Skip to main content
Log in

Quantifying Hepatic Function in the Presence of Liver Disease with Phenazone (Antipyrine) and its Metabolites

  • Clinical Pharmacokinetics and Disease Processes
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The disposition of Phenazone (antipyrine), a low extraction compound with low protein binding, is known to be altered in the presence of various types of hepatic dysfunction. As such, its pharmacokinetics may be useful in the objective characterisation of altered liver function. Understanding the known effects of various liver disease states upon the disposition of this probe may provide insight into future applications. This article provides a review of background information about normal plasma Phenazone pharmacokinetics, urinary metabolite disposition and tabulations of reported total body clearances of the drug in the presence of cirrhosis, fatty liver, hepatitis and cholestasis in humans. An estimate is made of the sensitivity and specificity of Phenazone testing for the verification of the presence of cirrhosis based on this compiled literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpers DH, Sabcsin SM. In Schiff & Schiff(Eds) Diseases oflhc liver, pp. 949–978, JB Lippincotl Co., Philadelphia, 1987

    Google Scholar 

  • Andreasen PB, Ranek L, Statland BE, Tygstrup N. Clearance of antipyrine-dependence of quantitative liver function. European Journal of Clinical Investigations 4: 114–129, 1974

    Google Scholar 

  • Andreasen PB, Vescll ES. Comparison of plasma levels of anupyrine, tolbutamide, and warfarin after oral and intravenous administration. Clinical Pharmacology and Therapeutics 16: 1059–1065, 1974

    PubMed  CAS  Google Scholar 

  • Arranto AJ, Rautio A, Sotaniemi EA. Pericellular collagen in alcoholics with liver cirrhosis. Research Communications in Chemical Pathology and Pharmacology 35: 121–135, 1982

    PubMed  CAS  Google Scholar 

  • Bach B, Hansen JM, Kampmann JP, Rasmussen SN, Skovsted L. Disposition of antipyrine and phenytoin correlated with age and liver volume in man. Clinical Pharmacokinetics 6: 389–396, 1981

    Article  PubMed  CAS  Google Scholar 

  • Blaschke TF, Protein binding and kinetics of drugs in liver diseases. Clinical Pharmacokinetics 2: 32–44, 1977

    Article  PubMed  CAS  Google Scholar 

  • Boobis AR, Brodic MJ, Kahn GC, Toverud EL, Blair I.A. et al. Comparison of the in vivo and in vitro rates of formation of the three main oxidative metabolites of antipyrinc in man. British Journal of Clinical Pharmacology 12: 771–777, 1981

    Article  PubMed  CAS  Google Scholar 

  • Branch RA Drugs as indicators of hepatic function. Hepatology 2: 97–105, 1982

    Article  PubMed  CAS  Google Scholar 

  • Branch RA, Herbert CM, Read AE. Determinants of scrum antipvnne half-lives in patients with liver disease. Gut 14: 569–573, 1973

    Article  PubMed  CAS  Google Scholar 

  • Branch RA, James JA, Read AE The clearance ofantipyrinc and indocyanine green in normal subjects and in patients with chronic liver disease. Clinical Pharmacologv and Therapeutics 20: 81–89, 1976

    CAS  Google Scholar 

  • Breimer DD. Interindividual variations in drug disposition: clinical implications and methods of investigation. Clinical Pharmacokinetics 8: 371–377, 1983

    Article  PubMed  CAS  Google Scholar 

  • Brodie BB, Axclrod J, Sobcrman R. Estimation ofantipyrinc in biological material. Journal of Biological Chemistry 179: 25–29, 1949

    PubMed  CAS  Google Scholar 

  • Burnett DA, Barak AJ, Tuma DJ, Sorrell MF. Altered elimination ofantipyrinc in patients with acute viral hepatitis. Gut 17: 341–344, 1976

    Article  PubMed  CAS  Google Scholar 

  • Conn HO, Atterbury CE. In Schiff & Schiff(Eds) Diseases of Ihe liver, pp. 725–864, JB Lippincott Co., Philadelphia, 1987

    Google Scholar 

  • Danhof M, Breimer DD. Studies on Ihe different metabolic pathways of antipyrine in man: I. Oral administration of 250. 500 and 1000mg to healthy volunteers. British Journal of Clinical Pharmacology 8: 529–537, 1979

    Article  PubMed  CAS  Google Scholar 

  • Danhof M, de Grool-van der Vis E, Breimer DD. Assay of antipyrine and its primary metabolites in plasma, saliva and urine by high-performance liquid chromatography and some preliminary results in man. Pharmacology 18: 210–233, 1979

    Article  PubMed  CAS  Google Scholar 

  • Danhof M., Idle JR, Teunissen MWE, Sloan TP, Breimer DD. et al. Influence of the genetically controlled deficiency in debrisoquinc hydroxylation on antipyrine metabolite formation Pharmacology 22: 349–358, 1981

    CAS  Google Scholar 

  • Danhof M, Teunissen MWE, Antipyrine as a model drug to assess oxidative drug metabolizing activity in man. Pharmacy International 5: 11–15, 1984

    CAS  Google Scholar 

  • Danhof M, Teunissen MWE, Breimer DD. 3-hydroxymethyl antipyrine excretion in urine after an oral dose of antipyrine: a reconsideration of previously published data and synthesis of a pure reference substance. Pharmacology 24: 181–184, 1982

    Article  PubMed  CAS  Google Scholar 

  • Danhof M, van Zuilen A, Boeijinga JK, Breimer DD. Studies of the different metabolic pathways of antipyrine in man. European Journal of Clinical Pharmacology 21: 433–441, 1982b

    Article  PubMed  CAS  Google Scholar 

  • Desai NK, Karbhari K, Paul T, Kshirsagar NA, Shelh UK. Prolongation of antipyrine half-life after correction of severe anaemia due to hookworm infestation. British Journal of Clinical Pharmacology 13: 745–747, 1982

    Article  PubMed  CAS  Google Scholar 

  • Dylewicz P, Kirch W, Santos SR, Hutt HJ, Monig H. et al. Bioavailability and elimination of nitrendipine in liver disease. European Journal of Clinical Pharmacology 32: 563–568, 1987

    Article  PubMed  CAS  Google Scholar 

  • Eichelbaum M, Ochs HR, Roberts G, Somogyi A. Pharmacokinetics and metabolism of antipyrine (Phenazone) after intravenous and oral administration. Arzneimittel-Forschung 32: 575–578, 1982

    PubMed  CAS  Google Scholar 

  • Eichelbaum M, Sonntag B, Dengler HJ. HPLC determination antipyrine metabolites. Pharmacology 23: 192–202, 1981

    Article  PubMed  CAS  Google Scholar 

  • Elfslrom J, Lindgren S. Disappearance of Phenazone from plasma in patients with obstructive jaundice. European Journal of Clinical Pharmacology 7: 467–471, 1974

    Article  Google Scholar 

  • Farrell GC, Cooksley WGE, Han P, Powell LW. Drug metabolism in liver disease: identification of patients with impaired hepatic drug metabolism. Gastroenterology 75: 580–588, 1978

    PubMed  CAS  Google Scholar 

  • Farrell GC, Zaluzny L. Accuracy and clinical utility of simplified tests of antipyrine metabolism. British Journal of Clinical Pharmacology 18: 559–565, 1984

    Article  PubMed  CAS  Google Scholar 

  • Gibaldi M, Perrier D. Pharmacokinetics 2nd ed., pp. 199–219, Marcel Dekker Inc., New York, 1982

    Google Scholar 

  • Goldberg DM, Brown D. Advances in the application of biochemical tests to diseases of the liver and biliary tract: their role in diagnosis, prognosis, and the elucidation of pathogenetic mechanisms. Clinical Biochemistry 20: 127–148, 1987

    Article  PubMed  CAS  Google Scholar 

  • Greenblatt DJ, Abernethey DR, Divoll M. Kinetics of low-dose intravenous antipyrine: use of liquid chromatography. International Journal of Clinical Pharmacology Therapy and Toxicology 21: 51–55, 1983

    CAS  Google Scholar 

  • Grcenblatt DJ, Divoll MK, Harmatz JS, Sader RJ. Antipyrine absorption and disposition in the elderly. Pharmacology 36: 125–133, 1988

    Article  Google Scholar 

  • Greisen G, Andreasen PB. Two compartment analysis of plasma elimination of Phenazone in normals and in patients with cirrhosis of the liver. Acta Pharmacologics ci Toxicologica 38: 49–58, 1976

    Article  CAS  Google Scholar 

  • Griner PF, Mayewski RJ, Mushlin Al, Greenland P. Selection and interpretation of diagnostic tests and procedures. Annals of Internal Medicine 94: 553–600, 1981

    Google Scholar 

  • Homcida M, Roberts CJC, Halliwell M, Read AE, Branch RA. Antipyrine clearance per unit volume liver: an assessment of hepatic function in chronic liver disease. Gut 20: 596–601, 1979

    Article  Google Scholar 

  • Horvath T, Par A, Past T, Bero T, Tapsonyi Z, et al. Disorders of biotransformation during the progression of alcoholic liver disease. Acta Medica Hungarica 43: 351–357, 1986

    PubMed  CAS  Google Scholar 

  • Horvath T, Par A, Past T, Tapsonyi Z, Ruzsa CS. et al. Drug metabolism in alcoholic liver disease. Acta Medica Acadcmiac Scientiarum Hungaricae 39: 169–177, 1982

    Article  CAS  Google Scholar 

  • Jacqz E, Hall SD, Branch RA. Genetically determined polymorphisms in drug oxidation. Hepatology 6: 1020–1032, 1986

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki S, Sugiyama Y, Tatsuji I, Hanano M, Beppu T. et al. Hepatic clearances of antipyrine, indocyanine green, and galactose in normal subjects and in patients with chronic liver diseases. Clinical Pharmacology and Therapeutics 44: 217–224, 1988

    Article  PubMed  CAS  Google Scholar 

  • Kirch W, Ohnhaus EE, Dylewicz P, Pabst J, Slorslein L. Bioavailability and elimination of digitoxin in patients with hepatorenal insufficiency. American Heart Journal 111: 325–329, 1986

    Article  PubMed  CAS  Google Scholar 

  • Krausz Y, Zylber-Katz E, Levy M. Antipyrine clearance and its correlation to routine liver function tests in patients with liver disease. International Journal of Clinical Pharmacology Therapv and Toxicology 18: 253–257, 1980

    CAS  Google Scholar 

  • Larrey D, Lebrec D, Bcrcoff E, Pcssayre D. Propranolol does not further decrease the clearance of antipyrine in patients with alcoholic cirrhosis. Clinical Science 65: 203–205, 1983

    PubMed  CAS  Google Scholar 

  • Loft S, Dossing M, Poulsen HE. Influence of age and consumption of tobacco, alcohol and caffeine on antipyrine clearance. Human Toxicology 7: 277–280, 1988

    Article  PubMed  CAS  Google Scholar 

  • Loft S, Olesen KL, Dossing M. Increased susceptibility to liver disease in relation to alcohol consumption in women. Scandinavian Journal of Gastroenterology 22: 1251–1256, 1987

    Article  PubMed  CAS  Google Scholar 

  • McPherson GAD, Benjamin IS, Boobis AR, Blumgarl LH. Antipyrine elimination in patients with obstructive jaundice: a predictor of outcome. American Journal of Surgery 149: 140–143, 1985

    Article  PubMed  CAS  Google Scholar 

  • McPherson GAD, Benjamin IS, Boobis AR, Brodie MJ, Hampden C. et al. Antipyrine elimination as a dynamic test of hepatic functional integrity in obstructive jaundice. Gut 23: 734–738, 1982

    Article  PubMed  CAS  Google Scholar 

  • McQuinn RL, Pcntikainen PJ, Chang SF, Conard CJ. Pharmaco-kinetics of flccainide in patients with cirrhosis of the liver. Clinical Pharmacology and Therapeutics 44: 566–572, 1988

    Article  PubMed  CAS  Google Scholar 

  • Meffin PJ, Williams RL, Blaschke TF, Rowland M. Application of salivary concentration data to pharmacokinetic studies with antipyrine. Journal of Pharmacological Sciences 66: 135–137, 1977

    Article  CAS  Google Scholar 

  • Mehta MU, Vcnkataramanan R, Burckarl GJ, Ptachcinski RJ, Yang SL. et al. Antipyrine kinetics of liver disease and liver transplantation. Clinical Pharmacology and Therapeutics 39: 372–377, 1986

    Article  PubMed  CAS  Google Scholar 

  • Miguel JP, Vuitton D, Dcschamps JP, Allcmand H, Joanne C. et al. Cholestasis and hepatic drug metabolism: comparison of metabolic clearance rate of antipyrine in patients with intrahepatic or extrahepatic cholestasis. Digestive Diseases and Sciences 26: 718–722, 1981

    Article  Google Scholar 

  • Miguet JP, Vuitton D, Thebault-Lucas A, Joanne C, Dhumeaux D. Spironolactone and enzyme induction in patients with alcoholic cirrhosis. Gastroenterology 78: 996–10000, 1980

    PubMed  CAS  Google Scholar 

  • Mikati MA, Szabo GK, Pylilo RJ, LeDuc BW, Browne TR. et al. Improved high-performance liquid chromatographic assay of antipyrine, hydroxymelhylantipyrinc. 4-hydroxyantipyrinc and norantipyrinc in urine. Journal of Chromatography-Biomedical Applications 433: 305–311, 1988

    Article  PubMed  CAS  Google Scholar 

  • Moncrieff J. Simultaneous assay of antipyrine and its major metabolites in urine using high-performance liquid chromatography and on-line solid phase sample clean-up. Journal of Chromatography-Biomedical Applications 383: 425–431, 1986

    Article  PubMed  CAS  Google Scholar 

  • Monig H, Wilhelms J, John S, Ohnhaus EE Biliary excretion of antipyrinc and its metabolites after cholecystectomy. British Journal of Clinical Pharmacology 25: 279–280, 1988

    Article  PubMed  CAS  Google Scholar 

  • Narange APS, Datla DV. Kharc AK Impairment of drug clearance in patients with diabetes mellitus and liver cirrhosis. Indian Journal of Medical Research 85: 321–325, 1987

    Google Scholar 

  • Narange APS, Datla DV, Mathur VS. Impairment of drug elimination in patient with liver disease. International Journal of Clinical Pharmacology Therapy and Toxicology 23: 28–32, 1985

    Google Scholar 

  • Narangc APS, Datla DV, Nath N, Mathur VS. Impairment of hepatic drug metabolism in patients with acute viral hepatitis. European Journal of Drug Metabolism and Pharmacokinetics 7: 255–258, 1982

    Article  Google Scholar 

  • Noda S, Kawata S, Miyoshi S, Minami Y, Tarui S. Anlipvnne clearance per unit liver volume in cirrhotics with and without hepatocellular carcinoma indicating a correlation with histological change of the liver. Gastroenterology Japonica 24: 159–163, 1989

    CAS  Google Scholar 

  • Paramsothy J, Strange R, Sharif H, Collins M, Shaw P. et al. The use of antipyrinc clearance to measure liver damage in psoriatic patients receiving methotrexate British Journal of Dermatology 119: 761–765, 1988

    Article  PubMed  CAS  Google Scholar 

  • Penno MB, Vesell ES. Monogenic control of variations in antipyrinc metabolic formation. Journal of Clinical Investigation 71: 1698–1709, 1983

    Article  PubMed  CAS  Google Scholar 

  • Pentikaincn PJ, Hietakorpi S, Halinen MO Lampinen LM Cirrhosis of the liver markedly impairs the elimination of mex-iletine. European Journal of Clinical Pharmacology 30: 83–88, 1986

    Article  Google Scholar 

  • Pentikaincn PJ, Valisalmi L, Himberg JJ, Crevoisicr C. Pharmacokinetics of midazolam following intravenous and oral administration in patients with chronic liver disease and in healthy subjects. Journal of Clinical Pharmacology 29: 272–277, 1989

    Google Scholar 

  • Poulsen HE, Loft S. Antipyrine as a model drug to study hepatic drug-metabolizing capacity. Journal of Hepatology 6: 374–382, 1988

    Article  PubMed  CAS  Google Scholar 

  • Prescott LF, Adjepon-Yamoak KK, Roberts E. Rapid gas-liquid chromatographic estimation of antipyrinc in plasma. Journal of Pharmacy and Pharmacology 25: 205–207, 1973

    Article  PubMed  CAS  Google Scholar 

  • Ramsoe K, Andreasen PB, Ranek L. Functioning liver mass in uncomplicated and fulminant acute hepatitis. Scandinavian Journal of Gastroenterology 15: 65–72, 1980

    Article  PubMed  CAS  Google Scholar 

  • Rautio A, Sotaniemi EA, Pelkonc RO, Luoma PV. Treatment of alcoholic cirrhosis with enzyme inducers. Clinical Pharmacology and Therapeutics 28: 629–637, 1980

    Article  PubMed  CAS  Google Scholar 

  • Rimmer EM, Roulledgc PA, Tsanaclis LM, Richens A. Pharmacokinetics of antipyrinc in epileptic patients. British Journal of Clinical Pharmacology 21: 511–514, 1986

    Article  PubMed  CAS  Google Scholar 

  • Rowland M, Tozer T. Clinical pharmacokinetics: concepts and applications pp. 347–375, Lee and Febiger, Philadelphia, 1989

    Google Scholar 

  • Salmela P, Sotaniemi Ea, Pelkoncn RO. The evaluation of the drug-melabolizing capacity in patients with diabetes mellitus. Diabetes 29: 788–794, 1980

    Article  PubMed  CAS  Google Scholar 

  • Schcwnk M Mucosal biotransformation Toxologic Pathology 16: 138–146, 1988

    Article  Google Scholar 

  • Soberman R, Brodie BB, Levy BB, Axelrod J, Hollander V. et al. The use of antipyrinc in the measurement of total body water in man. Journal of Biological Chemistry 179: 31–42, 1949

    PubMed  CAS  Google Scholar 

  • Sotaniemi Ea, Nicmcla O, Risteli L, Stenbback F, Pelkonen RO, et al. Fibrotic process and drug metabolism in alcoholic liver disease. Clinical Pharmacology and Therapeutics 40: 46–55, 1986

    Article  PubMed  CAS  Google Scholar 

  • St Peter JV, Awni WM. Modified high-performance liquid chromatographic assay for antipyrinc and its three major metabolites in urine. Journal of Chromatography — Biomedical Applications 494: 424–427, 1989

    Article  PubMed  CAS  Google Scholar 

  • Stevenson IH. Factors influencing antipyrinc elimination. British Journal of Clinical Pharmacology 4: 261–265, 1977

    Article  PubMed  CAS  Google Scholar 

  • Sultatos LG, Dvorchik BH, Vesell ES, Shand DG, Branch RA. Further observations on relationships between antipyrinc half-life, clearance and volume of distribution: an appraisal of alternative kinetic parameters used to assess the elimination of antipyrinc. Clinical Pharmacokinetics 5: 263–273, 1980

    Article  PubMed  CAS  Google Scholar 

  • Svensson CK. Is blood sampling for determination of antipyrinc pharmacokinetics in healthy volunteers ethically justified? Clinical Pharmacology and Therapeutics 44: 365–368, 1988

    Article  PubMed  CAS  Google Scholar 

  • Tcunisscn MWE, DeLecdc LGJ, Boeijinga JK, Brcimcr DD. Correlation between antipyrinc metabolite formation and theophylline metabolism in humans after simultaneous single-dose administration and at steady stale. Journal of Pharmacology and Experimental Therapeutics 233: 770–775, 1985a

    Google Scholar 

  • Tcunisscn MWE, Kampf D, Roots I, Vermculen NPE, Briemer DD. Automated high-performance liquid chromatographic determination of antipyrinc and its metabolites in plasma, saliva and urine, including 4.4´-dihydroxyantipyrine. Journal of Chromatography — Biomedical Applications 278: 367–378, 1983

    Article  Google Scholar 

  • Tcunisscn MWE, Spoclslra P, Koch CW, Wceda B, Van Duyn W. et al. Antipyrine clearance and metabolite formation in patients with alcoholic cirrhosis. British Journal of Clinical Pharmacology 18: 707–715, 1984

    Article  Google Scholar 

  • Tschanz C, Hignite CE, Rollins De, Shand DG. Antipyrine metabolism in cirrhotics. Abstract. Clinical Pharmacology and Therapeutics 29: 286, 1981

    Google Scholar 

  • Uchino H, Inaba T, Kalow W. Human metabolism of antipyrinc labelled with 14C in the pyrazolone ring or in the N-mcthyl group. Xcnobiotica 13: 155–162, 1983

    Article  CAS  Google Scholar 

  • Vesell ES. Commentary, the antipyrinc test in clinical pharmacology: conceptions and misconceptions. Clinical Pharmacology and Therapeutics 26: 275–286, 1979

    PubMed  CAS  Google Scholar 

  • Vesell ES. On the significance of host factors that affect drug disposition. Clinical Pharmacology and Therapeutics 31: 1–7, 1982

    Article  PubMed  CAS  Google Scholar 

  • Vesell ES. Polymorphisms of antipyrinc and theophylline metabolism in man: molecular and clinical implications. Xcnobiotica 16: 401–420, 1986

    Article  CAS  Google Scholar 

  • Vesell ES, Passananti GT, Glcnwnght PA, Dvorchik BH., Studies on the disposition of antipyrinc, aminopyrine, and phenacctin using plasma, saliva, and urine. Clinical Pharmacology and Therapeutics 18: 259–272, 1975

    PubMed  CAS  Google Scholar 

  • Vestal RE, Wood AJJ. Influence of age and smoking on drug kinetics in man: studies using model compounds. Clinical Pharmacokinetics 5: 309–319, 1980

    Article  PubMed  CAS  Google Scholar 

  • Villeneuve JP, Thibcault MJ, Ampelas M, Fortunet-Fouin H, LaMarre L. et al. Drug disposition in patients with HBsAg-posilive chronic liver disease. Digestive Diseases and Sciences 32: 710–714, 1987

    Article  PubMed  CAS  Google Scholar 

  • Vuitlon D, Miguel JP, Camelot G, Deflafin C, Joanne C. et al. Relationship between metabolic clearance rate of antipyrinc and hepatic microsomal drug-oxidizing enzyme activities in humans without liver disease. Gastroenterology 80: 112–118, 1981

    Google Scholar 

  • Wensmg G, Hocnsch HP, Ohnhaus EE. Correlation between microsomal enzyme activity and antipyrine elimination in alcoholics and nonalcoholics with various liver diseases. Abstract no. P11ID-6. Clinical Pharmacology and Therapeutics 45: 166, 1989

    Google Scholar 

  • Wisscl PS, Kappas A. The absence of significant biliary excretion of antipyrinc or its metabolites in humans. Clinical Pharmacology and Therapeutics 41: 85–87, 1987

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

St Peter, J.V., Awni, W.M. Quantifying Hepatic Function in the Presence of Liver Disease with Phenazone (Antipyrine) and its Metabolites. Clin Pharmacokinet 20, 50–65 (1991). https://doi.org/10.2165/00003088-199120010-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199120010-00004

Keywords

Navigation