Skip to main content

Pharmacokinetics and Pharmacodynamics of Drugs in Liver Disease

  • Chapter
  • First Online:
Peri-operative Anesthetic Management in Liver Transplantation

Abstract

Any therapeutic substance that is administered to the body undergoes metabolism and elimination. Metabolism is the biotransformation of all the endogenous and exogenous compounds within our body which converts them into water soluble substances which may be readily eliminated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lautt WW. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. Am J Physiol Gastrointest Liver Physiol. 1985;249(5):G549–56.

    Article  CAS  Google Scholar 

  2. Nelson DR. The cytochrome P450 homepage. Hum Genomics. 2009;4(1):59–65.

    Article  CAS  Google Scholar 

  3. Preissner SC, Hoffmann MF, Preissner R, Dunkel M, Gewiess A, Preissner S. Polymorphic cytochrome P450 enzymes (CYPs) and their role in personalized therapy. PLoS One. 2013;8(12):e82562.

    Article  Google Scholar 

  4. Rendic S, Carlo FJD. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev. 1997;29(1–2):413–580.

    Article  CAS  Google Scholar 

  5. Guengerich FP. Human cytochrome P450 enzymes. In: Ortiz Montellano PR, editor. Cytochrome P450. Springer; 1995. p. 473–535.

    Chapter  Google Scholar 

  6. Testa B, Krämer SD. The biochemistry of drug metabolism–an introduction: part 1. principles and overview. Chem Biodivers. 2006;3(10):1053–101.

    Article  CAS  Google Scholar 

  7. Almazroo OA, Miah MK, Venkataramanan R. Drug metabolism in the liver. Clin Liver Dis. 2017;21(1):1–20.

    Article  Google Scholar 

  8. Faber KN, Müller M, Jansen PL. Drug transport proteins in the liver. Adv Drug Deliv Rev. 2003;55(1):107–24.

    Article  CAS  Google Scholar 

  9. Chandra P, Brouwer KL. The complexities of hepatic drug transport: current knowledge and emerging concepts. Pharm Res. 2004;21(5):719–35.

    Article  CAS  Google Scholar 

  10. Roberts MS, Magnusson BM, Burczynski FJ, Weiss M. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications. Clin Pharmacokinet. 2002;41(10):751–90.

    Article  CAS  Google Scholar 

  11. Blaschke TF, Rubin PC. Hepatic first-pass metabolism in liver disease. Clin Pharmacokinet. 1979;4(6):423–32.

    Article  CAS  Google Scholar 

  12. Wilkinson GR, Shand DG. A physiological approach to hepatic drug clearance. Clin Pharmacol Ther. 1975;18(4):377–90.

    Article  CAS  Google Scholar 

  13. Rowland M, Benet LZ, Graham GG. Clearance concepts in pharmacokinetics. J Pharmacokinet Biopharm. 1973;1(2):123–36.

    Article  CAS  Google Scholar 

  14. Verbeeck RK. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur J Clin Pharmacol. 2008;64(12):1147–61.

    Article  CAS  Google Scholar 

  15. Blaschke TF. Effect of liver disease on dose optimization. International congress series. Amsterdam: Elsevier; 2001. p. 247–58.

    Google Scholar 

  16. Zuckerman MJ, Menzies IS, Ho H, Gregory GG, Casner NA, Crane RS, et al. Assessment of intestinal permeability and absorption in cirrhotic patients with ascites using combined sugar probes. Dig Dis Sci. 2004;49(4):621–6.

    Article  Google Scholar 

  17. Verne GN, Soldevia-Pico C, Robinson ME, Spicer KM, Reuben A. Autonomic dysfunction and gastroparesis in cirrhosis. J Clin Gastroenterol. 2004;38(1):72–6.

    Article  Google Scholar 

  18. Roland BC, Garcia-Tsao G, Ciarleglio MM, Deng Y, Sheth A. Decompensated cirrhotics have slower intestinal transit times as compared with compensated cirrhotics and healthy controls. J Clin Gastroenterol. 2013;47(10):888–93.

    Article  Google Scholar 

  19. Delco F, Tchambaz L, Schlienger R, Drewe J, Krahenbuhl S. Dose adjustment in patients with liver disease. Drug Saf. 2005;28(6):529–45.

    Article  CAS  Google Scholar 

  20. Homeida M, Jackson L, Roberts CJ. Decreased first-pass metabolism of labetalol in chronic liver disease. Br Med J. 1978;2(6144):1048–50.

    Article  CAS  Google Scholar 

  21. Neugebauer G, Gabor M, Reiff K. Pharmacokinetics and bioavailability of carvedilol in patients with liver cirrhosis. Drugs. 1988;36(6):148–54.

    Article  Google Scholar 

  22. Pentikäinen PJ, Välisalmi L, Himberg J-J, Crevoisier C. Pharmacokinetics of midazolam following intravenous and oral administration in patients with chronic liver disease and in healthy subjects. J Clin Pharmacol. 1989;29(3):272–7.

    Article  Google Scholar 

  23. Trouvin J-H, Farinotti R, Haberer JP, Servin F, Chauvin M, Duvaldestin P. Pharmacokinetics of midazolam in anaesthetized cirrhotic patients. Br J Anaesth. 1988;60(7):762–7.

    Article  CAS  Google Scholar 

  24. Gorski JC, Jones DR, Haehner-Daniels BD, Hamman MA, O’Mara EM Jr, Hall SD. The contribution of intestinal and hepatic CYP3A to the interaction between midazolam and clarithromycin. Clin Pharmacol Ther. 1998;64(2):133–43.

    Article  CAS  Google Scholar 

  25. Delco F, Tchambaz L, Schlienger R, Drewe J, Krähenbühl S. Dose adjustment in patients with liver disease. Drug Saf. 2005;28(6):529–45.

    Article  CAS  Google Scholar 

  26. Bartoletti M, Giannella M, Lewis RE, Viale P. Bloodstream infections in patients with liver cirrhosis. Virulence. 2016;7(3):309–19.

    Article  Google Scholar 

  27. Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840–51.

    Article  CAS  Google Scholar 

  28. Villeneuve J-P, Pichette V. Cytochrome P450 and liver diseases. Curr Drug Metab. 2004;5(3):273–82.

    Article  CAS  Google Scholar 

  29. Frye RF, Zgheib NK, Matzke GR, Chaves-Gnecco D, Rabinovitz M, Shaikh OS, et al. Liver disease selectively modulates cytochrome P450–mediated metabolism. Clin Pharmacol Ther. 2006;80(3):235–45.

    Article  CAS  Google Scholar 

  30. Jodynis-Liebert J, Flieger J, Matuszewska A, Juszczyk J. Serum metabolite/caffeine ratios as a test for liver function. J Clin Pharmacol. 2004;44(4):338–47.

    Article  CAS  Google Scholar 

  31. Pelkonen O, Rautio A, Raunio H, Pasanen M. CYP2A6: a human coumarin 7-hydroxylase. Toxicology. 2000;144(1–3):139–47.

    Article  CAS  Google Scholar 

  32. Sotaniemi EA, Rautio A, Backstrom M, Arvela P, Pelkonen O. CYP3A4 and CYP2A6 activities marked by the metabolism of lignocaine and coumarin in patients with liver and kidney diseases and epileptic patients. Br J Clin Pharmacol. 1995;39(1):71–6.

    Article  CAS  Google Scholar 

  33. Relling MV, Aoyama T, Gonzalez FJ, Meyer UA. Tolbutamide and mephenytoin hydroxylation by human cytochrome P450s in the CYP2C subfamily. J Pharmacol Exp Ther. 1990;252(1):442–7.

    CAS  Google Scholar 

  34. Brøsen K, Meyer UA, Goldstein JA. A multifamily study on the relationship between CYP2C19 genotype and s-mephenytoin oxidation phenotype. Pharmacogenetics. 1995;5(5):312–7.

    Article  Google Scholar 

  35. Adedoyin A, Arns PA, Richards WO, Wilkinson GR, Branch RA. Selective effect of liver disease on the activities of specific metabolizing enzymes: investigation of cytochromes P450 2C19 and 2D6. Clin Pharmacol Ther. 1998;64(1):8–17.

    Article  CAS  Google Scholar 

  36. Woolsey SJ, Mansell SE, Kim RB, Tirona RG, Beaton MD. CYP3A activity and expression in nonalcoholic fatty liver disease. Drug Metab Dispos. 2015;43(10):1484–90.

    Article  CAS  Google Scholar 

  37. Oellerich M, Armstrong VW. The MEGX test: a tool for the real-time assessment of hepatic function. Ther Drug Monit. 2001;23(2):81–92.

    Article  CAS  Google Scholar 

  38. Huang Y-S, Lee S-D, Deng J-F, Wu J-C, Lu R-H, Lin Y-F, et al. Measuring lidocaine metabolite—monoethylglycinexylidide as a quantitative index of hepatic function in adults with chronic hepatitis and cirrhosis. J Hepatol. 1993;19(1):140–7.

    Google Scholar 

  39. Ochs HR, Greenblatt DJ, Verburg-Ochs B, Matlis R. Temazepam clearance unaltered in cirrhosis. Am J Gastroenterol. 1986;81(1):80–4.

    CAS  Google Scholar 

  40. Kim JW, Phongsamran PV. Drug-induced liver disease and drug use considerations in liver disease. J Pharm Pract. 2009;22(3):278–89.

    Article  Google Scholar 

  41. George J. Elevated serum β-glucuronidase reflects hepatic lysosomal fragility following toxic liver injury in rats. Biochem Cell Biol. 2008;86(3):235–43.

    Article  CAS  Google Scholar 

  42. Tanaka Y, Kobayashi Y, Gabazza EC, Higuchi K, Kamisako T, Kuroda M, et al. Increased renal expression of bilirubin glucuronide transporters in a rat model of obstructive jaundice. Am J Physiol Gastrointest Liver Physiol. 2002;282(4):G656–62.

    Article  CAS  Google Scholar 

  43. Hoyumpa AM, Schenker S. Is glucuronidation truly preserved in patients with liver disease? Hepatology. 1991;13(4):786–95.

    Article  CAS  Google Scholar 

  44. Sugatani J. Function, genetic polymorphism, and transcriptional regulation of human UDP-glucuronosyltransferase (UGT) 1A1. Drug Metab Pharmacokinet. 2013;28:83.

    Article  CAS  Google Scholar 

  45. Lin JH, Wong BK. Complexities of glucuronidation affecting in vitro-in vivo extrapolation. Curr Drug Metab. 2002;3(6):623–46.

    Article  CAS  Google Scholar 

  46. Furlan V, Demirdjian S, Bourdon O, Magdalou J, Taburet A-M. Glucuronidation of drugs by hepatic microsomes derived from healthy and cirrhotic human livers. J Pharmacol Exp Ther. 1999;289(2):1169–75.

    CAS  Google Scholar 

  47. Palatini P, De Martin S, Pegoraro P, Orlando R. Enzyme inhibition and induction in liver disease. Curr Clin Pharmacol. 2008;3(1):56–69.

    Article  CAS  Google Scholar 

  48. Gariépy L, Fenyves D, Kassissia I, Villeneuve J-P. Clearance by the liver in cirrhosis. II. Characterization of propranolol uptake with the multiple-indicator dilution technique. Hepatology. 1993;18(4):823–31.

    Article  Google Scholar 

  49. Hardwick RN, Fisher CD, Canet MJ, Scheffer GL, Cherrington NJ. Variations in ATP-binding cassette transporter regulation during the progression of human nonalcoholic fatty liver disease. Drug Metab Dispos. 2011;39(12):2395–402.

    Article  CAS  Google Scholar 

  50. Klaassen CD, Watkins JB. Mechanisms of bile formation, hepatic uptake, and biliary excretion. Pharmacol Rev. 1984;36(1):1–67.

    Article  CAS  Google Scholar 

  51. Elferink RPO, Meijer DK, Kuipers F, Jansen PL, Groen AK, Groothuis GM. Hepatobiliary secretion of organic compounds; molecular mechanisms of membrane transport. Biochim Biophys Acta Rev Biomembr. 1995;1241(2):215–68.

    Article  Google Scholar 

  52. Padda MS, Sanchez M, Akhtar AJ, Boyer JL. Drug-induced cholestasis. Hepatology. 2011;53(4):1377–87.

    Article  CAS  Google Scholar 

  53. Pauli-Magnus C, Meier PJ. Hepatobiliary transporters and drug-induced cholestasis. Hepatology. 2006;44(4):778–87.

    Article  CAS  Google Scholar 

  54. Bramow S, Ott P, Thomsen Nielsen F, Bangert K, Tygstrup N, Dalhoff K. Cholestasis and regulation of genes related to drug metabolism and biliary transport in rat liver following treatment with cyclosporine A and sirolimus (Rapamycin). Pharmacol Toxicol. 2001;89(3):133–9.

    Article  CAS  Google Scholar 

  55. Tchambaz L, Schlatter C, Jakob M, Krâhenbûhl A, Wolf P, Krahenbuhl S. Dose adaptation of antineoplastic drugs in patients with liver disease. Drug Saf. 2006;29(6):509–22.

    Article  CAS  Google Scholar 

  56. Erly B, Carey W, Kapoor B, McKinney J, Tam M, Wang W. Hepatorenal syndrome: a review of pathophysiology and current treatment options. Semin Interv Radiol. 2015;32(4):445–54.

    Article  Google Scholar 

  57. Brockmöller J, Thomsen T, Wittstock M, Coupez R, Lochs H, Roots I. Pharmacokinetics of levetiracetam in patients with moderate to severe liver cirrhosis (Child-Pugh classes A, B, and C): characterization by dynamic liver function tests. Clin Pharmacol Ther. 2005;77(6):529–41.

    Article  Google Scholar 

  58. Brater DC. Update in diuretic therapy: clinical pharmacology. Seminars in nephrology. Amsterdam: Elsevier; 2011. p. 483–94.

    Google Scholar 

  59. Woitas RP, Stoffel-Wagner B, Flommersfeld S, Poege U, Schiedermaier P, Klehr H-U, et al. Correlation of serum concentrations of cystatin C and creatinine to inulin clearance in liver cirrhosis. Clin Chem. 2000;46(5):712–5.

    Article  CAS  Google Scholar 

  60. Caregaro L, Menon F, Angeli P, Amodio P, Merkel C, Bortoluzzi A, et al. Limitations of serum creatinine level and creatinine clearance as filtration markers in cirrhosis. Arch Intern Med. 1994;154(2):201–5.

    Article  CAS  Google Scholar 

  61. Bergasa NV, Rothman RB, Mukerjee E, Vergalla J, Jones EA. Up-regulation of central mu–opioid receptors in a model of hepatic encephalopathy: a potential mechanism for increased sensitivity to morphine in liver failure. Life Sci. 2002;70(14):1701–8.

    Article  CAS  Google Scholar 

  62. Hasselstrom J, Eriksson S, Persson A, Rane A, Svensson JO, Sawe J. The metabolism and bioavailability of morphine in patients with severe liver cirrhosis. Br J Clin Pharmacol. 1990;29(3):289–97.

    Article  CAS  Google Scholar 

  63. Vilstrup H, Amodio P, Bajaj J, Cordoba J, Ferenci P, Mullen KD, et al. Hepatic encephalopathy in chronic liver disease: 2014 Practice Guideline by the American Association for the Study of Liver Diseases and the European Association for the Study of the Liver. Hepatology. 2014;60(2):715–35.

    Article  Google Scholar 

  64. Laccetti M, Manes G, Uomo G, Lioniello M, Rabitti PG, Balzano A. Flumazenil in the treatment of acute hepatic encephalopathy in cirrhotic patients: a double blind randomized placebo controlled study. Dig Liver Dis. 2000;32(4):335–8.

    Article  CAS  Google Scholar 

  65. Keller E, Hoppe-Seyler G, Mumm R, Schollmeyer P. Influence of hepatic cirrhosis and end-stage renal disease on pharmacokinetics and pharmacodynamics of furosemide. Eur J Clin Pharmacol. 1981;20(1):27–33.

    Article  CAS  Google Scholar 

  66. Schwartz S, Brater DC, Pound D, Green PK, Kramer WG, Rudy D. Bioavailability, pharmacokinetics, and pharmacodynamics of torsemide in patients with cirrhosis. Clin Pharmacol Ther. 1993;54(1):90–7.

    Article  CAS  Google Scholar 

  67. Gentilini P, La Villa G, Marra F, Carloni V, Melani L, Foschi M, et al. Pharmacokinetics and pharmacodynamics of torasemide and furosemide in patients with diuretic resistant ascites. J Hepatol. 1996;25(4):481–90.

    Article  CAS  Google Scholar 

  68. Moore RD, Smith CR, Lietman PS. Increased risk of renal dysfunction due to interaction of liver disease and aminoglycosides. Am J Med. 1986;80(6):1093–7.

    Article  CAS  Google Scholar 

  69. Imani F, Motavaf M, Safari S, Alavian SM. The therapeutic use of analgesics in patients with liver cirrhosis: a literature review and evidence-based recommendations. Hepat Mon. 2014;14(10):e23539.

    Article  Google Scholar 

  70. Møller S, Henriksen JH. Cirrhotic cardiomyopathy: a pathophysiological review of circulatory dysfunction in liver disease. Heart. 2002;87(1):9–15.

    Article  Google Scholar 

  71. Caujolle B, Ballet F, Poupon R. Relationship among beta-adrenergic blockade, propranolol concentration, and liver function in patients with cirrhosis. Scand J Gastroenterol. 1988;23(8):925–30.

    Article  CAS  Google Scholar 

  72. Forman LM, Lucey MR. Predicting the prognosis of chronic liver disease: an evolution from Child to MELD. Hepatology. 2001;33(2):473–5.

    Article  CAS  Google Scholar 

  73. Child CG. The liver and portal hypertension. Philadelphia, PA: Saunders; 1967.

    Google Scholar 

  74. Garrison RN, Cryer HM, Howard DA, Polk HC. Clarification of risk factors for abdominal operations in patients with hepatic cirrhosis. Ann Surg. 1984;199(6):648–55.

    Article  CAS  Google Scholar 

  75. Albers I, Hartmann H, Bircher J, Creutzfeldt W. Superiority of the Child-Pugh classification to quantitative liver function tests for assessing prognosis of liver cirrhosis. Scand J Gastroenterol. 1989;24(3):269–76.

    Article  CAS  Google Scholar 

  76. Malinchoc M, Kamath PS, Gordon FD, Peine CJ, Rank J, ter Borg PC. A model to predict poor survival in patients undergoing transjugular intrahepatic portosystemic shunts. Hepatology. 2000;31(4):864–71.

    Article  CAS  Google Scholar 

  77. Wiesner RH, McDiarmid SV, Kamath PS, Edwards EB, Malinchoc M, Kremers WK, et al. MELD and PELD: application of survival models to liver allocation. Liver Transpl. 2001;7(7):567–80.

    Article  CAS  Google Scholar 

  78. Leise MD, Kim WR, Kremers WK, Larson JJ, Benson JT, Therneau TM. A revised model for end-stage liver disease optimizes prediction of mortality among patients awaiting liver transplantation. Gastroenterology. 2011;140(7):1952–60.

    Article  Google Scholar 

  79. Rassam F, Olthof PB, Bennink RJ, van Gulik TM. Current modalities for the assessment of future remnant liver function. Visc Med. 2017;33(6):442–8.

    Article  Google Scholar 

  80. Herold C, Heinz R, Niedobitek G, Schneider T, Hahn EG, Schuppan D. Quantitative testing of liver function in relation to fibrosis in patients with chronic hepatitis B and C. Liver. 2001;21(4):260–5.

    Article  CAS  Google Scholar 

  81. Clemmesen JO, Tygstrup N, Ott P. Hepatic plasma flow estimated according to Fick’s principle in patients with hepatic encephalopathy: evaluation of indocyanine green and d-sorbitol as test substances. Hepatology. 1998;27(3):666–73.

    Article  CAS  Google Scholar 

  82. Marchesini G, Bua V, Brunori A, Bianchi G, Pisi P, Fabbri A, et al. Galactose elimination capacity and liver volume in aging man. Hepatology. 1988;8(5):1079–83.

    Article  CAS  Google Scholar 

  83. Molino G, Avagnina P, Ballarè M, Torchio M, Niro AG, Aurucci PE, et al. Combined evaluation of total and functional liver plasma flows and intrahepatic shunting. Dig Dis Sci. 1991;36(9):1189–96.

    Article  CAS  Google Scholar 

  84. Fuhr U, Rost KL. Simple and reliable CYP1A2 phenotyping by the paraxanthine/caffeine ratio in plasma and in saliva. Pharmacogenetics. 1994;4(3):109–16.

    Article  CAS  Google Scholar 

  85. Wagner DA, Woolf GM. Breath test for assessing hepatic function. 1999.

    Google Scholar 

  86. Bonfrate L, Grattagliano I, Palasciano G, Portincasa P. Dynamic carbon 13 breath tests for the study of liver function and gastric emptying. Gastroenterol Rep. 2015;3(1):12–21.

    Article  Google Scholar 

  87. Schmidt LE, Olsen AK, Stentoft K, Rasmussen A, Kirkegaard P, Dalhoff K. Early postoperative erythromycin breath test correlates with hepatic cytochrome P4503A activity in liver transplant recipients. Clin Pharmacol Ther. 2001;70(5):446–54.

    Article  CAS  Google Scholar 

  88. Braden B, Lembcke B, Kuker W, Caspary WF. 13C-breath tests: current state of the art and future directions. Dig Liver Dis. 2007;39(9):795–805.

    Article  CAS  Google Scholar 

  89. Petrolati A, Festi D, De Berardinis G, Colaiocco-Ferrante L, Di Paolo D, Tisone G, et al. 13C-methacetin breath test for monitoring hepatic function in cirrhotic patients before and after liver transplantation. Aliment Pharmacol Ther. 2003;18(8):785–90.

    Article  CAS  Google Scholar 

  90. de Graaf W, Bennink RJ, Vetelainen R, van Gulik TM. Nuclear imaging techniques for the assessment of hepatic function in liver surgery and transplantation. J Nucl Med. 2010;51(5):742–52.

    Article  Google Scholar 

  91. Kokudo N, Vera DR, Makuuchi M. Clinical application of TcGSA. Nucl Med Biol. 2003;30(8):845–9.

    Article  CAS  Google Scholar 

  92. Sonne J. Drug metabolism in liver disease: implications for therapeutic drug monitoring. Ther Drug Monit. 1996;18(4):397–401.

    Article  CAS  Google Scholar 

  93. Guaraldi G, Cocchi S, Codeluppi M, Di Benedetto F, Bonora S, Pecorari M, et al. Role of therapeutic drug monitoring in a patient with human immunodeficiency virus infection and end-stage liver disease undergoing orthotopic liver transplantation. Transplant Proc. 2005;37(6):2609–10.

    Article  CAS  Google Scholar 

  94. Weersink RA, Bouma M, Burger DM, Drenth JPH, Hunfeld NGM, Kranenborg M, et al. Evaluating the safety and dosing of drugs in patients with liver cirrhosis by literature review and expert opinion. BMJ Open. 2016;6(10):e012991.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pande, A., Ramachandran, R., Rewari, V. (2023). Pharmacokinetics and Pharmacodynamics of Drugs in Liver Disease. In: Vohra, V., Gupta, N., Jolly, A.S., Bhalotra, S. (eds) Peri-operative Anesthetic Management in Liver Transplantation. Springer, Singapore. https://doi.org/10.1007/978-981-19-6045-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6045-1_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6044-4

  • Online ISBN: 978-981-19-6045-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics