar 

  • Bryson SM, Whiting B, Lawrence JR. Disopyramide serum and pharmacologic effect kinetics applied to the assessment of bioavailability. British Journal of Clinical Pharmacology 6: 409–419, 1978

    PubMed  CAS  Google Scholar 

  • Burk M, Peters U. Disopyramide kinetics in renal impairment: determinants of interindividual variability. Clinical Pharmacology and Therapeutics 34: 331–340, 1983

    PubMed  CAS  Google Scholar 

  • Cunningham JL, Shen DD, Shudo I, Azarnoff DL. The effect of non-linear disposition kinetics on the systemic availability of disopyramide. British Journal of Clinical Pharmacology 5: 343–346, 1978

    CAS  Google Scholar 

  • Dubetz DK, Brown NN, Hooper WD, Eadie MJ, Tyrer JH. Disopyramide pharmacokinetics and bioavailability. British Journal of Clinical Pharmacology 6: 279–281, 1978

    PubMed  CAS  Google Scholar 

  • Francois B, Mallein R, Rondelet J, Lussignol M. Pharmacokinetics of disopyramide in patients with chronic renal failure. European Journal of Drug Metabolism and Pharmacokinetics 8: 85, 1983

    PubMed  CAS  Google Scholar 

  • Giocomini KM, Swezey SE, Turner-Tamiyasu K, Blaschke TF. The effect of saturable binding to plasma protein on the pharmacokinetic properties of disopyramide. Journal of Pharmacokinetics and Biopharmaceutics 10: 1–14, 1982

    Google Scholar 

  • Haughey DB, Lima JJ. Influence of concentration-dependent protein binding on serum concentrations and urinary excretion of disopyramide and its metabolite following oral administration. Biopharmaceutics and Drug Disposition 4: 103–112, 1983

    CAS  Google Scholar 

  • Hinderung PH, Garrett ER. Pharmacokinetics of the antiarrhythmic disopyramide in healthy humans. Journal of Pharmacokinetics and Biopharmaceutics 4: 199–230, 1976

    Google Scholar 

  • Johnston A, Henry JA, Warrington SJ, Hamcr NAJ. Pharmacokinetics of oral disopyramide phosphate in patients with renal impairment. British Journal of Clinical Pharmacology 10: 245–248, 1980

    PubMed  CAS  Google Scholar 

  • Karim A. The pharmacokinetics of Norpace. Angiology 26 (Suppl. 1): 85–98, 1975

    PubMed  CAS  Google Scholar 

  • Karim AZ, Nissen C, Azarnoff DL. Clinical pharmacokinetics of disopvramide. Journal of Pharmacokinetics and Biopharmaceutics 10: 465–493, 1982

    PubMed  CAS  Google Scholar 

  • Landmark K, Bredesen JE, Thaulow E, Simonsen S, Amlie JP. Pharmacokinetics of disopyramide in patients with imminent to moderate cardiac failure. European Journal of Clinical Pharmacology 19: 187–192, 1981

    PubMed  CAS  Google Scholar 

  • Lima JJ, Haughey DB, Leier CV. Disopyramide pharmacokinetics and bioavailability following simultaneous administration of disopyramide and 14C-disopyramide. Journal of Pharmacokinetics and Biopharmaceutics 12: 289–313, 1984

    PubMed  CAS  Google Scholar 

  • Meffin PJ, Robert EW, Winkle RA, Harapat S, Peters FA, et al. Role of concentration-depndent plasma protein binding in disopyramide disposition. Jovnal of Pharmacokinetics and Biopharmaceutics 7: 29–46, 1979

    CAS  Google Scholar 

  • Sevka MJ, Matthews SJ, Nightingale CH, Izard MW, Fieldman A, et al. Disopyramide hemodialysis and kinetics in patients requiring long-term hemodialysis. Clinical Pharmacology and Therapeutics 29: 322–326, 1981

    PubMed  CAS  Google Scholar 

  • Shen DD, Cunningham JL, Shudo I, Azarnoff DL. Disposition kinetics of disopyramide in patients with renal insufficiency. Biopharmaceutics and Drug Disposition 1: 133–140, 1980

    CAS  Google Scholar 

  • Ward JW, Kinghorn GR. The pharmacokinetics of disopyramide following myocardial infarction with special reference to oral and intravenous dose regimens. Journal of International Medical Research 4 (Suppl. 1): 49–53, 1976

    PubMed  CAS  Google Scholar 

Encainide

  • Bergstrand RH, Wang T, Roden DM, Avant GR, Sutton WW, et al. Encainide disposition in patients with chronic cirrhosis. Clinical Pharmacology and Therapeutics 40: 148–154, 1986

    PubMed  CAS  Google Scholar 

  • Bergstrand RH, Wang T, Roden DM, Stone WJ, Wolfendon HT, et al. Encainide disposition in patients with renal failure. Clinical Pharmacology and Therapeutics 40: 64–70, 1986

    PubMed  CAS  Google Scholar 

  • Kates RE, Harrison DC, Winkle RA. Metabolite cumulation during long-term oral encainide administration. Clinical Pharmacology and Therapeutics 31: 427–432, 1982

    PubMed  CAS  Google Scholar 

  • Quart BD, Gallo DG, Sami MH, Wood AJJ. Drug interaction studies and encainide use in renal and hepatic impairment. American Journal of Cardiology 58: 104C–113C, 1986

    PubMed  CAS  Google Scholar 

  • Roden DM, Reele SB, Higgins SB, Mayol RF, Gammans RE, et al. Total suppression of ventricular arrhythmias by encainide: pharmacokinetic and electrocardiographic characteristics. New England Journal of Medicine 302: 877–882, 1980

    PubMed  CAS  Google Scholar 

  • Wang T, Roden DM, Wolfenden HT, Woosley RL, Wilkinson GR, et al. Pharmacokinetics of encainide and its metabolites in man. Abstract. Clinical Pharmacology and Therapeutics 31: 278, 1982

    Google Scholar 

  • Wang T, Roden DM, Wolfenden HT, Woosley RL, Wood AJJ, et al. Influence of genetic polymorphism on the metabolism and disposition of encainide in man. Journal of Pharmacology and Experimental Therapeutics 228: 605–611, 1984

    PubMed  CAS  Google Scholar 

  • Winkle RA, Peters F, Kates RE, Tucker C, Harrison DC, et al. Clinical pharmacology and antiarrhythmic efficacy of encainide in patients with chronic ventricular arrhythmias. Circulation 64: 290–296, 1981

    PubMed  CAS  Google Scholar 

  • Woosley RL, Roden DM, Cain MA, Dai GF, Wang T, et al. Co-inheritance of the polymorphic metabolism of encainide and debrisoquine. Clinical Pharmacology and Therapeutics 39: 282–289, 1986

    PubMed  CAS  Google Scholar 

Flecainide

  • Anderson JL, Stewart JR, Perry BS, Van Hamersveld DD, Johnson TA, et al. Oral flecainide acetate for the treatment of ventricular arrhythmias. New England Journal of Medicine 305: 473–477, 1981

    PubMed  CAS  Google Scholar 

  • Braun J, Kollert JR, Becker JL. Pharmacokinetics of flecainide in patients with mild and moderate renal failure compared with patients with normal renal function. European Journal of Clinical Pharmacology 31: 711–714, 1987

    PubMed  CAS  Google Scholar 

  • Cavalli A, Maggioni AP, Marchi S, Volpi A, Latini R. Flecainide half-life prolongation in 2 patients with congestive heart failure and complex ventricular arrhythmias. Clinical Pharmacokinetics 14: 187–188, 1988

    PubMed  CAS  Google Scholar 

  • Conrad GJ, Carlson GL, Frost JW, Ober RE. Human plasma pharmacokinetics of flecainide acetate (R-818). a new antiarrhythmic, following single oral and intravenous doses. Clinical Pharmacology and Therapeutics 25: 218, 1979

    Google Scholar 

  • Conrad GJ, Carlson GL, Frost JW, Ober RE. Plasma concentrations of flecainide acetate, a new antiarrhythmic agent, in humans. Clinical Therapeutics 6: 643–652, 1984

    Google Scholar 

  • Duff HJ, Roden DM, Maffucci RJ, Vesper BS, Conard GJ, et al. Suppression of resistant ventricular arrhythmias by twice daily dosing with flecainide. American Journal of Cardiology 48: 1133–1140, 1981

    PubMed  CAS  Google Scholar 

  • Forland SC, Burgess E, Blair AD, Cutler RE, Kvam DC, et al. Oral flecainide pharmacokinetics in patients with impaired renal function. Journal of Clinical Pharmacology 28: 259–267, 1988

    PubMed  CAS  Google Scholar 

  • Forland SC, Cutler RE, McQuinn RL, Kvam DC, Miller AM, el al. Flecainide pharmacokinetics after multiple dosing in patients with impaired renal function. Journal of Clinical Pharmacology 28: 727–735, 1988

    PubMed  CAS  Google Scholar 

  • Franciosa JA, Wilen M, Weeks CE, Tanenbaum R, Kvam C, Miller AM. Pharmacokinetics and haemodynamic effects of flecainide in patients with chronic low output heart failure. Journal of the American College of Cardiology 1: 699, 1983

    Google Scholar 

  • Hodges M, Haughland MJ, Granrud G, Conard GJ, Asinger RW, et al. Suppression of ventricular ectopic depolarizations by flecainide acetate: a new antiarrhythmic agent. Circulation 65: 879–885, 1982

    PubMed  CAS  Google Scholar 

  • McQuinn RL, Quarforth GJ, Johnson JD, Banitt EH, Palhre SV, et al. Biotransformation and elimination of 14C-flecainide acetate in humans. Drug Metabolism and Disposition 12: 414–420, 1984

    PubMed  CAS  Google Scholar 

  • McQuinn RL, Pentikaincn PJ, Chang SF, Conard GJ. Pharmacokinetics of flecainide in patients with cirrhosis of the liver. Clinical Pharmacology and Therapeutics 44: 566–572, 1988

    PubMed  CAS  Google Scholar 

  • Pentikainen PJ, Chang SF, Conard GJ, McQuinn RL. Pharmacokinetics of flecainide in patients with impaired liver function. Abstract. Acta Pharmacologica Toxicologica 59 (Suppl): 894, 1986

    Google Scholar 

  • Tjandramage TB, Verbesselt R, Van Hecken A, Mullie A, de Schepper PJ. IV and oral flecainide kinetics: absolute bioavailability, effects of foods, antacid (aluminium hydroxide) and multiple oral doses. European Heart Journal 5(Suppl. B): 135, 1984

    Google Scholar 

  • Williams A, McQuinn RL, Walls J. Pharmacokinetics of flecainide acetate in patients with severe renal impairment. Clinical Pharmacology and Therapeutics 43: 449–455, 1988

    PubMed  CAS  Google Scholar 

Mexiletine

  • Baudinet G, Henrard L, Quinaux N, El Allaf D, De Landsheere C, et al. Pharmacokinetics of mexiletine in renal insufficiency. Acta Cardiologica S25: 55–65, 1980

    Google Scholar 

  • Bradbrook ID, Feldschreiber P, Morrison PJ, Rogers HJ, Spector RG. Plasma mexiletine concentrations following combined oral and intramuscular administration. European Journal of Clinical Pharmacology 19: 301–304, 1981

    PubMed  CAS  Google Scholar 

  • Campbell N PS, Kelly JG, Adgey AAJ, Shanks RG. The clinical pharmacology of mexiletine. British Journal of Clinical Pharmacology 6: 103–108, 1978

    PubMed  CAS  Google Scholar 

  • El Allaf D, Carlier J, Dresse A. Effects of age on the pharmacokinetics of mexiletine. International Journal of Clinical Pharmacy Research 4: 303–307, 1986

    Google Scholar 

  • El Allaf D, Henrard L, Crochelet L, Delapierre D, Carlier J, et al. Pharmacokinetics of mexiletine in renal insufficiency. British Journal of Clinical Pharmacology 14: 431–435, 1982

    PubMed  Google Scholar 

  • Grech-Belanger O, Gilbert M, Turgeon J, LeBlanc P-P. Effect of cigarette smoking on mexiletine kinetics. Clinical Pharmacology and Therapeutics 37: 638–643, 1985

    PubMed  CAS  Google Scholar 

  • Haselbarth V, Doevendans JE, Wolf M. Kinetics and bioavailability of mexiletine in healthy subjects. Clinical Pharmacology and Therapeutics 29: 729–736, 1981

    PubMed  CAS  Google Scholar 

  • Kiddie MA, Kaye CM, Turner P, Shaw TRD. The influence of urinary pH on the elimination of mexiletine. British Journal of Clinical Pharmacology 1: 229–232, 1974

    PubMed  CAS  Google Scholar 

  • Klein A, Sami M, Selinger K. Mexiletine kinetics in healthy subjects taking Cimetidine. Clinical Pharmacology and Therapeutics 37: 669–673, 1985

    PubMed  CAS  Google Scholar 

  • Leahey EB, Giardina E-GV, Bigger JT. Effect of ventricular failure on steady state kinetics of mexiletine. Abstract. Clinical Research 26: 239, 1980

    Google Scholar 

  • Ohashi K, Ebihara A, Hashimotot, Hosoda S, Kondo K, el al. Pharmacokinetics and the antiarrhythmic effect of mexiletine in patients with chronic ventricular arrhythmias. Arzneimittel-Forschung 34: 503–507, 1984

    PubMed  CAS  Google Scholar 

  • Pentikainen PJ, Halinen MO, Helin MJ. Pharmacokinetics of oral mexiletine in patients with acute myocardial infarction. European Journal of Clinical Pharmacology 25: 773–777, 1983

    PubMed  CAS  Google Scholar 

  • Pentikainen PJ, Halinen MO, Helin MJ. Pharmacokinetics of intravenous mexiletine in patients with acute myocardial infarction. Journal of Cardiovascular Pharmacology 6: 1–6, 1984

    PubMed  CAS  Google Scholar 

  • Pentikainen PJ, Hietakorpi S, Halinen MO, Lampinen LM. Cirrhosis of the liver markedly impairs the elimination of mexiletine. European Journal of Clinical Pharmacology 30: 83–88, 1986

    PubMed  CAS  Google Scholar 

  • Pentikainen PJ, Koivula IH, Hiltunen HA. Effect of rifampicin treatment on the kinetics of mexiletine. European Journal of Clinical Pharmacology 23: 261–266, 1982

    PubMed  CAS  Google Scholar 

  • Prescott LF, Pottage A, Clements JA. Absorption, distribution and elimination of mexiletine. Postgraduate Medical Journal 53(Suppl. 1): 50–55, 1977

    PubMed  CAS  Google Scholar 

  • Pringle T, Fox J, McNeill JA, Kinney CD, Liddle J, et al. Dose independent pharmacokinetics of mexiletine in healthy volunteers. British Journal of Clinical Pharmacologv 21: 319–321, 1986

    CAS  Google Scholar 

  • Vozeh S, Katz G, Steiner V, Follath F. Population pharmacokinetic parameters in patients treated with oral mexiletine. European Journal of Clinical Pharmacology 23: 445–451, 1982

    PubMed  CAS  Google Scholar 

  • Wang T, Wuellner D, Woosley RL, Stone WJ. Pharmacokinetics and nondialyzability of mexiletine in renal failure. Clinical Pharmacology and Therapeutics 37: 649–653, 1985

    PubMed  CAS  Google Scholar 

Procainamide

  • Christoff TB, Conti DR, Naylor C, Jusko WJ. Procainamide disposition in obesity. Drug Intelligence and Clinical Pharmacy 17: 516–522, 1983

    PubMed  CAS  Google Scholar 

  • Coyle JD, Boudoulas H, MacKjchan JJ, Lima JJ. Concentration dependent clearance of procainamide in normal subjects. Bio-pharmaceutics and Drug Disposition 6: 159–165, 1985

    CAS  Google Scholar 

  • du Souich P, Erill S. Metabolism of procainamide and p-ami-nobenzoic acid in patients with chronic liver disease. Clinical Pharmacology and Therapeutics 22: 588–595, 1977

    PubMed  Google Scholar 

  • Galeazzi RL, Benêt LZ, Sheiner LB. Relationship between the pharmacokinetics and pharmacodynamics of procainamide. Clinical Pharmacology and Therapeutics 20: 278–289, 1976

    PubMed  CAS  Google Scholar 

  • Giardina E-GV, Dreyfuss J, Bigger Jr JT, Shaw JM, Schreiber EC. Metabolism of procainamide in normal and cardiac subjects. Clinical Pharmacology and Therapeutics 19: 339–351, 1976

    PubMed  CAS  Google Scholar 

  • Gibson TP, Atkinson AJ, Matusik E, Nelson LD, Briggs WA. Kinetics of procainamide and N-acetylprocainamide in renal failure. Kidney International 12: 422–429, 1977

    PubMed  CAS  Google Scholar 

  • Gibson TP, Matusik J, Matusik E, Nelson H.A, Wilkinson J, et al. Acetylation of procainamide in man and its relationship to isonicotinic acid hydrazide acetylation phenotype. Clinical Pharmacology and therapeutics 17: 395–399, 1974

    Google Scholar 

  • Graffner C, Johnsson G, Sjogren J. Pharmacokinetics of procainamide intravenously and orally as conventional and slow-release tablets. Clinical Pharmacology and Therapeutics 17: 414–423, 1975

    PubMed  CAS  Google Scholar 

  • Grasela TH, Sheiner LB. Population pharmacokinetics of procainamide from routine clinical data. Clinical Pharmacokinetics 9: 545–554, 1984

    PubMed  CAS  Google Scholar 

  • Kessler KM, Kayden DS, Ester DM, Koslovskis PL, Sequeira R, et al. Procainamide pharmacokinetics in patients with acute myocardial infarction or congestive heart failure. Journal of the American College of Cardiology 7: 1131–1139, 1986

    PubMed  CAS  Google Scholar 

  • Koch-Weser J. Pharmacokinetics of procainamide in man. Annals of the New York Academy of Sciences 179:370–382, 1971

    PubMed  CAS  Google Scholar 

  • Koch-Weser J, Klein SW. Procainamide dosage schedules, plasma concentrations, and clinical effects. Journal of the American Medical Association 215: 1454–1460, 1971

    PubMed  CAS  Google Scholar 

  • Lima JJ, Conti DR, Goldfarb AL, Tilstone WJ, Golden LH, et al. Clinical pharmacokinetics of procainamide infusions in relation to acetylator phenotype. Journal of Pharmacokinetics and Biopharmaceutics 7: 69–85, 1979

    PubMed  CAS  Google Scholar 

  • Lima JJ, Goldfarb AL, Conti DR, Golden LH, Bascomb BL, et al. Safety and efficacy of procainamide infusion. American Journal of Cardiology 43: 98–105, 1979

    PubMed  CAS  Google Scholar 

  • Manion CV, Lalka D, Baer DT, Meyer MB. Absorption kinetics of procainamide in humans. Journal of Pharmaceutical Sciences 66: 981–984, 1977

    PubMed  CAS  Google Scholar 

  • Rodvold KA, Paloucek FP, Jung D, Gallastegui J. Interaction of steady-state procainamide with H;-receptor antagonists Cimetidine and ranitidine. Therapeutic Drug Monitoring 9: 378–383, 1987

    PubMed  CAS  Google Scholar 

Propafenone

  • Connolly SJ, Kates RE, Lebsack CS, Harrison DC, Winkle RA. Clinical pharmacology of propafenone. Circulation 68: 589–596, 1983

    PubMed  CAS  Google Scholar 

  • Connolly S, Lebsack C, Winkle RA, Harrison DC, Kates RE. Propafenone disposition kinetics in cardiac arrhythmia. Clinical Pharmacology and Therapeutics 36: 163–168, 1984

    PubMed  CAS  Google Scholar 

  • Frabetti L, Marchesini B, Capucci A, Cavallini C, Gubelli S, et al. Anti-arrhythmic efficacy of propafenone: evaluation of effective plasma levels following single and multiple doses. European Journal of Clinical Pharmacology 30: 665–671, 1986

    PubMed  CAS  Google Scholar 

  • Hollmann M, Brode E, Holtz D, Kavmeier S, Kehrhahn OH. Investigations on the pharmacokinetics of propafenone in man. Arzneimittel-Forschung 33: 763–770, 1983

    PubMed  CAS  Google Scholar 

  • Keller K, Meyer-Estorf G, Beck OA, Hochrein H. Correlation between serum concentration and pharmacological effects on atrioventricular conduction time of the antiarrhythmic drug propafenone. European Journal of Clinical Pharmacology 13: 17–20, 1978

    PubMed  CAS  Google Scholar 

  • Lee JT, Yee Y-G, Dorian P, Kates RE. Influence of hepatic dysfunction on the pharmacokinetics of propafenone. Journal of Clinical Pharmacology 27: 384–389, 1987

    PubMed  CAS  Google Scholar 

  • Salerno DM, Granrud G, Sharkey P, Asinger R, Hodges M. A controlled trial of propafenone for treatment of frequent and repetitive ventricular premature complexes. American Journal of Cardiology 53: 77–83, 1984

    PubMed  CAS  Google Scholar 

  • Siddoway LA, Thompson KA, McAllister CB, Wang T, Wilkinson GR, et al. Polymorphism of propafenone metabolism and disposition in man: clinical and pharmacokinetic consequences. Circulation 75: 785–791, 1987

    PubMed  CAS  Google Scholar 

  • Siddoway LA, McAllister CB, Wang T, Bergstrand RH, Roden DM, et al. Polymorphie oxidative metabolism of propafenone in man. Abstract. Circulation 68 (Suppl. III): 64, 1983

    Google Scholar 

Quinidine

  • Conrad KA, Molk BL, Chidsey CA. Pharmacokinetic studies of quinidine in patients with arrhythmias. Circulation 55: 1–7, 1977

    PubMed  CAS  Google Scholar 

  • Covinsky JO, Russo Jr J, Kelly KL, Cashman J, Amick EN, et al. Relative bioavailability of quinidine gluconate and quinidine sulfate in healthy volunteers. Journal of Clinical Pharmacology 19: 261–269, 1979

    PubMed  CAS  Google Scholar 

  • Crouthamel WG. The effect of congestive heart failure on quinidine pharmacokinetics. American Heart Journal 90: 335–339, 1975

    PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Pfeifer HJ, Ochs HR, Franke K, MacLaughlin DS, et al. Pharmacokinetics of quinidine in humans after intravenous, intramuscular and oral administration. Journal of Pharmacology and Experimental Therapeutics 202: 365–378, 1977

    PubMed  CAS  Google Scholar 

  • Guentert TW, Holford NHG, Coates PE, Upton RA, Riegelman S. Quinidine pharmacokinetics in man: choice of a disposition model and absolute bioavailability studies. Journal of Pharmacokinetics and Biopharmaceutics 7: 315–330, 1979

    PubMed  CAS  Google Scholar 

  • Kessler KM, Humphries Jr WC, Black M, Span JF. Quinidine pharmacokinetics in patients with cirrhosis or receiving propranolol. American Heart Journal 96: 627–635, 1978

    PubMed  CAS  Google Scholar 

  • Kessler KM, Lowenthal DT, Wamer H, Gibson T, Briggs W, et al. Quinidine elimination in patients with congestive heart failure or poor renal function. New England Journal of Medicine 290: 706–709, 1974

    PubMed  CAS  Google Scholar 

  • Levy R, Sellers A, Mandel WJ, Okun, R. Quinidine pharmacokinetics in anephric and normal subjects. Abstract. Clinical Research 24: 85A, 1976

    Google Scholar 

  • Mason WD, Covinsky JO, Valentine JL, Kelly KL, Weddle OH, et al. Comparative plasma concentrations of quinidine following administration of one intramuscular and three oral formulations to 13 human subjects. Journal of Pharmaceutical Sciences 65: 1325–1329, 1976

    PubMed  CAS  Google Scholar 

  • Ochs HR, Greenblatt DJ, Woo E. Clinical pharmacokinetics of quinidine. Clinical Pharmacokinetics 5: 150–168, 1980

    PubMed  CAS  Google Scholar 

  • Ochs HR, Greenblatt DJ, Woo E, Franke K, Pfeifer HJ, et al. Single and multiple dose pharmacokinetics of oral quinidine sulfate and gluconate. American Journal of Cardiology 41: 770–777, 1978

    PubMed  CAS  Google Scholar 

  • Ochs HR, Greenblatt DJ, Woo E, Smith TW. Reduced quinidine clearance in elderly persons. American Journal of Cardiology 42: 481–485, 1978

    PubMed  CAS  Google Scholar 

  • Powell JR, Okada R, Conrad KA, Guentert TW, Riegelman S. Altered quinidine disposition in a patient with chronic active hepatitis. Postgraduate Medical Journal 58: 82–84, 1982

    PubMed  CAS  Google Scholar 

  • Ueda CT, Dzindzio BS. Quinidine kinetics in congestive heart failure. Clinical Pharmacology and Therapeutics 23: 158–164, 1978

    PubMed  CAS  Google Scholar 

  • Ueda CT, Dzindzio BS. Bioavailability of quinidine in congestive heart failure. British Journal of Clinical Pharmacology 11: 571–577, 1981

    PubMed  CAS  Google Scholar 

  • Ueda CT, Hirschfield DS, Scheinman MM, Rowland M, Williamson BJ, et al. Disposition kinetics of quinidine. Clinical Pharmacology and Therapeutics 19: 30–36, 1976

    PubMed  CAS  Google Scholar 

  • Ueda CT, Williamson BJ, Dzindzio BS. Absolute quinidine bioavailability-Clinical Pharmacology and Therapeutics 20: 260–265, 1976

    CAS  Google Scholar 

Tocainide

  • Braun J, Sorgel F, Engelmaier F, Gluth WP, GeBler U. Pharmacokinetics of tocainide in patients with severe renal failure. European Journal of Clinical Pharmacology 28: 665–670, 1985

    PubMed  CAS  Google Scholar 

  • Elvin AT, Lalke D, Stoeckel K, du Souich P, Axelson JE, et al. Tocainide kinetics and metabolism: effects of phénobarbital and substrates for glucuronyl transferase. Clinical Pharmacology and Therapeutics 28: 652–658, 1980

    PubMed  CAS  Google Scholar 

  • Graffher C, Conradson T-B, Hofvendahl S, Ryden L. Tocainide kinetics after intravenous and oral administration in healthy subjects and in patients with acute myocardial infarction. Clinical Pharmacology and Therapeutics 27: 64–71, 1980

    Google Scholar 

  • Klein MD, Levine PA, Ryan TJ. Antiarrhythmic efficacy, pharmacokinetics and clinical safety of tocainide in convalescent myocardial infarction patients. Chest 77: 726–730, 1980

    PubMed  CAS  Google Scholar 

  • Lalka D, Meyer MB, Duce BR, Elvin AT. Kinetics of the oral antiarrhythmic lidocaine congener, tocainide. Clinical Pharmacology and Therapeutics 19: 757–766, 1976

    PubMed  CAS  Google Scholar 

  • MacMahon B, Bakshi M, Branagan P, Kelly JG, Walsh MJ. Pharmacokinetics and haemodynamic effects of tocainide in patients with acute myocardial infarction complicated by left ventricular failure. British Journal of Clinical Pharmacology 19: 429–434, 1985

    PubMed  CAS  Google Scholar 

  • McDevitt DG, Nies AS, Wilkinson GR, Smith RF, Woosley RL, et al. Antiarrhythmic effects of a lignocaine congener, tocainide, 2-amino-2-6’propionoxylide, in man. Clinical Pharmacology and Therapeutics 19: 396–402, 1976

    PubMed  CAS  Google Scholar 

  • Meffin PJ, Winkle RA, Blaschke TF, Fitzgerald J, Harrison DC, et al. Response optimization of drug dosage: antiarrhythmic studies with tocainide. Clinical Pharmacology and Therapeutics 22: 42–57, 1977

    PubMed  CAS  Google Scholar 

  • Mohiuddin SM, Esterbrooks D, Hilleman DE, Aronow WS, Patterson AJ, et al. Tocainide kinetics in congestive heart failure. Clinical Pharmacology and Therapeutics 34: 596–603, 1983

    PubMed  CAS  Google Scholar 

  • Oltmanns D, Pottage A, Endell W. Pharmacokinetics of tocainide in patients with combined hepatic and renal dysfunction. European Journal of Clinical Pharmacology 25: 787–790, 1983

    PubMed  CAS  Google Scholar 

  • Ronfeld RA, Wolshin EM, Block AJ. On the kinetics and dynamics of tocainide and its metabolites. Clinical Pharmacology and Therapeutics 31: 384–392, 1982

    PubMed  CAS  Google Scholar 

  • Weigers U, Hanrath P, Kuck KH, Pottage A, Graffner C, et al. Pharmacokinetics of tocainide in patients with renal dysfunction and during haemodialysis. European Journal of Clinical Pharmacology 24: 503–507, 1983

    Google Scholar 

  • Winkle RA, Meffin PJ, Fitzgerald JW, Harrison DC. Clinical efficacy and pharmacokinetics of a new orally effective antiarrhythmic, tocainide. Circulation 54: 884–889, 1976

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bauman, J.L., Schoen, M.D. & Hoon, T.J. Practical Optimisation of Antiarrhythmic Drug Therapy Using Pharmacokinetic Principles. Clin Pharmacokinet 20, 151–166 (1991). https://doi.org/10.2165/00003088-199120020-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199120020-00006

Keywords

Navigation